Robotic Motion Planning: RRT's

Robotics Institute 16-735
http://www.cs.cmu.edu/~motion
Howie Choset
http://www.cs.cmu.edu/~choset

Overview

- Probabilistic RoadMap Planning (PRM) by Kavraki
- samples to find free configurations
- connects the configurations (creates a graph)
- is designed to be a multi-query planner
- Expansive-Spaces Tree planner (EST) and Rapidly-exploring Random Tree planner (RRT)
- are appropriate for single query problems
- Probabilistic Roadmap of Tree (PRT) combines both ideas

Next HW Assignment

- Implement a PRM planner for a multi-link (at least four) robot arm. The arm can be a simple planar arm (which will simplify the graphics), or a 3D arm. The arm can be composed of line segments (which will make collision checking easier) rather than finite volume links. All you need to do is write code to detect the intersection between line segments and polygons. If you want, you can use collision checking software that is available on the web.
- How was the previous?
- This is the last one

Rapidly-Exploring Random Trees (RRTs) [Kuffner, Lavalle]

The Basic RRT
single tree
bidirectional
multiple trees (forests)

RRTs with Differential Constraints nonholonomic
kinodynamic systems
closed chains

Some Observations and Analysis
number of branches
uniform convergence
resolution completeness
leaf nodes vs. interior nodes
Performance \& Implementation Issues
Metrics and Metric sensitivity
Nearest neighbors
Collision Checking
Choosing appropriate step sizes

High-Dimensional Planning as of 1999

Single-Query:

Barraquand, Latombe '89; Mazer, Talbi, Ahuactzin, Bessiere '92; Hsu, Latombe, Motwani '97; Vallejo, Jones, Amato '99;

EXAMPLE: Potential-Field

Greedy, can take a long time but good when you can dive into the solution

Multiple-Query:

Kavraki, Svestka, Latombe, Overmars '95; Amato, Wu '96; Simeon, Laumound, Nissoux '99; Boor, Overmars, van der Stappen '99;

EXAMPLE: PRM

Spreads out like uniformity but need lots of sample to cover space

Rapidly-Exploring Random Tree

RI 16-735, Howie Choset with slides from James Kuffner

Path Planning with RRTs (Rapidly-Exploring Random Trees)

```
BUILD_RRT (q qinit ) {
    T.init(qinit);
    for }k=1\mathrm{ to K do
        q}\mp@subsup{q}{\mathrm{ rand }}{}=\mathrm{ RANDOM_CONFIG();
        EXTEND(T, q}\mp@subsup{q}{\mathrm{ rand }}{}
}
```


Path Planning with RRTs (Some Details)

$\operatorname{EXTEND}\left(T, q_{r a n d}\right)$

RRT vs. Exhaustive Search

- Discrete

A* may try all edges

- Continuous

Continuum of choices

Probabilistically subsample all edges

Naïve Random Tree

RRTs and
 Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html
RI 16-735, Howie Choset with slides from James Kuffner

Biases

- Bias toward larger spaces
- Bias toward goal
- When generating a random sample, with some probability pick the goal instead of a random node when expanding
- This introduces another parameter
- James' experience is that $5-10 \%$ is the right choice
- If you do this 100%, then this is a RPP

RRT vs. RPP

RRT's will pull away and better approximate cost-to-go

Grow two RRTs towards each other

RI 16-735, Howie Choset with slides from James Kuffner

A single RRT-Connect iteration...

RI 16-735, Howie Choset with slides from James Kuffner

1) One tree grown using random target

RI 16-735, Howie Choset with slides from James Kuffner

2) New node becomes target for other tree

RI 16-735, Howie Choset with slides from James Kuffner

3) Calculate node "nearest" to target

RI 16-735, Howie Choset with slides from James Kuffner

4) Try to add new collision-free branch

5) If successful, keep extending branch

5) If successful, keep extending branch

5) If successful, keep extending branch

RI 16-735, Howie Choset with slides from James Kuffner

6) Path found if branch reaches target

RI 16-735, Howie Choset with slides from James Kuffner

7) Return path connecting start and goal

RI 16-735, Howie Choset with slides from James Kuffner

Basic RRT-Connect

Instead of switching, use T_{a} as smaller tree. This helped James a lot

$q_{\text {near }}$

$$
q^{\prime}=f(q, u)-- \text { use action } u \text { from } q \text { to arrive at } q^{\prime}
$$

chose $u_{*}=\arg \min \left(d\left(q_{\text {rand }}, q^{\prime}\right)\right)$
Is this the best?

Mixing position and velocity, actually mixing position, rotation and velocity is hard RI 16-735, Howie Choset with slides from James Kuffner

So, what do they do?

- Use nearest neighbor anyway
- As long as heuristic is not bad, it helps
(you have already given up completeness and optimality, so what the heck?)
- Nearest neighbor calculations begin to dominate the collision avoidance (James says 50,000 nodes)
- Remember K-D trees

Articulated Robot

RI 16-735, Howie Choset with slides from James Kuffner

Highly Articulated Robot

RI 16-735, Howie Choset with slides from James Kuffner

Hovercraft with 2 Thusters

RI 16-735, Howie Choset with slides from James Kuffner

Out of This World Demo

RI 16-735, Howie Choset with slides from James Kuffner

Left-turn only forward car

RI 16-735, Howie Choset with slides from James Kuffner

Analysis

The limiting distribution of vertices:

- THEOREM: $\boldsymbol{X}_{\boldsymbol{k}}$ converges to \boldsymbol{X} in probability
$\boldsymbol{X}_{\boldsymbol{k}}$: The RRT vertex distribution at iteration k
X : The distribution used for generating samples
- KEY IDEA: As the RRT reaches all of $Q_{\text {free }}$, the probability that $q_{\text {rand }}$ immediately becomes a new vertex approaches one.

Rate of convergence:
 - The probability that a path is found increases exponentially with the number of iterations.

"This is the bain or the worst part of the algorithm," J. Kuffner

Open Problems

Open Problems

- Rate of convergence
- Optimal sampling strategy?

Open Issues

- Metric Sensitivity
- Nearest-neighbor Efficiency

Applications of RRTs

Robotics Applications
mobile robotics
manipulation
humanoids
Other Applications
biology (drug design)
manufacturing and virtual prototyping (assembly analysis)
verification and validation
computer animation and real-time graphics aerospace
RRT extensions
discrete planning (STRIPS and Rubik's cube)
real-time RRTs
anytime RRTs
dynamic domain RRTs
deterministic RRTs
parallel RRTs
hybrid RRTs

Diffusion Limited Aggregation

- Often used to model natural physical processes (e.g. snow accumulation, rust, etc.)

RI 16-735, Howie Choset with slides from James Kuffner

Exploring Infinite Space

RI 16-735, Howie Choset with slides from James Kuffner

Polar Sampling

RRT Summary

Advantages

- Single parameter
- Balance between greedy search and exploration
- Converges to sampling distribution in the limit
- Simple and easy to implement

Disadvantages

- Metric sensitivity
- Nearest-neighbor efficiency
- Unknown rate of convergence
- "long tail" in computation time distribution

Links to Further Reading

- Steve LaValle's online book: "Planning Algorithms" (chapters 5 \& 14) http://planning.cs.uiuc.edu/
- The RRT page:
http://msl.cs.uiuc.edu/rrt/
- Motion Planning Benchmarks Parasol Group, Texas A\&M http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

PRT (Prob. Roadmap of Trees)

- Basic idea:
- Generate a set of trees in the configuration space
- Merge the trees by finding nodes that can be connected
- Algorithm
- pick several random nodes
- Generate trees $T_{1}, T_{2} \ldots \mathrm{~T}_{\mathrm{n}}$ (EST or RRT)
- Merge trees
- generate a representative super-node
- Using PRS ideas to pick a neighborhood of trees
- Δ is now the tree-merge algorithm
- For planning
- generate trees from initial and goal nodes towards closest supernodes
- try to merge with "roadmap" of connected trees
- Note that PRS and tree-based algorithms are special cases

