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Exact Cell vs. Approximate Cell

• Cell: simple region
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Adjacency Graph

– Node correspond to a cell
– Edge connects nodes of adjacent cells

• Two cells are adjacent if they share a common boundary
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Path Planning

• Path Planning in two steps:
– Planner determines cells that contain the start 

and goal
– Planner searches for a path within adjacency 

graph
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Types of Decompositions

• Trapezoidal Decomposition
• Morse Cell Decomposition

– Boustrophedon decomposition
– Morse decomposition definition
– Sensor-based coverage
– Examples of Morse decomposition

• Visibility-based Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition Path
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Implementation

• Input is vertices and edges
• Sort n vertices O(n logn)
• Determine vertical extensions

– For each vertex, intersect vertical line with 
each edge – O(n) time

– Total O(n2) time
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Sweep line approach

Sweep a line through the space stopping at vertices which are often
called events

Maintain a list L of the current edges the slice intersects

Determining the intersection of slice with L requires O(n) time but with
an efficient data structure like a balanced tree, perhaps O(log n)

Really, determine between which two edges the vertex or event lies
These edges are 

So, really maintaining L takes O(n log n) – log n for insertions, n for vertices
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Events

In

Out Middle
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Example
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Example
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Example
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Example
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Coverage

Planner determines an exhaustive walk 
through the adjacency graph

Planner computes explicit robot motions 
within each cell

Problems

1. Polygonal representation
2. Quantization
3. Position uncertainty
4. Full information
5. What else?
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Boustrophedon Decomposition
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Complete Coverage
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• Slice function: h(x,y)= x

• At a critical point x of                                  where M = {x|m(x)=0})()(,| xmxhh M ∇=∇

h∇

m∇

Morse Decomposition in Terms of Critical Points
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1-connected
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2-connected
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1-connected
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2-connected
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• Connectivity of the slice in the free space 
changes at the critical points
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• Each cell can be covered by back and
forth motions
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• Reeb graph represents the topology of
the cellular decomposition
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Incremental construction
•While covering the space, look for critical points

Stage 1
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Stage 1

Incremental construction (cont’d)

Stage 2
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Stage 1

Incremental construction (cont’d)

Stage 2 Stage 3
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Incremental construction (cont’d)

Stage 1 Stage 2 Stage 4Stage 3
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Algorithm
• Cover a cell until the closing critical point is 

detected
• If the closing critical point has “uncleaned” cells 

associated with it, chose one and cover, repeat
• If the closing critical point has no uncleaned

cells, 
– search reeb graph for a critical point with an 

uncleaned cell
– Plan a path (on average shorter than bug2) to critical 

point
– Cover cell, repeat

• Else coverage is complete
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Detect Critical Points
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Encountering Critical Points: 
Problem
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Cycle Algorithm



RI 16-735 Howie Choset

Sensor-based Complete 
Coverage 

Time-exposure photo of a coverage experiment

Goal: Complete coverage of an unknown environmentComplete coverage of an unknown environment
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Sensor-based Complete 
Coverage 

Goal: Complete coverage of an unknown environmentComplete coverage of an unknown environment

Time-exposure photo of a coverage experiment
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Morse Decomposition h(x,y) = x

Boustrophedon decomposition
•Canny π1: Q → ℜ)
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Morse Decomposition
h(x,y) = x2 + y2
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Morse Decomposition 
h(x,y) = |x| + |y|

squarels
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Morse Decomposition 
h(x,y) = tan(y/x)
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Brushfire Decomposition
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Brushfire Decomposition
h(x,y) = D(x,y)
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Brushfire Decomposition
h(x,y) = D(x,y)
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Brushfire Decomposition
h(x,y) = D(x,y)
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Brushfire Decomposition
h(x,y) = D(x,y)



RI 16-735 Howie Choset

Brushfire Decomposition
Coverage Path
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Wavefront Decomposition
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Notation

• A slice is a codimension one manifold 
(Qλ)

• Slices are parameterized by λ
– varying λ sweeps a slice through the 

space
• The portion of the slice in the free 

configuration space (Qfree) is Qfreeλ
• Qfreeλ = Qλ ∩ Qfree
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Slice Definition

• Slice can be defined in terms of the 
preimage of the projection operator    

• h: Q → ℜ (Canny π1: Q → ℜ)
• Vertical slice are defined by                
• Qλ = h−1(λ), with h(x,y) = x for the plane
• Increasing λ sweeps the slice to the right 

through the plane
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The Pursuer-Evader Problem

• Problem definition 
How do you plan the motion of a pursuer(s) in a polygonal 
environment so that it will eventually “see” an unpredictable 
evader?

• Assumptions
-Polygonal environment, freespace denoted F
-If the evader is within line of sight of the pursuer, it has been 
“captured”
-Evaders can move arbitrarily fast
-Pursuers have unlimited vision range

Free space F
Polygonal 
obstacles
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Terminology and Definitions
• γi(t) position of ith pursuer at time t
• V(q) set of points in F visible from q ∈ F
• Contaminated: region of F that might contain the evader
• Cleared: region that is not contaminated. 
• Recontaminated: A region that was contaminated, then cleared, and then 

contaminated
• Solution strategy: A strategy γ for any given evader path if there is at some time a 

point where the pursuer sees the evader.

Contaminated 
area

clear area

Pursuers path, γi

Visibility polygon V(q)
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Information State and Space

• Let q ∈ F be the current pursuer position, let S ⊆ F be the set of 
all contaminated points in F, then η = (q, S) is an information 
state.  In other words, it is a set of data that uniquely describes 
state of the environment at a given point.  Is Is ηη = (= (q, Sq, S) a function ) a function 
of time?of time?

• The set of all possible information states is the information 
space.

Two different information states
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Gap edges

Gap edge

0
0

1

The blue area is 
V(q) for the 
point shown

Information State

•We can assign each gap edge a binary value– if the edge borders a contaminated region, it is 
assigned a “1”, and “0” for all other edges.
•For each point q, we can assign a binary vector B(q) that contains all the gap edge labels
•The pair (q, B(q)) then uniquely describes the information state, for example (q, {010})

Recall a contaminated region might have an evader

•How do we use the information state in our search for the evader?
At a point q, the edges of the visibility polygon V(q) alternate between being 
on the boundary of F and the interior of F. We will call the edges of V(q) that 
enter the free space gap edges.
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Conservative Regions
• A connected set D ⊆ F is conservative if for all q ∈ F, and for all γ:[t0, t1] 

→ D such that γ is continuous and γ(t0)= γ(t1)= q, then the same 
information state is obtained.

Ok, but what does that mean?
As long as we stay in the same conservative region, the information state will not change.  If we 

break the free space F down into conservative regions, then if we visit one point in a region, 
we will obtain the same information that we would have gotten from any other point in the 
same region

Position q1 Position q2 (with path shown from q1) Position q3

Moving the robot from q1 to q2, the information state does not change. 

But when we move from q1 to q3 the information state does change- the region in the lower center is cleared

Thus q1 and q2 are in the same conservative region
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Constructing Conservative Regions
So how do we construct them?
Draw rays extending the edges of obstacles until they hit another obstacle.  We also draw rays 

extending away from any two vertices that don’t have an obstacle between them.
The three general cases are shown below.

Extend edges in all possible directions
(Note that we have not shown all the possible rays for the obstacles)

Extend pairs of vertices outwards only if it is 
free in both directions along a line through 
the two vertices

For Case 3: Let vi ∈ Ci, vj ∈ Cj.  Then if λvi + (1- λ) vj ∈F for all λ ∈ (-ε, 1+ε) then we draw a ray 
extending from vi away from vj and vice versa until they hit an obstacle   (except lamda = 0,1??)

vi

vj

Case 1 Case 2 Case 3
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Examples of Conservative Regions

• Because the information state is the same in a given conservative 
region, all we really need to do is visit the center of each region to 
obtain the state.
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Conservative Regions to Graphs
• Now that we have the space decomposed into conservative regions, we can 

represent each region as the node on a finite, planar graph G.



RI 16-735 Howie Choset

Directed Information Graph
• Given a graph G, we can derive the information graph GI that includes 

the labels for the gap edges.  For each node in G, we include a set of 
vertices in GI, one for each possible gap edge label.

• For example, for a given point and region q ∈ D, there are two gap edges 
in B(q).  But we include all possible combinations of B(q) in GI: {00, 01, 
10, 11}.  Thus we can identify a vertex in GI with the pair (q, B(q))

Freespace with overlaid graph G

0 01

10
1

0

1 0

1

00

11

0 1

Information Graph  GI
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Gap Edge transitions
• What happens to the gap edges when we move from region to region?
There are four cases:

1. A gap edge disappears ⇒Don’t worry about it, the area has been cleared
2. A gap edge appears ⇒ Assign it a “0” (clear) label
3. Two or more gap edges merge into one ⇒ If any of the original edges had a “1”
(contaminated) , then the new edge will be a “1”
4. One gap edge splits into two ⇒ Assign new edges the same value as the old 
edge

q3

q4

q1
q2

•Moving from q1 to q2, the single gap edge 
disappears (Case 1)

• From q2 to q1, a gap edge reappears (Case 2)

• Moving from q3 to q4, two gap edges merge into one 
(Case 3)

•From q4 to q3, a single edge splits into two (Case 4)
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Graph search and solution

• The final step is to simply apply any graph searching algorithm to 
the information graph GI and update the vector B(q) for each 
region.

• Any node on GI of the form (q, B(q)) such that B(q) = “00…0” (all 
gap edges are 0) or a node with no gap edges is a goal node.

• This algorithm is complete in the case of a single pursuer.

0 01

10
1

0

1 0

1

00

11

0 1

Start node

Goal node
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Simply connected Free space with hole

Worst case bounds
How many pursuers do you need to have to find an evader in a given space?

That depends on the geometry of the space
• For a simply connected free space, F, with n edges, H(F) = Θ(log n), where H(F)

is the number of pursuers needed.
• For a free space F with h holes and n edges, H(F) = Θ(                )nh log+

Quick review:   O(n) = “at most” Ω(n) = “at least” Θ(n) = asymptotically equal

• Simply connected means all the edges can be connected into a single continuous path

Why does the hole matter?  If there is a hole, the evader can always be on the side 
opposite a single pursuer.  Thus a space with one hole requires two pursuers.
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Intuition on Bounds for H(F)
• For a simply connected environment, H(F)= Θ(log n).  We can see this 

by using a “Ω” shaped free space.  

12 edges, one 
pursuer 36 edges, two pursuers 108 edges, three pursuers

• For a space with h holes and n edges, H(F) = Θ(              )

• The √h pursuers are used to divide the space into simply 
connected components, while the log(n) pursuers search 
the remaining space

4 holes, 111 edges, 4 pursuers

nh log+
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Multiple Pursuers Demo
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Recontamination
• There are some simply connected free spaces with H(F)=1 where 

recontamination will be required Ω(n) times

Here the peak will be 
recontaminated 3 times, 
requiring 2 extra visits to the 
peak (see web animation)
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Conclusions / Questions

• The algorithm presented is complete for a single 
pursuer

• Any graph search algorithm will provide a solution 
once a information graph is extracted from the 
conservative region decomposition.

• Tight bounds exist for the number of pursuers 
necessary for a given free space.

• A complete and correct algorithm does not exist yet for 
H(F) > 1

Based on the paper
“A Visibility-Based Pursuit-Evasion Problem”, Guibas, Latombe, LaValle, 

Lin, Motwani
Animations are on the web at: 

http://robotics.stanford.edu/groups/mobots/pe.html


