
15-887 

Planning, Execution and Learning

Application:

Example of 

Planning for Autonomous Driving

Maxim Likhachev

Robotics Institute

Carnegie Mellon University



Carnegie Mellon University 2

Typical Planning Architecture for Autonomous Vehicle



Carnegie Mellon University 3

Typical Planning Architecture for Autonomous Vehicle

How do you think 

the graph is constructed?



Carnegie Mellon University 4

Typical Planning Architecture for Autonomous Vehicle

Tartanracing, CMU



Carnegie Mellon University 5

Typical Planning Architecture for Autonomous Vehicle

Tartanracing, CMU

planning states defined by: 

x,y,theta,v



Carnegie Mellon University 6

Typical Planning Architecture for Autonomous Vehicle



Carnegie Mellon University 7

Typical Planning Architecture for Autonomous Vehicle

planning states defined by: 

discretization along a lane (=x) and perpendicular to it (=y), 

lane ID, 

v, time



Carnegie Mellon University 8

Typical Planning Architecture for Autonomous Vehicle

We’ll look into the version used for Urban Challenge in ‘07 

[Likhachev & Ferguson, ‘09]



Carnegie Mellon University 9

Motivation
• Planning long complex maneuvers for the Urban 

Challenge vehicle from CMU (Tartanracing team)

• Planner suitable for

– autonomous parking in very large (200m by 200m) cluttered 

parking lots 

– navigating in off-road conditions

– navigating cluttered intersections/driveways



Carnegie Mellon University 11

Desired Properties

• Generate a path that can be tracked well (at up to 5m/sec):

– path is a 4-dimensional trajectory:

orientation speed



Carnegie Mellon University 12

Desired Properties

• Generate a path that can be tracked well (at up to 5m/sec):

– path is a 4-dimensional trajectory:

orientation speed

Orientation of the wheels is not included. 

When will that be a problem?



Carnegie Mellon University 13

Desired Properties

• Fast (2D-like) planning in trivial environments:

200 by 200m parking lot



Carnegie Mellon University 14

Desired Properties

• But can also handle large non-trivial environments:

200 by 200m parking lot



Carnegie Mellon University 15

Desired Properties

• Anytime property: finds the best path it can within X secs 

and then improves the path while following it

initial path converged (to optimal) path



Carnegie Mellon University 16

Desired Properties

• Fast replanning, especially since we need to avoid other 

vehicles

planning a path that avoids other vehicles



Carnegie Mellon University 17

Desired Properties

• Fast replanning, especially since we need to avoid other 

vehicles

planning a path that avoids other vehicles
Time is not part of the state-space. 

When will that be a problem?



Carnegie Mellon University 18

Our Approach

• Build a graph

– multi-resolution version of a lattice graph

• Search the graph for a least-cost path

– Anytime D* [Likhachev et al. ‘05]



Carnegie Mellon University 19

Building the Graph

• Lattice-based graph [Pivtoraiko & Kelly, ‘05]:

action template

each transition is feasible

(constructed beforehand)

outcome state is the center of the corresponding cell



Carnegie Mellon University 20

• Lattice-based graph [Pivtoraiko & Kelly, ‘05]:

action template

replicate it 

online

each transition is feasible

(constructed beforehand)

outcome state is the center of the corresponding cell

Building the Graph



Carnegie Mellon University 21

Building the Graph

• Lattice-based graph [Pivtoraiko & Kelly, ‘05]:

action template

replicate it 

online

each transition is feasible

(constructed beforehand)

outcome state is the center of the corresponding cell

we will be searching this graph for 

a least-cost path from sstart to sgoal



Carnegie Mellon University 22

Building the Graph

• Multi-resolution lattice:

– high density in the most constrained areas (e.g., around start/goal)

– low density in areas with higher freedom for motions

most constrained areas



Carnegie Mellon University 23

Building the Graph

• The construction of multi-resolution lattice:

– the action space of a low-resolution lattice is a strict subset of the 

action space of the high-resolution lattice

reduces the branching factor for the low-res. lattice



Carnegie Mellon University 24

Building the Graph

• The construction of multi-resolution lattice:

– the action space of a low-resolution lattice is a strict subset of the 

action space of the high-resolution lattice

– the state-space of a low-resolution lattice is discretized to be a 

subset of the possible discretized values of the state variables in the 

high-resolution lattice

reduces the branching factor for the low-res. lattice

reduces the size of the state-space for the low-res. lattice

both allow for seamless transitions



Carnegie Mellon University 25

Building the Graph

• Multi-resolution lattice used for Urban Challenge:

36 actions, 

32 discrete values of heading

0.25m discretization for x,y

24 actions, 

16 discrete values of heading

0.25m discretization for x,y

dense-resolution lattice low-resolution lattice

can be multiple levels

can also be non-uniform in x,y & v



Carnegie Mellon University 26

Building the Graph

• Properties of multi-resolution lattice:

– utilization of low-resolution lattice: every path that uses only the 

action space of the low-resolution lattice is guaranteed to be a 

valid path in the multi-resolution lattice

– validity of paths: every path in the multi-resolution lattice is 

guaranteed to be a valid path in a lattice that uses only the action 

space of the high-resolution lattice



Carnegie Mellon University 27

Building the Graph

• Benefit of the multi-resolution lattice:

Lattice States Expanded Planning Time (s)

High-resolution 2,933 0.19

Multi-resolution 1,228 0.06



Carnegie Mellon University 28

Searching the Graph
• Anytime D* [Likhachev et al. ’05]:

– anytime incremental version of A*

– anytime: computes the best path it can within provided time and 

improves it while the robot starts execution. 

– incremental: it reuses its previous planning efforts and as a 

result, re-computes a solution much faster



Carnegie Mellon University 29

Searching the Graph
• Anytime D* [Likhachev et al. ’05]:

set  to large value;

until goal is reached

ComputePathwithReuse();

publish  -suboptimal path for execution;

update the map based on new sensory information;

update current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

guarantees that 

cost(path) ≤ ε cost(optimal path)

makes it improve the solution

desired bound on the suboptimality

computes a path reusing all 

of the previous search efforts



Carnegie Mellon University 30

Searching the Graph
• Anytime behavior of Anytime D*:

so
lu

ti
o
n
 c

o
st

time (s)



Carnegie Mellon University 31

Searching the Graph
• Incremental behavior of Anytime D*:

initial path a path after re-planning



Carnegie Mellon University 32

Searching the Graph
• Performance of Anytime D* depends strongly on 

heuristics h(s): estimates of cost-to-goal

h(s)

S=

Sgoal

should be consistent and admissible (never overestimate cost-to-goal)



Carnegie Mellon University 33

Searching the Graph
• Performance of Anytime D* depends strongly on 

heuristics h(s): estimates of cost-to-goal

h(s)

S=

Sgoal

should be consistent and admissible (never overestimate cost-to-goal)

Any ideas?



Carnegie Mellon University 34

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic

– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints

and ignores environment

henv(s) – considers only environment 

constraints and ignores dynamics



Carnegie Mellon University 35

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic

– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints

and ignores environment

henv(s) – considers only environment 

constraints and ignores dynamics

pre-computed as a table lookup 

for high-res. lattice 

computed online by running 

a 2D A* with late termination



Carnegie Mellon University 36

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s)), where

– hmech(s) – mechanism-constrained heuristic

– henv(s) – environment-constrained heuristic

hmech(s) – considers only dynamics constraints

and ignores environment

henv(s) – considers only environment 

constraints and ignores dynamics

pre-computed as a table lookup 

for high-res. lattice 

computed online by running 

a 2D A* with late termination

Any other options?

Closed-form analytical solutions 

(Dubins paths [Dubins, ‘57], 

Reeds-Shepp paths [Reeds & Shepp, ‘90])

Any challenges using it?



Carnegie Mellon University 37

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s))

• h(s) needs to be admissible and consistent

for efficiency, valid paths, suboptimality bounds, optimality in the limit



Carnegie Mellon University 38

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s))

• h(s) needs to be admissible and consistent

• if hmech(s) and henv(s) are admissible and consistent, then 

h(s) is admissible and consistent [Pearl, 84]

• hmech(s) – cost of a path in high-res. lattice with no 

obstacles and no boundaries
hmech(s) – admissible and consistent



Carnegie Mellon University 39

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s))

• h(s) needs to be admissible and consistent

• if hmech(s) and henv(s) are admissible and consistent, then 

h(s) is admissible and consistent [Pearl, 84]

• henv(s) – cost of a 2D path of the inner circle of the vehicle 

into the center of the goal location

henv(s) – NOT admissible



Carnegie Mellon University 40

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s))

• henv(s) – cost of a 2D path of the inner circle of the vehicle 

into the center of the goal location

henv(s) – NOT admissible

robot

high-cost stripGOAL



Carnegie Mellon University 41

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s))

• henv(s) – cost of a 2D path of the inner circle of the vehicle 

into the center of the goal location

henv(s) – NOT admissible

cost = average over this box (convolution)

according to henv(s):

cost = average over the trace of inner circle

cost costh

cost < costh

FIX: cost = max(cost,costh) 

equivalent to slightly higher cost for obstacles close to the middle of the vehicle 



Carnegie Mellon University 42

Searching the Graph
• In our planner: h(s) = max(hmech(s), henv(s))

• hmech(s) – admissible and consistent

• henv(s) – admissible and consistent

• h(s) – admissible and consistent



Carnegie Mellon University 43

Searching the Graph

Theorem. The cost of a path returned by Anytime D* is no more than

ε times the cost of a least-cost path from the vehicle configuration to

the goal configuration using actions in the multi-resolution lattice,

where ε is the current value by which Anytime D* inflates heuristics.

• In our planner: h(s) = max(hmech(s), henv(s))

• hmech(s) – admissible and consistent

• henv(s) – admissible and consistent

• h(s) – admissible and consistent



Carnegie Mellon University 44

Searching the Graph

• Benefit of the combined heuristics:

Heuristic States Expanded Planning Time (s)

Environment-constrained only 26,108 1.30

Mechanism-constrained only 124,794 3.49

Combined 2,019 0.06



Carnegie Mellon University 45

Optimizations

• Pre-compute as much as possible

– convolution cells for each action for each initial heading



Carnegie Mellon University 46

Optimizations

• Pre-compute as much as possible

– mechanish-constrained heuristics



Carnegie Mellon University 47

Optimizations

• avoid convolutions based on collision checking with inner 

and outer circles

r

R



Carnegie Mellon University 48

Optimizations

• Efficient re-planning by maintaining low-resolution boolean 

map of states expanded

– each map update may affect thousands of states

– need to iterate over those states to see if they are effected

– optimization: iterate and update edge costs only when map update 

is in the area that have states expanded



Carnegie Mellon University 49

Results

Tartanracing, CMU

• Plan improvement



Carnegie Mellon University 50

Results

Tartanracing, CMU

• Replanning in a large parking lot (200 by 200m)



Carnegie Mellon University 51

Summary
• Multiple levels of planning (high-level route planning to 

motion planning to local planning/path following)

• Multi-resolution lattice in Motion Planner is beneficial

– seamless transitions in between resolutions

– a simple but general enough for planning with other dimensions

• Anytime re-planner is critical

– improves the solution as time allows and during execution

– reuses previous search efforts for faster re-planning

• Design of proper heuristics is a key to efficiency


