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Motivation

 Planning long complex maneuvers for the Urban
Challenge vehicle from CMU (Tartanracing team)

e Planner suitable for

— autonomous parking in very large (200m by 200m) cluttered
parking lots

— navigating in off-road conditions
— navigating cluttered intersections/driveways
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Desired Properties

» (enerate a path that can be tracked well (at up to 5m/sec):

— path is a 4-dimensional trajectory:

(, y, 0, v)
orientation “speed
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» (enerate a path that can be tracked well (at up to 5m/sec):

— path is a 4-dimensional trajectory:

(, y, 0, v)
orientation “speed
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Desired Properties

 Fast (2D-like) planning In trivial environments:

200 by 200m parking lot
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Desired Properties

« But can also handle large non-trivial environments:

200 by 200m parking lot

Carnegie Mellon University

14



Desired Properties

* Anytime property: finds the best path it can within X secs
and then improves the path while following it

initial path converged (to optimal) path
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Desired Properties

 Fast replanning, especially since we need to avoid other
vehicles

plan‘ning a path that avoids other vehicles
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Desired Properties

 Fast replanning, especially since we need to avoid other
vehicles

ehicles
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Our Approach

 Build a graph
— multi-resolution version of a lattice graph

 Search the graph for a least-cost path
— Anytlme D* [Likhachev et al. ‘05]
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Building the Graph

o Lattice-based graph (pivtoraiko & Kelly, <05]:

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template

P
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Building the Graph

o Lattice-based graph (pivtoraiko & Kelly, <05]:

outcome state is the center of the corresponding cell

each transition is feasible
(constructed beforehand)

action template
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online
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Building the Graph

o Lattice-based graph (pivtoraiko & Kelly, <05]:

outcome state is the center of the corresponding cell

nach trancitinn |S feasible S¢7

we will be searching this graph for ™
Ieast cost path from sy, t0 Sy,

aCtIOll L

repllcate |t
online
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Building the Graph

« Multi-resolution lattice:
— high density in the most constrained areas (e.g., around start/goal)
— low density in areas with higher freedom for motions

most constrained areas
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Building the Graph

e The construction of multi-resolution lattice:

— the action space of a low-resolution lattice is a strict subset of the
action space of the high-resolution lattice

reduces the branching factor for the low-res. lattice
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Building the Graph

e The construction of multi-resolution lattice:

— the action space of a low-resolution lattice is a strict subset of the
action space of the high-resolution lattice

— the state-space of a low-resolution lattice is discretized to be a
subset of the possible discretized values of the state variables in the
high-resolution lattice
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Building the Graph

« Multi-resolution lattice used for Urban Challenge:

dense-resolution lattice low-resolution lattice
" - nifa "o initial
4 heading™ ” heading ™ .,

36 actions, 24 actions,
32 discrete values of heading 16 discrete values of heading
0.25m discretization for X,y 0.25m discretization for X,y

can ha miiltinla lavalg
can also be non-uniformin X,y & v
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Building the Graph

Properties of multi-resolution lattice:

— utilization of low-resolution lattice: every path that uses only the
action space of the low-resolution lattice is guaranteed to be a
valid path in the multi-resolution lattice

— validity of paths: every path in the multi-resolution lattice is
guaranteed to be a valid path in a lattice that uses only the action
space of the high-resolution lattice
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Building the Graph

Benefit of the multi-resolution lattice:

Lattice States Expanded | Planning Time (s)
High-resolution 2,933 0.19
Multi-resolution 1,228 0.06
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Searching the Graph
¢ Anytlme D* [Likhachev et al. *05].
— anytime incremental version of A*

— anytime: computes the best path it can within provided time and
Improves it while the robot starts execution.

— Incremental: it reuses its previous planning efforts and as a
result, re-computes a solution much faster

Carnegie Mellon University 28



Searching the Graph

set £to large value;
until goal is reached

ComputePathwithReuse();——

publish &-suboptimal path for execution;
update the map based on new sensory information;
update current state of the agent;
if significant changes were observed
Increase ¢ or replan from scratch;
else

* Anytime D*

[Likhac
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Searching the Graph

« Anytime behavior of Anytime D*:

cost = 133,736
€=3.0 .
13,000 # expands = 1,715
17
@)
o
g 11,000 - -
g cost = 77,345
> e=1.0
w # expands = 14 132 &
9,000
7,000
0 0.2 0.4 0.6

time (S) |

Carnegie Mellon University



Searching the Graph

 Incremental behavior of Anytime D*:

initial path a path after re-planning
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Searching the Graph

 Performance of Anytime D* depends strongly on
heuristics h(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)

goal
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Searching the Graph

 Performance of Anytime D* depends strongly on
heuristics h(s): estimates of cost-to-goal

should be consistent and admissible (never overestimate cost-to-goal)
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Searching the Graph

* In our planner: h(s) = max(h...+(S), Neny(S)), Where
— heen(S) — mechanism-constrained heuristic
— h,,(S) — environment-constrained heuristic

Nech(S) — considers only dynamics constraints h.n,(S) — considers only environment
and ignores environment constraints and ignores dynamics

t“D
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Searching the Graph

* In our planner: h(s) = max(h...+(S), Neny(S)), Where
— heen(S) — mechanism-constrained heuristic
— h,,(S) — environment-constrained heuristic

Nech(S) — considers only dynamics constraints h.n,(S) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination

\

o—"bp _l>_ __X l>
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Searching the Graph

* In our planner: h(s) = max(h...+(S), Neny(S)), Where
Nech(S) — mechanism-constrained heuristic
— h,,(S) — environment-constrained heuristic

Nech(S) — considers only dynamics constraints h.n,(S) — considers only environment
and ignores environment constraints and ignores dynamics
\ |
pre-computed as a table lookup computed online by running
for high-res. lattice a 2D A* with late termination
Closed-form analytical solutions
(Dubins paths [Dubins, 57],
Reeds-Shepp paths [Reeds & Shepp, ‘90] )
I_
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Searching the Graph

* In our planner: h(s) = max(h...x(S), heny(S))

 h(s) needs to be admissible and consistent

Carnegie Mellon University 37



Searching the Graph

In our planner: h(s) = max(h..,(S), hen(S))
h(s) needs to be admissible and consistent

If h_...(s) and h,,,(S) are admissible and consistent, then
h(s) I1s admissible and consistent [pearl, 8]

h.cn(S) — cost of a path in high-res. lattice with no

obstacles and no boundaries
Nech(S) — admissible and consistent
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Searching the Graph

In our planner: h(s) = max(h..,(S), hen(S))
h(s) needs to be admissible and consistent

If h_...(s) and h,,,(S) are admissible and consistent, then
h(s) I1s admissible and consistent [pearl, 8]

h..,(S) — cost of a 2D path of the inner circle of the vehicle
Into the center of the goal location

N | ha©-NOTamissble

r
Af—l)

\_/

Carnegie Mellon University 39



Searching the Graph

* In our planner: h(s) = max(h...x(S), heny(S))

Neny(S) — NOT admissible

* h,,(S) — cost of a 2D path of the inner circle of the vehicle
Into the center of the goal location

GOAL high-cost strip

robot
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Searching the Graph

* In our planner: h(s) = max(h...x(S), heny(S))

Neny(S) — NOT admissible

* h,,(S) — cost of a 2D path of the inner circle of the vehicle
Into the center of the goal location

according to h,,(s):
cost = average over this box (convolution) cost = average over the trace of inner circle

cost < cost,

FIX: cost = max(cost,cost,)

7 : ; ~gps
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Searching the Graph

In our planner: h(s) = max(h..,(S), hen(S))
hcn(S) — admissible and consistent
h..,(S) — admissible and consistent

h(s) — admissible and consistent
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Searching the Graph

In our planner: h(s) = max(h..,(S), h.n(S))

Ncn(S) — admissible and consistent

h..,(S) — admissible and consistent

h(s) —admissible and consistent

Theorem. The cost of a path returned by Anytime D* is no more than
¢ times the cost of a least-cost path from the vehicle configuration to
the goal configuration using actions in the multi-resolution lattice,
where ¢ is the current value by which Anytime D* inflates heuristics.
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Searching the Graph

Benefit of the combined heuristics:

r"

Heuristic States Expanded Planning Time (s)
Environment-constrained only 26,108 1.30
Mechanism-constrained only 124,794 3.49
Combined 2,019 0.06
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Optimizations

* Pre-compute as much as possible
— convolution cells for each action for each initial heading

B
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Optimizations

* Pre-compute as much as possible
— mechanish-constrained heuristics
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Optimizations

« avold convolutions based on collision checking with inner

and outer circles

-
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Optimizations

 Efficient re-planning by maintaining low-resolution boolean
map of states expanded

— each map update may affect thousands of states
— need to Iterate over those states to see If they are effected

— optimization: iterate and update edge costs only when map update
IS In the area that have states expanded
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Results
* Plan improvement

Tartanracing, CMU
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Results
* Replanning in a large parking lot (200 by 200m)

N

Tartanracing, CMU
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summary

Multiple levels of planning (high-level route planning to
motion planning to local planning/path following)

Multi-resolution lattice in Motion Planner is beneficial
— seamless transitions in between resolutions
— a simple but general enough for planning with other dimensions

Anytime re-planner is critical
— Improves the solution as time allows and during execution
— reuses previous search efforts for faster re-planning

Design of proper heuristics Is a key to efficiency
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