9/12/16

State, Action, Goal Representation;
Classical Planning

Manuela Veloso

Carnegie Mellon University
School of Computer Science

156-887 Planning, Execution, and Learning — Fall 2016

Planning — Problem Solving

Newell and Simon 1956
* Given the actions available in a task domain.
» Given a problem specified as:

— an initial state of the world,
— goal statement - a set of goals to be achieved.

» Find a solution to the problem, i.e., a way to transform
the initial state into a new state of the world where the
goal statement is true.

* Planning is “thinking...”

9/12/16

Outline

What is a State and Goal

What is an Action

What is a Plan

Finding a Plan

The Blocks World

o~
os)

Table Table

* Blocks are on the Table, or on top of each other.
* There is an Arm — the Arm can be empty or holding one block.
+ The table is always clear.

The Blocks World - States

» Objects
— Blocks: A, B, C
— Table: Table

* Predicates

— On(A, B), On(C, Table), Clear(B), Handempty,
Holding(C)

— On-table(A), On(A,B), Top(B),...
— Tower(A,B,C,...)
» States — Conjunctive
— On(A,B) and On(B,C) and Clear(A) and Handempty

Classical Deterministic Planning

 Single initial state, complete, deterministic
— CWA - closed world assumption:

What is not true in the state, is false.

» Queries on state
— On(A,B) — returns true or false
— On(A,x) — returns x=Table or x=B

— On-table (x) — returns x=A and x=B and x=C....

9/12/16

Blocks World State Description

Holding-A -A-on-B 2 -A-on-Table

A-on-B Holding-B -B-on-A A -B-on-Table
A-on-Table Handempty —Holding-A » -Holding-B
B-on-A Clear-A -B-on-A

B-on-Table Clear-B -A-on-B

24 possible states

A-on-x {J, table, B}
B-on-x {J, table, A}

32 possible states

State-Space Search 1

)

g El g I?I ITI

L |
du mpg gu Ug gu og
lT H H lT H lT

9/12/16

What is a Goal?

* Goal State
— Completely specified

* Goal Statement
— Partially specified state

Increasing Generality

* Preference Model

— Objective function

— Defines “good” or “optimal” plan

State-Space Search 11

 Initial: A-on-x = Table; B-on-x = A; C-on-x = Table
* Goal: A-on-x=B

0=; 1 = Table; n = block# + 1

(192)— (102 —(1D—(10) H 10—

(128)+—(120y—(121)+—(100)

(041)—

9/12/16

Models of World State

Atomic identification (s1, s2,...)
Symbolic - factored

— Features

— Predicates

Conjunctive, observable
Probabilistic, approximate
Incremental, on-demand
Temporal, dynamic

Predicates, conjunctive, complete,
correct, deterministic

Outline

What is a State and Goal

What is an Action
What is a Plan

Finding a Plan

9/12/16

What is an Action?

* Transition From One (Partial) State to Another
— May be applicable only in particular states
— Generates new state

* Deterministic: tir SXA—S
* Non-deterministic: 7., 4,: SXx A — 25
* Probabilistic: Lorop: S X A — <25, 1>

Explicit Action Representation

* (Grounded) Transition Matrix

9/12/16

9/12/16

The Blocks World Dynamics — Actions

B B

A C A C
Table Table

Blocks are on the Table, or on top of each other.
Blocks are picked up and put down by the arm.
A block can be picked up only if it is clear, i.e., without a block on top.

The arm can pick up a block only if the arm is empty, i.e., if it is not holding
another block, i.e., the arm can pick up only one block at a time.

The arm can put down blocks on blocks or on the table.
The table is always clear.

STRIPS Action Representation

+ Explicit action representation
— {preconds(a), effects(a), effects™(a)}
— effects~(a) N effects*(a) = &
— (S, a) = {S —effects (a) U effects*(a)}, where S € 28

STRIPS - The Blocks World

8]
Table Table
Pickup_from_table(?b)
Pre:
Add:
Delete:

STRIPS - The Blocks World

B8]
Table Table
Pickup_from_table(b) Pickup_from_block(bl, b2)
Pre: Block(b), Armempty Pre: Block(b1),Block(b2), Armempty
Clear(b), On(b, Table) Clear(bl), On(b1,b2)
gd?: Ho'IAding(b) t Add: Holding(b1), Clear(b2)
elete: Armempty, .
On(b, Table) Delete: ‘gﬁ?ﬁfgg’
clear(b) Clear (b1)
Putdown_on_table(b)
Pre: Block(b), Holding(b) Putdown_on_block(b1, b2)
Add: Armempty, Pre: Block(b1), Holding(b1)
On(b, Table) Block(b2), Clear(b2), bl =b2
Delete: Holding(b) Add: Armempty, On(b1, b2)

Delete: Holding(b1), Clear(b2)

9/12/16

Actions

* An action a is applicable in s if all the
preconditions of action a are satisfied by s.

« RESULT(s,a) = (s—Del (a)) U Add (a)

* No explicit mention of time
— The precondition always refers to time ¢t

— The effect always refers to time t+1

Example — Action Model

DRILL PRESS

<drill-bit> | PART |

TYPE HIERARCHY ——

‘ DRILL-BIT ‘

1
N\ <part> /

| SPOT-DRILL

| [TWIST-DRILL |

drill-spot (<part>, <drill-bit>)

<part>: type PART

<drill-bit>: type SPOT-DRILL

Pre: (holding-tool <drill-bit>)
(holding-part <part>)

Add: (has-spot <part>)

put-drill-bit (<drill-bit>)
<drill-bit>: type DRILL-BIT
Pre: tool-holder-empty

Add: (holding-tool <drill-bit>)
Del: tool-holder-empty

put-part(<part>)

<part>: type PART

Pre: part-holder-empty

Add: (holding-part <drill-bit>)
Del: part-holder-empty

drill-hole(<part>, <drill-bit>)

<part>: type PART

<drill-bit>: type TWIST-DRILL

Pre: (has-spot <part>)
(holding-tool <drill-bit>)
(holding-part <part>)

Add: (has-hole <part>)

remove-drill-bit(<drill-bit>)
<drill-bit>: type DRILL-BIT
Pre: (holding-tool <drill-bit>)
Add: tool-holder-empty

Del: (holding-tool <drill-bit>)

remove-part(<part>)

<part>: type PART

Pre: (holding-part <drill-bit>)
Add: part-holder-empty

Del: (holding-part <drill-bit>)

9/12/16

10

9/12/16

Example — Problem and Plan

Initial State Set of Objects

—) part, parc2: type PART

[p drll-1: type SPOT-DRILL

w [=SS drill-2, drill-3 : type TWIST-DRILL

Goal Statement

has-hole (part-1)

part-holder-empty S
drill-holder-empty n‘

put-part (part-1)
put-drill=bit (drill-1)
drill-spot (part-1, drill-1)
remove-drill-bit (drill-1)
put-drill-bit (drill-2)
drill-hole (part-1, drill-2)

PDDL Representation
Initial State, Goal, Actions Example-1

Init(At(C1, SFO) A At(Ca, JFK) N At(Py, SFO) N At(P,, JFK)
A Cargo(C1) A Cargo(Ca) A Plane(Py) A Plane(P;)
A Airport(JFK) A Airport(SFO))
Goal(At(C1, JFK) N At(Ca, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
EFFECT: - At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
EFFECT: At(c, a) A = In(c, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: - At(p, from) N At(p, to))

Figure 10.1 A PDDL description of an air cargo transportation planning problem.

11

Domain and Actions

* A domain can be represented by many possible
choices of literals, variables, actions,
preconditions, effects.

+ Choice of domain
— Granularity of representation
— Detail of reasoning
— Effectiveness of search

Initial State, Goal, Actions Example-2

Init(On(A, Table) A On(B, Table) A On(C,A)

A Block(A) A Block(B) A Block(C) A Clear(B) A Clear(C))
Goal(On(A,B) A On(B,C))
Action(Move(b, z,y),

PRECOND: On(b,z) A Clear(b) A Clear(y) A Block(b) A Block(y) A

(b£z) A (b2y) A (z#y).

EFreCT: On(b,y) A Clear(z) A =On(b,z) A —=Clear(y))
Action(MoveToTable(b, z),

PRECOND: On(b,z) A Clear(b) A Block(b) A (bZ£z),

EFreCT: On(b, Table) A Clear(z) A —On(b,z))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One solution is
the sequence [MoveToTable(C, A), Move(B, Table, C), Move(A, Table, B)].

9/12/16

12

One-Action Domain Representation — Blocksworld

(OPERATOR MOVE

:preconds
?block BLOCK
?from OBJECT
?to OBJECT

(clear ?to)

:effects

(if (block-p ?to)

(and (clear ?block)
(on ?block ?from)
add (on ?block ?to)
del (on ?block ?from)
(if (block-p ?from)

add (clear ?from))

del (clear ?to)))

The Art of Planning

Initial: Consumed(A, Fish), Vigorous(Fish), Vigorous(Tea), Zen(A), Zen(Tea), Satisfied

Goal: Vigorous(A) , Consumed(Fish, Tea)

Eat(person, thing)

Pre: Enlightened(person), Zen(thing),
person = thing

Add: Satisfied,
Consumed(person, thing)

Delete: Enlightened(person),
Zen(thing)

Man(person)

Pre: Zen(person), Satisfied,
Vigorous(person)

Add: Enlightened(person)
Delete: Vigorous(person), Satisfied

Drink(person, thing)

Pre: Zen(person), Satisfied,
Consumed(person, thing)

Add: Enlightened(person),
Zen(thing)

Delete: Consumed(person, thing),
Satisfied

Woman(person)

Pre: Enlightened(person)

Add: Vigorous(person), Satisfied
Delete: Enlightened(person)

9/12/16

13

More Realistic Action Representations I

» Conditional Effects
Pickup (b)
Pre: Block(b), Handempty, Clear(b), On(b, x)
Add: Holding(b)
if (Block(x)) then Clear(x)
Delete: Handempty, On(b, x)

* Quantified Effects
Move (o, X)
Pre: At(o, y), At(Robot, y)

Add: At(o, x), At(Robot, x)
forall (Object(u)) [if (In(u, 0)) then At(u, y)]

Delete: At(o, y), At(Robot, y), forall (Object(u)) [if (In(u, 0)) then At(u, y)]
* Disjunctive and Negated Preconditions
Holding(x) Or Not[Lighter Than Air(x)]
All these extensions can be emulated by adding actions

More Realistic Action Representations 11

» These extensions make the planning problem
significantly harder

* Inference Operators / Axioms
Clear(x) iff forall(Block(y))[Not[On(y, x)]]

* Functional Effects
Move (o, x)
Pre: At(o, y), At(Robot, y), Fuel(f), f > Fuel Needed(y, x)
Add: At(o, x), At(robot, x), Fuel(f — Fuel Needed(y, x)),
forall (Object(u)) [if (In(u, 0)) then At(u, y)]

Delete: At(o, y), At(Robot, y), Fuel(f),
forall (Object(u)) [if (In(u, 0)) then At(u, y)]

9/12/16

14

More Realistic Action Representations I11

* These extensions make the problem even harder still

* Disjunctive Effects
Pickup from block(b)
Pre: Block(b), Handempty, Clear(b), On(b, c¢), Block(c)
Cl1: Add: Clear(c), Holding(b); = Delete: On(b, ¢), Handempty
C2: Add: Clear(c), On(b, Table); Delete: On(b, c)
C3: Add: ; Delete:

 Probabilistic Effects
— Add probabilities to contexts of disjunctive effects

e Other Extensions

— External events — Sensing actions
— Concurrent events — Actions with duration
Outline
» What is a State and Goal

What is an Action

What is a Plan

Finding a Plan

9/12/16

15

