Uncertainty in Planning

Manuela M. Veloso

Carnegie Mellon University
School of Computer Science

15-887 — Planning, Execution, and Learning
Fall 2016

Sources of Uncertainty

* Initial State
— Unknown predicates

* Action Models

— Non-deterministic effects

» Sensor Noise
— Partially hidden state

10/13/16



Handling Uncertainty

» Conformant Plans
— Guaranteed to succeed despite uncertainty
— Sequence

* Conditional Plans
— With, or without, failure
— Branching

* Universal Plans / Policies
— Non-deterministic
— Probabilistic
— State/action mapping

Conformant Planning

» Create a (Non-Branching) Plan that Achieves
Goals Despite Uncertainty
— Uncertainty in initial state
— Uncertainty in effects

* No Sensing Actions

» Basic ldea:

— Remove uncertainty by forcing world into known
states

10/13/16



Conditional Effects

Action Sprinkle-grass

Pre:
— turned-on water

Effects:
— wet grass

— If object on grass
* Then wet object

Result of applying action
Use of conditional effects as goals

Planning and Acting in
Nondeterministic Domains

Problems with domains:

— partially observable (which state)

— nondeterministic (multiple effects of actions)
— unknown or poorly-known environments

Sensorless planning — conformant planning
Contingency planning
Planning and Replanning

10/13/16



Planning and Acting

« Explicitly represent the variables with unknown
values and allow preconditions with such

variables
* Add to the domain a PERCEPT action schema
for all variables whose value is unknown

+ Many examples

Contingency Planning

« When applying an action, need “to sense” to
verify conditions — use percept action

» Determine state in which action will be applied
— State-space planners
— Plan-state planners
— Other planners

10/13/16



Continuous Spaces:
Rapidly-Exploring Random Trees (RRT)

» Create a random sample y from some subspace Y of X
* Find the nearest neighbor x in tree T using some distance metric
+ Expand from x toward y, creating a new child node y’

oy oy

‘x A, ‘(/x, Al y.“\—u

X

A
oy

x’ ‘ o .-e
x —» j\{" —>
o X
"o

[S. LaValle, 1998] [J. Kuffner, S. LaValle, 2000]

Planning Problems in Adversarial Poorly
Modeled Domains

o] T 0] T Q@
Goal
O

~0 0 7\ «~—O0

IR SR IR
& I o & o~

® = Controlled Robot (O = Other Poorly Predictable Moving Bodies

10/13/16



10/13/16

Planning in a Dynamic World

» At each (re)planning iteration, the planner
searches for a complete solution, trying to find a
precise trajectory around moving objects , all the
way to the goal state.

* In domains with high uncertainty, predictions for
poorly modeled objects are likely incorrect.

» Generated plans fail early, and most of the plan
will never be successfully executed.

» A waste of computational planning resources!

Key Question

* How can we make planning and replanning in
unknown or poorly modeled environments more
efficient?




Approach

» Variable Level-of-Detail (VLOD) planning
* The planner adjusts level of knowledge:

— prevents collisions in the near future

— ignorss collisions in the far future

* Future: defined by time horizon threshold: t, op
— If x.t > t_op then ignore details during planning
— Otherwise, plan with full detail

Variable Level-of-Detail Planning

* What is a detail?

— Locally solvable multi-body interactions that do
not affect the global topology of the plan if
temporarily ignored

— In our model: Interactions between the actively
controlled and other manipulatable bodies

@)

S

Actively Foreign
Ccontrolled Controlled

10/13/16



10/13/16

VLOD Physics-Based Planning

T.AddVertex(x;y); //start with a tree that only contains our initial state
repeat until we give up
y := SampleRandomState(Y); //generate a sample the sampling space Y
x := NearestNeighbor(T,y); //find nearest neighbortoy in T
a := Controller(x,y); //generate an action from x toward y
SetupCollisionMatrix(x); //sets up the currently applicable level of detail
[x’, L] := SimulatePhysics(x, a); //apply and simulate the control action
if isValidState(x’, L) then //check if any constraints have been violated
T.AddVertex(x’); //add x" as a child of x
T.AddEdge(x, x’, a); //saving the control action a as edge
if X' is in Xy, then return x’; //have we reached the goal?
end if

VLOD Example

* t op=2

©
o t=3 ==’ -
init t=2 wn
S

YL op=2

R: Controlled Robot Body
1-4: Foreign-Controlled or other Manipulatible Bodies




10/13/16

Experimental Domains

» Navigate through a field of rapidly moving foreign-controlled bodies
» Foreign-controlled bodies have simulated uncertainty

+ Controllable replanning interval t g,

» Controllable VLOD time horizon t, op

S o

(a) A search tree in the Hallway domain (

(c) A search tree in the Maze domain (d) A solution trajectory in the Maze domain, under high uncertainty

Results: VLOD Planning Performance

Collisions only significantly increase if . .
f,op is close or below the replan VLOD Plannlpg achlevgs best overall
interval: ) performance if t, o is slightly above the
) - replan interval.
1

Replanning Interv
Replanning Inter

0.8

0.6

0.4

Per

LOD Time-Horizon (s)

Smaller t op generally 02
yields faster planning:

LOD Time-Horizon (s)

performance = (1 — NormCollisions) (1 — NormTime)

VLOD Planning can significantly
reduce cumulative planning time
without increasing collision rates.

0 1 2 3
LOD Time-Horizon (5)

Hallway domain, uncertainty: 0.75, each data point: 120 trials (6480 simulated trials total)




Summary

* Uncertainty
— Sensorless planning
— Contingency planning
— Planning and replanning

« Later
— Probabilistic representations
— Planning under probabilistic uncertainty

10/13/16

10



