Plan Generation
Classical Planning

Manuela Veloso

Carnegie Mellon University
School of Computer Science

156-887 Planning, Execution, and Learning — Fall 2016

Outline

What is a State and Goal

What is an Action

What is a Plan

Finding a Plan

9/22/16

What is a Plan?

Sequence of Instantiated Actions

Partial Order of Instantiated Actions

Set of Instantiated Actions

Policy

— Mapping from states to actions

Increasing Generality

Outline

What is a State and Goal
What is an Action

What is a Plan

Finding a Plan

9/22/16

Planning Algorithms

* Progression: Forward state-space search

AlP, B)
AllPz A)
AL, A)

Al(Pp, A)
AP, A
Al(Py, B)

» Regression: Backward state-space search

AH(P,, [Fye. 4 8]
— y
B)

(a)

(b)
AlP, B)
AtP;,

At(P,, A)

Finding a Plan — Plan Generation

* Backtracking Search Through a Search Space
— How to conduct the search
— How to represent the search space
— How to evaluate the solutions

* Non-Deterministic Choice Points Determine Backtracking
— Choice of actions
— Choice of variable bindings
— Choice of temporal orderings

— Choice of subgoals to work on

9/22/16

Properties of Planning Algorithms

¢ Soundness
— A planning algorithm is sound if all solutions are /egal plans
» All preconditions, goals, and any additional constraints are satisfied
¢ Completeness

— A planning algorithm is complete if a solution can be found
whenever one actually exists

— A planning algorithm is strictly complete if all solutions are
included in the search space
* Optimality
— A planning algorithm is optimal if it maximizes a predefined
measure of plan quality

Linear Planning

» Basic Idea — Goal stack

— Work on one goal until completely solved before
moving on to the next goal

9/22/16

Means-Ends Analysis

» Basic ldea

— Search by reducing the difference between the state
and the goals

— What means (operators) are available to achieve the
desired ends (goal)

Means-ends Analysis in Linear Planning

(Newell and Simon 60s)

GPS Algorithm (state, goals, plan)

» If goals C state, then return (state,plan)

+ Choose a difference d € goals between state and goals
+ Choose an operator o to reduce the difference d

+ If no applicable operators, then return False

» (state,plan) = GPS (state, preconditions(o), plan)

* |If state, then return GPS (apply (o, state), goals, [plan,o])

Initial call: GPS (initial-state, initial-goals, [])

9/22/16

GPS Blocks-World Example

1. Search Stack State 2. Search Stack State
On(A, C) On(C, B) Clear(B) On(A, C) On(C, B) Clear(B)
Clear(C) Clear(C)

On(C, A) - On(C, A)

On(A, Table)
On(B, Table)

Handempty
B B |
Goal Initial State
3. Search Stack State
On(A, C) On(C, B) Clear(B)
OaAO! | onen
On(C, A)
WG] | onr o
. On(B, Table)
Holding(C) Clear(B) Handempty

On(A, Table)
On(B, Table)

Handempty
4. Search Stack State
On(A, C) On(C, B) Clear(B)
oo
On(C, A)
EEBEEH | ona, Table)
Holding(C) Clear(B) On(B, Table)

Handempty

GPS Blocks-World Example

5. Search Stack State 6. Search Stack State
On(A, C) On(C, B) Clear(B) On(A, C) On(C, B) Clear(B)
Clear(C)
On(C, A)
On(A, Table) On(A, Table)
. On(B, Table) . On(B, Table)
Holding(C) Clear(B) Handempty Holding(C) Clear(B)
Handempty Clear(C) On(C, ?b)
7. Search Stack State 8. Search Stack State
On(A, C) On(C, B) Clear(B) On(A, C) On(C, B)
Clear(C) Clear(C)
- on(C, A) - On(A, Table)
W] | vt | RG] | oo T
On(B, Tabl .
Holding(C) Clear(B) HI;E’ denfp tye) Holding(C) Clear(®) | (..)

[Pick_Block(C)]

9/22/16

GPS Blocks-World Example

9. Search Stack State 10. Search Stack State
On(A, C) On(C, B) Clear(B) On(A, C) On(C, B) Clear(C)
Clear(C) On(A, Table)
- On(A, Table) - On(B, Table)
PIBOEREB) | Oon(B, Table) Clear(A)
Holding(C) Handempty
Clear(A) On(C, B)
[Pick_Block(C)] [Pick_Block(C); Put_Block(C, B)|
11. Search Stack State 12. Search Stack State
On(A, C) On(C, B) Clear(C) On(A, C) On(C, B) Clear(C)
On(A, Table) On(A, Table)
On(B, Table) On(B, Table)
Holding(A) Clear(C) Clear(A) Holding(A) Clear(C) Clear(A)
Handempty Handempty
On(C, B) On(C, B)

[Pick_Block(C)
Put_Block(C, B)]

[Pick_Block(C)
Put_Block(C, B)]

GPS Blocks-World Example

13. Search Stack State 14. Search Stack State
On(A, C) On(C, B) Clear(C) On(A, C) On(C, B) Clear(C)
On(A, Table) On(A, Table)
On(B, Table) On(B, Table)
Holding(A) Clear(C) Clear(A) Holding(A) Clear(C) Clear(A)
Handempty Handempty
On(C, B) On(C, B)
Handempty Clear(A)
[Pick_Block(C); On(A, Table)
Put_Block(C, B)] [Pick_Block(C); Put_Block(C, B)]
15. Search Stack State 16. Search Stack State
On(A, C) On(C, B) Clear(C) On(A, C) On(C, B)
On(A, Table) On(B, Table)
_ On(B, Table) Clear(A)
Holding(A) Clear(C) Clear(A) Holding(A) Clear(C) On(C, B)
pick Table) | ("
On(C, B)

[Pick_Block(C);
Put_Block(C, B)]

[Pick_Block(C);
Put_Block(C, B);
Pick_Table(A)]

9/22/16

GPS Blocks-World Example

17. Search Stack State 18. Search Stack State
On(A, C) On(C, B) Clear(C) On(A, C) On(C, B) On(B, Table)
On(B, Table) Clear(A)
Clear(A) On(C, B)
On(C, B) Handempty
Holding(A) [Pick_Block(C); On(A, C)

Put_Block(C, B);
Pick_Table(A);
Put_Block(A, C)]

[Pick_Block(C);
Put_Block(C, B);
Pick_Table(A)]

19. Search Stack State

On(B, Table)
Clear(A)
On(C, B)
Handempty
[Pick_Block(C); On(A, C)
Put_Block(C, B);
Pick_Table(A);
Put_Block(A, C)]

Linear Planning with MEA

 Sound?

* Optimal?

+ Complete?

9/22/16

The Sussman Anomaly

A

4-Action Blocks World Domain

Pickup (?b)
Pre: (handempty)
(clear ?b)
(on-table ?b)
Add: (holding ?b)
Delete: (handempty)
(on-table ?b)
(clear ?b)

Putdown (?b)
Pre: (holding ?b)
Add: (handempty)
(on-table ?b)
Delete: (holding ?b)

Unstack (?a, ?b)
Pre: (handempty)
(clear ?a) (on ?a ?b)
Add: (holding ?a) (clear ?b)

Delete: (handempty)
(on ?a ?b) (clear ?a)

Stack (?7a, ?7b)
Pre: (holding ?a) (clear ?b)
Add: (handempty)
(on ?a ?b)
Delete: (holding ?a)
(clear ?b)

The Sussman Anomaly

F‘j

>0

B

A
B
C

Linear Solution:
*(onBC)

* Pickup (B)

« Stack (B, C)
*(onAB)

» Unstack (B, C)

* Putdown (B)

» Unstack (C, A)

* Putdown (C)

« Stack (A, B)
*(onBC)

» Unstack (A, B)

* Putdown (A)

* Pickup (B)

» Stack (B, C)
*(onAB)

* Pickup (A)

« Stack (A,B)

Linear Solution:
*(onAB)

* Unstack (C, A)

* Putdown (C)

« Stack (A, B)
*(onBC)

» Unstack (A, B)

* Putdown (A)

* Pickup (B)

» Stack (B, C)
*(onAB)

* Pickup (A)

« Stack (A,B)

NonLinear Solution — Optimal

F‘j

> 0
w

NonLinear Solution:

A
B
C

«(onAB)

» Unstack (C, A)

* Putdown (C)
*(onBC)

* Pickup (B)

» Stack (B, C)
*(onAB)

* Pickup (A)
« Stack (A, B)

9/22/16

10

Advantages

Linear Planning — Goal Stack

possible goal orderings are considered

— Advantageous if goals are (mainly) independent
— Linear planning is sound

Disadvantages

— Linear planning may produce suboptimal solutions
(based on the number of operators in the plan)

— Planner's efficiency is sensitive to goal orderings

» Control knowledge for the “right” ordering
* Random restarts

« lterative deepening

Completeness?

— Reduced search space, since goals are solved one at a time, and not all

Example: One-Way Rocket (veosos9)

(OPERATOR LOAD-ROCKET (OPERATOR UNLOAD-ROCKET
:preconds

?roc ROCKET
20bj OBJECT
?loc LOCATION
(and (at 2obj ?2loc)
(at 2roc ?loc)
:effects
add

(inside ?obj ?roc)
del

(at 20bj 2loc))

:preconds

?roc ROCKET
20bj OBJECT
?loc LOCATION

(and (inside ?obj ?roc

(at 2roc ?loc)
:effects

add

(at 20bj 2loc)
del

(inside 20bj ?2roc))

(OPERATOR MOVE-ROCKET
:preconds
?roc ROCKET
?from-1 LOCATION
?to-1 LOCATION
(and (at ?roc ?from-1)
(has-fuel ?roc)
:effects

add
del
del

(at ?roc ?to-1)
(at ?roc ?from-1)
(has-fuel 2?roc)

11

9/22/16

9/22/16

Incompleteness of Linear Planning

Initial state: Goal statement:
(at objl locA) (and
(at obj2 locA) (at objl locB)
(at ROCKET loch) (at obj2 locB))
(

has-fuel ROCKET)

Goal Plan

(at objl locB) (LOAD-ROCKET objl locA)
(MOVE-ROCKET)
(UNLOAD-ROCKET objl locB)

(at obj2 locB) failure

State-Space Nonlinear Planning

Extend linear planning:
» From stack to set of goals.

* Include in the search space all possible interleaving of
goals.

State-space nonlinear planning is complete.

Goal Plan
(at objl locB) (LOAD-ROCKET objl locA)

(at obj2 locB) LOAD-ROCKET obj2 locA)

(

(at objl locB) | (MOVE-ROCKET)
(
(

UNLOAD-ROCKET objl locB)

(at obj2 locB) UNLOAD-ROCKET objl locB)

12

9/22/16

Prodigy Planner

+ Extension to GPS
— Set of goals, instead of stack of goals
— Means-ends analysis for selection of “pending goals”

— Choice point for applying an operator when applicable
and continue backward-chaining (subgoaling)

PrOd igy40 (Veloso et al. 90)

1. Terminate if the goal statement is satisfied in the
current state. Initially the set of applicable relevant
operators is empty.

2. Compute the SET of pending goals G,
and the SET of applicable relevant operators A.

+ Agoalis pending if it is a precondition, not satisfied
in the current state, of a relevant operator already in
the plan.

* Avrelevant operator is applicable when all its
preconditions are satisfied in the state.

1. Choose a pending goal G in G or choose a relevant
applicable operator 4 in A.

13

Prodigy4.0 Planning Algorithm

4.

5.

If the pending goal G has been chosen, then

* Expand goal G,
i.e., get the set O of relevant instantiated operators
that could achieve G,

* Choose an operator O from O, as a relevant operator
for goal G.

* Gotostep1.

If a relevant operator 4 has been selected as directly
applicable, then

* Apply A4,
« Gotostep1.

Prodigy4.0 — Search Representation

ood 5o

<= - head-plan --> == gap-= < - tail-plan ->

(-4 e
7N

oG 158 Bk

Applying an operator (moving it to the head) Adding an operator to the tail-plan

9/22/16

14

Why is Planning Hard?

Planning involves a complex search:

+ Alternative operators to achieve a goal

* Multiple goals that interact

+ Solution optimality, quality

* Planning efficiency, soundness, completeness

Many Issues in Planning

» State representation
— The frame problem
— The “choice” of predicates

* On-table (x), On (x, table), On-table-A, On-table-B,...

» Action representation
— Many alternative definitions
Reduce to “needed” definition
Conditional effects
Uncertainty
Quantification
Functions
» Generation — planning algorithm(S)

9/22/16

15

Summary

Planning: selecting one sequence of actions (operators) that
transform (apply to) an initial state to a final state where the goal
statement is true.

Means-ends analysis: identify and reduce, as soon as possible,
differences between state and goals.

Linear planning: backward chaining with means-ends analysis
using a stack of goals - potentially efficient, possibly unoptimal,
incomplete; GPS, STRIPS.

Nonlinear planning with means-ends analysis: backward
chaining using a set of goals; reason about when “to reduce the
differences;” Prodigy4.0.

Planning Algorithms

* Progression: Forward state-space search

At(Py, B)

AllPz, A)
ALPy, A)

Al(P,, A)
AP, A
APy, B)

» Regression: Backward state-space search

Al(P,, -FI (P, A, B)
— |
B

(b)
At(P, B)

ALP;,

At(P,, A)

9/22/16

16

Planning Graph — Forward Expansion

« State reachability — “until” goal

— Can find all goals reachable from initial state
— Exponential in time and memory

inol R _

MAB in oé E

load 02 A atRA l:[‘;{ B
fuel R

atol A unload 02 A [atol A

ino2 R ato2 B

atR B atR B

inol R f
\ ino2 R move AB [inolR

load o1 A ino2 R

atRA atR B

fuel R

Graphplan

Blum & Furst 95

» Preprocessing before engaging in search.

+ Forward search combined with backward search.
» Construct a planning graph to reveal constraints

+ Two stages:
— Extend: One time step in the planning graph.
— Search: Find a valid plan in the planning graph.

» Graphplan finds a plan or proves that no plan has fewer
“time steps.”

9/22/16

17

Plan Graph

One-Way Rocket Example

unloadol B+ atol B
% unload 02 B \—‘\7 ato2 B
/ inol R L J /“ inol R
load o1A (/ // loadolA ¢ \‘

‘\ in o2 R : ino2 R
load 02 A 1 \ load 02A /\/

/ atR B / atR B
/ move AB \ \‘, / move AB ‘\‘\
atol A /// ‘\:“\\ atol A @ '\:\‘\‘ atol A

ato2 A / @ T ato2 A / @ ‘\v“\ > ato2 A
atRA ® Y atRA ® 2 atRA
fuel R ® 5 fuel R ® b fuel R

Extending a Planning Graph - Actions

* To create an action-level i

— Add each instantiated operator, for which all of its
preconditions are present at proposition-level i AND
no two of its preconditions are exclusive.

— Add all the no-op actions.

» Determine the exclusive actions.

9/22/16

18

Extending a Planning Graph — Propositions

» To create a proposition-level i + 1:

— Add all the effects of the inserted actions at
action-level j - distinguishing add and delete effects.

» Determine the exclusive actions.

Planning Graphs

+ A literal may exist at level i + 1 if it is an Add-Effect of
some action in level /.

« Two propositions p and q are exclusive in a
proposition-level if ALL actions that add p are exclusive
of ALL actions that add q.

» Actions A and B are exclusive at action-level i, if:

— Interference: A (or B) deletes a precondition or an Add-Effect of
B (or A).

— Competing Needs: pis a precondition of Aand g is
a precondition of B, and p and g are exclusive in
proposition-level j - 1.

9/22/16

19

Mutex Exclusivity Relations
One-Way Rocket Example

atol A

ato2 A

atRA

fuel R

Exclusivity Examples

» Exclusive Actions: (Move A B) deletes a precondition of (Load o1 A).
Therefore exclusive (existence of threats).

» Exclusive Propositions: (at R A) and (at R B) at time 2 are exclusive.
(at R A) is added by a no-op and (at R B) is added by (Move A B)
and no-op and (Move A B) are exclusive actions.

» Exclusive Actions: Then (Load 01 A) and (Load o2 B) are exclusive
because (at R A) and (at R B) are exclusive.

* Propositions can be exclusive in some time step and not in others: If
(ato1 A) and (at R A) at time 1, then (in 01 A) and (at R B) are
exclusive at time 2, but not at time 3.

9/22/16

20

Searching a Planning Graph

» Level-by-level backward-chaining approach to use the
exclusivity constraints.

* Given a set of goals at time {, identify all the sets of
actions (including no-ops) at time t - 1 who add those
goals and are not exclusive. The preconditions of these
actions are new goals for t - 1.

Searching a Planning Graph

unload o1 B atol B
// unload 02 B \—\‘\f ato2 B
/ inol R @ / inol R @ / inol R
load 01A ¢ load o1 A ¢ / //load ol A \‘\‘
\ : /. \ : \ v
\ - ino2R @® ——— ino2R
load 02 A \/\/ \ / //Ioad 02 A /
atRB o

\\;\/ / atR B
move AB ¢\ \ /moveAB N \
,H / .—"‘# atol A

atol A \:‘\:'\:\“ \:\‘ atol A RN

ato2 A \“:‘\ \\\ ato2 A // / @ \“\:“ \\\ ato2 A

atRA O atRA é/ ® atRA

fuel R @ fuel R @ fuel R
{load o1 B, load o2 B} {move A B} {unload o1 B, unload o2 B}

9/22/16

21

Recursive Search

* For each goal at time t in some arbitrary order:

— Select some action at time £ - 1 that achieves that
goal and it is not exclusive with any other action
already selected.

— Do this recursively for all the goals at time ¢ - do not
add new action, but use the ones already selected if
they add another goal.

— If recursion returns failure, then select a different
action.

« The new goal set is the set of all the preconditions of the
selected actions.

Enhancements

» Forward-checking - for the goals ahead, check if all the
actions that add it are exclusive with the selected action.

* Memoization - when a set of goals is not solvable at
some time t, then this is recorded and hashed. If back at
time t, the hash table is checked and search proceeds
backing up right away.

9/22/16

22

Planning as Satisfiability

One interpretation: "first-order deductive theorem-
proving does not scale well.'

One solution: *“propositional satisfiability' ‘

Uniform clausal representation for goals and operators.

Stochastic local search is a powerful technique for
planning.

9/22/16

23

