
9/22/16

1

Plan Generation

Classical Planning

Manuela Veloso

Carnegie Mellon University
School of Computer Science

15-887 Planning, Execution, and Learning – Fall 2016

Outline

•  What is a State and Goal

•  What is an Action

•  What is a Plan

•  Finding a Plan

9/22/16

2

What is a Plan?

•  Sequence of Instantiated Actions

•  Partial Order of Instantiated Actions

•  Set of Instantiated Actions

•  Policy
–  Mapping from states to actions

In
cr

ea
si

ng
 G

en
er

al
ity

Outline

•  What is a State and Goal

•  What is an Action

•  What is a Plan

• Finding a Plan

9/22/16

3

Planning Algorithms
•  Progression: Forward state-space search

•  Regression: Backward state-space search

Finding a Plan – Plan Generation

•  Backtracking Search Through a Search Space
–  How to conduct the search
–  How to represent the search space
–  How to evaluate the solutions

•  Non-Deterministic Choice Points Determine Backtracking
–  Choice of actions
–  Choice of variable bindings
–  Choice of temporal orderings
–  Choice of subgoals to work on

9/22/16

4

Properties of Planning Algorithms

•  Soundness
–  A planning algorithm is sound if all solutions are legal plans

•  All preconditions, goals, and any additional constraints are satisfied

•  Completeness
–  A planning algorithm is complete if a solution can be found

whenever one actually exists
–  A planning algorithm is strictly complete if all solutions are

included in the search space
•  Optimality

–  A planning algorithm is optimal if it maximizes a predefined
measure of plan quality

Linear Planning

•  Basic Idea – Goal stack
–  Work on one goal until completely solved before

moving on to the next goal

9/22/16

5

Means-Ends Analysis

•  Basic Idea
–  Search by reducing the difference between the state

and the goals
–  What means (operators) are available to achieve the

desired ends (goal)

Means-ends Analysis in Linear Planning
(Newell and Simon 60s)
GPS Algorithm (state, goals, plan)

•  If goals ⊆ state, then return (state,plan)

•  Choose a difference d ∈ goals between state and goals

•  Choose an operator o to reduce the difference d

•  If no applicable operators, then return False

•  (state,plan) = GPS (state, preconditions(o), plan)

•  If state, then return GPS (apply (o, state), goals, [plan,o])

Initial call: GPS (initial-state, initial-goals, [])

9/22/16

6

GPS Blocks-World Example
1. Search Stack State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

A

B
C

Goal
A B
C

Initial State

2. Search Stack State
Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

On(A, C)

On(C, B)

3. Search Stack State
Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

Holding(C) Clear(B)

4. Search Stack State
Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

Holding(C) Clear(B)

Holding(C)

Clear(B)

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

GPS Blocks-World Example
5. Search Stack State

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

Holding(C) Clear(B)

Holding(C)

6. Search Stack State
Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

Holding(C) Clear(B)

Pick_Block(C)

Handempty Clear(C) On(C, ?b)

7. Search Stack State
Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

Holding(C) Clear(B)

Pick_Block(C)

8. Search Stack State
Clear(B)
Clear(C)
On(A, Table)
On(B, Table)
Holding(C)
Clear(A)

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

Holding(C) Clear(B)

[Pick_Block(C)]

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

Clear(B)
Clear(C)
On(C, A)
On(A, Table)
On(B, Table)
Handempty

Clear(B)
Clear(C)
On(A, Table)
On(B, Table)
Holding(C)
Clear(A)

9/22/16

7

GPS Blocks-World Example
9. Search Stack State

Clear(B)
Clear(C)
On(A, Table)
On(B, Table)
Holding(C)
Clear(A)

On(A, C) On(C, B)

On(A, C)

Put_Block(C, B)

[Pick_Block(C)]

On(A, C) On(C, B)

On(A, C)

10. Search Stack State
Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C); Put_Block(C, B)]

On(A, C) On(C, B)

11. Search Stack State
Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C)
 Put_Block(C, B)]

Put_Block(A, C)

Holding(A) Clear(C)

On(A, C) On(C, B)

12. Search Stack State
Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C)
 Put_Block(C, B)]

Put_Block(A, C)

Holding(A) Clear(C)

Holding(A)

Clear(C)

Clear(B)
Clear(C)
On(A, Table)
On(B, Table)
Holding(C)
Clear(A)

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

GPS Blocks-World Example

On(A, C) On(C, B)

13. Search Stack State
Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

Put_Block(A, C)

Holding(A) Clear(C)

Holding(A)

On(A, C) On(C, B)

15. Search Stack State
Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

[Pick_Block(C);
Put_Block(C, B)]

Put_Block(A, C)

Holding(A) Clear(C)

Pick_Table(A)

16. Search Stack State
Clear(C)
On(B, Table)
Clear(A)
On(C, B)
Holding(A)

[Pick_Block(C);
Put_Block(C, B);
Pick_Table(A)]

On(A, C) On(C, B)

Put_Block(A, C)

Holding(A) Clear(C)

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

Clear(C)
On(B, Table)
Clear(A)
On(C, B)
Holding(A)

[Pick_Block(C);
 Put_Block(C, B)]

On(A, C) On(C, B)

14. Search Stack State
Clear(C)
On(A, Table)
On(B, Table)
Clear(A)
Handempty
On(C, B)

Put_Block(A, C)

Holding(A) Clear(C)

Pick_Table(A)

Handempty Clear(A)
On(A, Table)

[Pick_Block(C); Put_Block(C, B)]

9/22/16

8

GPS Blocks-World Example

On(A, C) On(C, B)

17. Search Stack State
Clear(C)
On(B, Table)
Clear(A)
On(C, B)
Holding(A)

[Pick_Block(C);
Put_Block(C, B);
Pick_Table(A)]

Put_Block(A, C)

Clear(C)
On(B, Table)
Clear(A)
On(C, B)
Holding(A)

On(B, Table)
Clear(A)
On(C, B)
Handempty
On(A, C)

On(A, C) On(C, B)

18. Search Stack State
On(B, Table)
Clear(A)
On(C, B)
Handempty
On(A, C) [Pick_Block(C);

Put_Block(C, B);
Pick_Table(A);
Put_Block(A, C)]

19. Search Stack State
On(B, Table)
Clear(A)
On(C, B)
Handempty
On(A, C) [Pick_Block(C);

Put_Block(C, B);
Pick_Table(A);
Put_Block(A, C)]

Linear Planning with MEA

•  Sound?

•  Optimal?

•  Complete?

9/22/16

9

The Sussman Anomaly

C

B

A

C

B A

4-Action Blocks World Domain

 Pickup (?b)
 Pre: (handempty)

 (clear ?b)
 (on-table ?b)
 Add: (holding ?b)
 Delete: (handempty)
 (on-table ?b)
 (clear ?b)

Putdown (?b)
 Pre: (holding ?b)
 Add: (handempty)

 (on-table ?b)
 Delete: (holding ?b)

Unstack (?a, ?b)
 Pre: (handempty)
 (clear ?a) (on ?a ?b)
 Add: (holding ?a) (clear ?b)
 Delete: (handempty)

 (on ?a ?b) (clear ?a)

Stack (?a, ?b)
 Pre: (holding ?a) (clear ?b)
 Add: (handempty)
 (on ?a ?b)
 Delete: (holding ?a)
 (clear ?b)

9/22/16

10

The Sussman Anomaly

C
B
A

C
B A

Linear Solution:
•  (on B C)

•  Pickup (B)
•  Stack (B, C)

•  (on A B)
•  Unstack (B, C)
•  Putdown (B)
•  Unstack (C, A)
•  Putdown (C)
•  Stack (A, B)

•  (on B C)
•  Unstack (A, B)
•  Putdown (A)
•  Pickup (B)
•  Stack (B, C)

•  (on A B)
•  Pickup (A)
•  Stack (A,B)

Linear Solution:
•  (on A B)

•  Unstack (C, A)
•  Putdown (C)
•  Stack (A, B)

•  (on B C)
•  Unstack (A, B)
•  Putdown (A)
•  Pickup (B)
•  Stack (B, C)

•  (on A B)
•  Pickup (A)
•  Stack (A,B)

NonLinear Solution – Optimal

C
B
A

C
B A

NonLinear Solution:
•  (on A B)

•  Unstack (C, A)
•  Putdown (C)

•  (on B C)
•  Pickup (B)
•  Stack (B, C)

•  (on A B)
•  Pickup (A)
•  Stack (A, B)

9/22/16

11

Linear Planning – Goal Stack
•  Advantages

–  Reduced search space, since goals are solved one at a time, and not all
possible goal orderings are considered

–  Advantageous if goals are (mainly) independent
–  Linear planning is sound

•  Disadvantages
–  Linear planning may produce suboptimal solutions

(based on the number of operators in the plan)
–  Planner's efficiency is sensitive to goal orderings

•  Control knowledge for the “right” ordering
•  Random restarts
•  Iterative deepening

•  Completeness?

Example: One-Way Rocket (Veloso 89)

(OPERATOR LOAD-ROCKET
 :preconds
 ?roc ROCKET
 ?obj OBJECT
 ?loc LOCATION
 (and (at ?obj ?loc)
 (at ?roc ?loc))
 :effects
 add (inside ?obj ?roc)
 del (at ?obj ?loc))

(OPERATOR UNLOAD-ROCKET
 :preconds
 ?roc ROCKET
 ?obj OBJECT
 ?loc LOCATION
 (and (inside ?obj ?roc)
 (at ?roc ?loc))
 :effects
 add (at ?obj ?loc)
 del (inside ?obj ?roc))

(OPERATOR MOVE-ROCKET
 :preconds
 ?roc ROCKET
 ?from-l LOCATION
 ?to-l LOCATION
 (and (at ?roc ?from-l)
 (has-fuel ?roc))
 :effects
 add (at ?roc ?to-l)
 del (at ?roc ?from-l)
 del (has-fuel ?roc))

9/22/16

12

Incompleteness of Linear Planning

Initial state:
(at obj1 locA)
(at obj2 locA)
(at ROCKET locA)
(has-fuel ROCKET)

Goal statement:
(and
 (at obj1 locB)

 (at obj2 locB))

Goal Plan

(at obj1 locB) (LOAD-ROCKET obj1 locA)
(MOVE-ROCKET)
(UNLOAD-ROCKET obj1 locB)

(at obj2 locB) failure

State-Space Nonlinear Planning
Extend linear planning:
•  From stack to set of goals.

•  Include in the search space all possible interleaving of
goals.

State-space nonlinear planning is complete.

Goal Plan
(at obj1 locB) (LOAD-ROCKET obj1 locA)

(at obj2 locB) (LOAD-ROCKET obj2 locA)
(at obj1 locB) (MOVE-ROCKET)

(UNLOAD-ROCKET obj1 locB)

(at obj2 locB) (UNLOAD-ROCKET obj1 locB)

9/22/16

13

 Prodigy Planner

•  Extension to GPS
–  Set of goals, instead of stack of goals
–  Means-ends analysis for selection of “pending goals”
–  Choice point for applying an operator when applicable

and continue backward-chaining (subgoaling)

Prodigy4.0 (Veloso et al. 90)

1.  Terminate if the goal statement is satisfied in the
current state. Initially the set of applicable relevant
operators is empty.

2.  Compute the SET of pending goals G,
 and the SET of applicable relevant operators A.

•  A goal is pending if it is a precondition, not satisfied
in the current state, of a relevant operator already in
the plan.

•  A relevant operator is applicable when all its
preconditions are satisfied in the state.

1.  Choose a pending goal G in G or choose a relevant
applicable operator A in A.

9/22/16

14

Prodigy4.0 Planning Algorithm
4.  If the pending goal G has been chosen, then

•  Expand goal G,
 i.e., get the set O of relevant instantiated operators
that could achieve G,

•  Choose an operator O from O, as a relevant operator
for goal G.

•  Go to step 1.

5.  If a relevant operator A has been selected as directly
applicable, then

•  Apply A,
•  Go to step 1.

Prodigy4.0 – Search Representation

9/22/16

15

Why is Planning Hard?

Planning involves a complex search:
•  Alternative operators to achieve a goal

•  Multiple goals that interact

•  Solution optimality, quality

•  Planning efficiency, soundness, completeness

Many Issues in Planning

•  State representation
–  The frame problem
–  The “choice” of predicates

•  On-table (x), On (x, table), On-table-A, On-table-B,…
•  Action representation

–  Many alternative definitions
–  Reduce to “needed” definition
–  Conditional effects
–  Uncertainty
–  Quantification
–  Functions

•  Generation – planning algorithm(S)

9/22/16

16

Summary
•  Planning: selecting one sequence of actions (operators) that

transform (apply to) an initial state to a final state where the goal
statement is true.

•  Means-ends analysis: identify and reduce, as soon as possible,
differences between state and goals.

•  Linear planning: backward chaining with means-ends analysis
using a stack of goals - potentially efficient, possibly unoptimal,
incomplete; GPS, STRIPS.

•  Nonlinear planning with means-ends analysis: backward
chaining using a set of goals; reason about when “to reduce the
differences;” Prodigy4.0.

Planning Algorithms
•  Progression: Forward state-space search

•  Regression: Backward state-space search

9/22/16

17

•  State reachability – “until” goal
–  Can find all goals reachable from initial state
–  Exponential in time and memory

at o1 A
at o2 A
at R A
fuel R

load o2 A

move A B

load o1 A in o1 R
at o2 A
at R A
fuel R

at o1 A
in o2 R
at R A
fuel R

at o1 A
at o2 A
at R B

load o2 A

in o1 R
in o2 R
at R A
fuel R

move A B

in o1 R
at o2 A
at R B

load o1 A

in o1 R
in o2 R
at R A
fuel R

move A B
at o1 A
in o2 R
at R B

unload o1 A at o1 B
at o2 A
at R B

move A B in o1 R
in o2 R
at R B

unload o2 A at o1 A
at o2 B
at R B

move A B in o1 R
in o2 R
at R B

Planning Graph – Forward Expansion

Graphplan

Blum & Furst 95
•  Preprocessing before engaging in search.

•  Forward search combined with backward search.

•  Construct a planning graph to reveal constraints

•  Two stages:
–  Extend: One time step in the planning graph.
–  Search: Find a valid plan in the planning graph.

•  Graphplan finds a plan or proves that no plan has fewer
“time steps.”

9/22/16

18

at o1 A

at o2 A

at R A

fuel R

move A B

load o2 A

load o1A

in o1 R

fuel R

in o2 R

at R B

at R A

at o1 A

at o2 A

in o1 R

at o1 A

in o2 R

at R B

at o2 A

at R A

fuel R

at o1 B

at o2 B unload o2 B

unload o1 B

load o1 A

load o2 A

move A B

Plan Graph
One-Way Rocket Example

Extending a Planning Graph - Actions

•  To create an action-level i:
–  Add each instantiated operator, for which all of its

preconditions are present at proposition-level i AND
no two of its preconditions are exclusive.

–  Add all the no-op actions.

•  Determine the exclusive actions.

9/22/16

19

Extending a Planning Graph – Propositions

•  To create a proposition-level i + 1:
–  Add all the effects of the inserted actions at

action-level i - distinguishing add and delete effects.
•  Determine the exclusive actions.

Planning Graphs

•  A literal may exist at level i + 1 if it is an Add-Effect of
some action in level i.

•  Two propositions p and q are exclusive in a
proposition-level if ALL actions that add p are exclusive
of ALL actions that add q.

•  Actions A and B are exclusive at action-level i, if:
–  Interference: A (or B) deletes a precondition or an Add-Effect of

B (or A).

–  Competing Needs: p is a precondition of A and q is
 a precondition of B, and p and q are exclusive in
 proposition-level i - 1.

9/22/16

20

at o1 A

at o2 A

at R A

fuel R

in o1 R

fuel R

in o2 R

at R B

at R A

at o1 A

at o2 A

in o1 R

at o1 A

in o2 R

at R B

at o2 A

at R A

fuel R

move A B

load o2 A

load o1A load o1 A

load o2 A

move A B

unload o2 B

unload o1 B

load o1 A

load o2 A

move A B

at o1 B

at o2 B

in o1 R

in o2 R

at R B

at o2 A

at R A

fuel R

at o1 A

Mutex Exclusivity Relations
One-Way Rocket Example

Exclusivity Examples

•  Exclusive Actions: (Move A B) deletes a precondition of (Load o1 A).
Therefore exclusive (existence of threats).

•  Exclusive Propositions: (at R A) and (at R B) at time 2 are exclusive.
(at R A) is added by a no-op and (at R B) is added by (Move A B)
and no-op and (Move A B) are exclusive actions.

•  Exclusive Actions: Then (Load o1 A) and (Load o2 B) are exclusive
because (at R A) and (at R B) are exclusive.

•  Propositions can be exclusive in some time step and not in others: If
(at o1 A) and (at R A) at time 1, then (in o1 A) and (at R B) are
exclusive at time 2, but not at time 3.

9/22/16

21

Searching a Planning Graph

•  Level-by-level backward-chaining approach to use the
exclusivity constraints.

•  Given a set of goals at time t, identify all the sets of
actions (including no-ops) at time t - 1 who add those
goals and are not exclusive. The preconditions of these
actions are new goals for t - 1.

at o1 A

at o2 A

at R A

fuel R

in o1 R

fuel R

in o2 R

at R B

at R A

at o1 A

at o2 A

in o1 R

at o1 A

in o2 R

at R B

at o2 A

at R A

fuel R

move A B

load o2 A

load o1A load o1 A

load o2 A

move A B

unload o2 B

unload o1 B

load o1 A

load o2 A

move A B

at o1 B

at o2 B

in o1 R

in o2 R

at R B

at o2 A

at R A

fuel R

at o1 A

unload o2 B

unload o1 B

in o1 R

in o2 R

at R B

load o1 A

load o2 A

move A B move A B

in o1 R

fuel R

in o2 R

at R A

load o2 A

load o1A

at o1 A

at o2 A

at R A

fuel R

{unload o1 B, unload o2 B} {move A B} {load o1 B, load o2 B}

Searching a Planning Graph

9/22/16

22

Recursive Search

•  For each goal at time t in some arbitrary order:
–  Select some action at time t - 1 that achieves that

goal and it is not exclusive with any other action
already selected.

–  Do this recursively for all the goals at time t - do not
add new action, but use the ones already selected if
they add another goal.

–  If recursion returns failure, then select a different
action.

•  The new goal set is the set of all the preconditions of the
selected actions.

Enhancements

•  Forward-checking - for the goals ahead, check if all the
actions that add it are exclusive with the selected action.

•  Memoization - when a set of goals is not solvable at
some time t, then this is recorded and hashed. If back at
time t, the hash table is checked and search proceeds
backing up right away.

9/22/16

23

Planning as Satisfiability

•  One interpretation: ``first-order deductive theorem-
proving does not scale well.'‘

•  One solution: ``propositional satisfiability'‘

•  Uniform clausal representation for goals and operators.

•  Stochastic local search is a powerful technique for
planning.

