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Research Statement
I work on machine learning (ML) and algorithms, with my main goal being to establish learning

from multiple tasks, datasets, and computations on firm theoretical and practical foundations,
allowing scientists and engineers to confidently use the resulting algorithms to power new innovations. The-
oretically, my research advances our understanding of training on multi-distribution data, which underlies
everything from the foundation models powering the latest breakthrough AI systems to the go-to methods in
distributed learning. My work also guides the design and analysis of learning-augmented algorithms, a leading
paradigm of studying computation beyond worst-case instances by incorporating predictions from previously-
seen instances. In practical applications, I use insights from my work combined with domain-specific knowl-
edge and collaborations to design algorithms for distributed and efficient ML, incorporate learning into
releasing statistics and scientific computing, and automate the application of ML to understudied modalities.

My work involves studying how to learn algorithms across multiple tasks—e.g. datasets, computational in-
stances, or training runs—and translating the insights into practice. It can mainly be split into three thrusts:

1. Multi-task & meta-learning: In many applications, we want to learn a good learning algorithm—
e.g. find a good initialization for gradient descent—from a large collection of heterogeneous datasets
or tasks; for example, large language models (LLMs) are pretrained on a big, multi-distribution corpus
before being fine-tuned on target data. Understanding such settings requires going beyond the single-
distribution paradigm of classical ML. I have shown some of the first provable guarantees for gradient-
based meta-learning, a major approach in this area with applications such as federated learning (FL)
and vision. My theory describes task-similarity conditions under which learning from multiple tasks is
useful and prescribes algorithms that can exploit this similarity. It has been directly built upon theoret-
ically by scientists in diverse areas such as algorithmic game theory and reinforcement learning. As one
example of its practical implications, it inspired my method for tuning hyperparameters in FL which
was found to consistently improve regular tuners in both my own and in recent independent evaluations.

2. Learning-augmented algorithms: Also known as algorithms with predictions, this rapidly growing
subfield of theoretical CS designs algorithms whose performance can be improved by learned predictions
of their outputs. It is a leading way of analyzing algorithms beyond worst-case instances and has had a
significant practical impact in areas such as databases and energy systems. My work provides the first
systematic understanding of the critical learning aspect of learning-augmented algorithms, introducing
a unified way to determine learnability and in doing so dramatically improving several existing theo-
retical results while proving many new ones. I have since worked on expanding the scope of learning-
augmented algorithms beyond online and graph algorithms, including to privacy-preserving statistics
as a Google intern and to scientific computing in collaboration with a domain expert at Georgia Tech.

3. Efficient & automated ML: My third area of focus is on extending the achievements of modern ML
to low-resource settings and understudied tasks. A significant portion of my work involved developing
our theoretical and practical understanding of optimization and generalization in model compression
and neural architecture search, leading to better methods for these highly relevant areas. In the last
few years, I have also led a push to make automated ML and foundation models work for diverse
domains beyond vision, text, and audio. In addition to introducing several state-of-the-art methods
via novel architecture search space design and transfer learning approaches, I also oversaw the creation
of the main benchmark and co-organized the first major competition in this important applied area.

These lines of work combine tools from ML, algorithm design, and optimization to design methods and
translate them into practically useful implementations. In the future, I aim to build upon these results in
several main directions, connecting my aims of deploying principled and effective multi-task methods at scale
and of democratizing ML to diverse modalities and resource levels. A major goal is to develop an empirical
theory of multi-distribution learning, combining controlled experimentation with mathematical analysis
to transform our understanding of modern learning beyond what classical theory can provide. This direction
will build heavily on my theoretical experience in meta and representation learning alongside practical experi-
ence in core application areas such as language and the natural sciences. Another key focus is on developing
and deploying learning-augmented algorithms, expanding my collaborations with theoretical CS while
also focusing more deeply on areas such as scientific computing, applied statistics, and efficient large-scale
ML. Lastly, building upon my pioneering work on automated ML for diverse tasks, I plan to create new algo-
rithms and workflows for bringing large-scale pretraining to bear on understudied applications.
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Multi-task and meta-learning

Alleviating the lack of data in individual tasks by incorporating data from related datasets is a long-standing
approach in ML [7] that has enjoyed continued relevance in the age of fine-tuned pre-trained models. One
setting is meta-learning, where a “meta-dataset” of tasks is used to learn a learning algorithm for subsequent
tasks. For example, a dataset of mobile device data can be used to meta-learn an initialization of stochastic
gradient descent (SGD) that yields a good personalized language model when fine-tuned on the data of
a new user, a canonical problem in federated learning (FL) [35]. Meta-learning has also found important
applications in areas such as few-shot learning [45], reinforcement learning [12], and fine-tuning LLMs [9].

Contributions: Showing meta-learning guarantees for iterative learning algorithms like SGD is chal-
lenging because of the complex relationship between the parameters of an algorithm and its performance. A
key insight of my work is that we do not need to work with the exact performance metric and can instead
use a good approximation to achieve meaningful results [18]. The closest analogy is that in (single-task)
supervised classification we rarely optimize the (non-convex) classification loss and instead use surrogate loss
functions. Similarly, the performance of learning algorithms can also often be approximated by a simple
function of (a) task data and (b) parameters such as the initialization and step-size. For example, SGD per-
forms provably well on a task if the distance from the initialization to the optimum is small. I developed the
idea of optimizing such simple functions—i.e. using them as surrogate algorithmic losses—into a framework
called “ARUBA” for designing meta-learning algorithms whose performance is provably better than single-
task learning if the tasks are similar in a natural, algorithm-specific way [17]. For example, gradient descent
with a meta-learned initialization performs well if the tasks’ optima are close in average Euclidean distance.
On the other hand, in the multi-armed bandit setting, we showed that the task-averaged regret will have a
logarithmic dependence on the number of arms—unlike the square-root dependence that is minimax-optimal
in the single-task setting—so long as a constant number of unknown arms is ever optimal on any task [23].

Impact: ARUBA has found significant use for meta-learning algorithm design, as it is both prescriptive
and highly customizable: each algorithm-specific surrogate loss induces its own task-similarity measure and
meta-learning method. For example, in algorithmic game theory, we showed how to speed up equilibrium-
learning across games with nearby equilibria or similar potential functions [13]. We have also applied ARUBA
to private [30], federated [26], and discontinuous [5] meta-learning, and it has been used by independent
scientists to design meta-learning methods for multi-agent learning [32] and reinforcement learning [15],
demonstrating its versatility and ease-of-use. In the FL application I introduced FedEx, a method for speeding
up federated hyperparameter search with underlying provable guarantees [26]. FedEx’s ability to consistently
improve FL methods has been independently verified on the latest hyperparameter optimization benchmarks
in FL [49], where its use improved the performance of eleven out of the twelve standard tuners assessed.

Future work: While my work has provided an initial understanding of how to fruitfully learn across
multiple tasks, many questions remain unanswered, especially when dealing with modern models. I aim to
build out a better understanding of learning across multiple distributions, focusing on a theory founded upon
empirical observations, e.g. via small-scale training or by investigating public information like model check-
points. As with my previous work on ARUBA, I will seek to develop a systematic and prescriptive theory, one
that will help other researchers apply it to diverse domains such as those I study in my third research thrust.

An important first goal is understanding multi-distribution optimization of large-scale models trained
on massive datasets derived from many sources. Drawing upon my background in multi-distribution opti-
mization [17, 42, 11] and transfer learning [2, 24, 3, 44], I plan to start by understanding two key questions:
(1) how optimizing over multiple distributions affects training dynamics and (2) an investigation of the role
played by different specific pretraining datasets. My eventual goal is to design methods that produce better
or cheaper results by using the resulting insights to improve training algorithms and data selection.

Learning-augmented algorithms

While standard analysis of algorithms characterizes performance in the worst or average case, in domains
ranging from database systems [27] to energy management [34] we can realize substantial gains by augment-
ing methods with learned predictions about their instances. This has inspired a large body of theoretical
work on algorithms with predictions [36], focusing on quantifying improvement via prediction-dependent per-
formance guarantees and designing methods that are robust to poor predictions. Such results can have a
direct impact on important applications such as caching protocols, energy systems, and job scheduling.
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Contributions: My work in this area makes two fundamental contributions: (1) addressing the crucial
question of learning in learning-augmented algorithms and (2) extending the field’s scope beyond its origins
in online and graph problems. The first direction is important because, while the field had produced useful
algorithms with predictions, the question of where the predictions themselves came from was not systemati-
cally addressed. As the name suggests, predictions often come from ML applied to algorithmic data, and so
the question becomes whether and how they can be efficiently learned. My work makes the key observation
that, just like for learning tasks, existing performance guarantees for learning-augmented algorithms can
be also converted into surrogate losses [19]. Optimizing these approximations led to several improvements
upon the theoretical state-of-the-art, including (1) improved bounds on the number of samples required
for bipartite matching and several other graph algorithms with predictions, (2) the first sample complexity
guarantees for learning-augmented page migration along with more general results for online ski-rental, and
(3) the first regret bounds whatsoever for all of these problems and others, ensuring performance as good as
that of the best fixed predictor on sequences of adversarially chosen instances. The latter is an important
setting in many applications such as job-scheduling, where the instance distribution is non-stationary.

Outlook: Distilling my approach above into two steps—(1) proving an optimizable prediction-dependent
performance bound and (2) applying online learning to minimize it across instances—yields a powerful tool
for showing end-to-end guarantees for algorithms with predictions, i.e. results that address both
how to use predictions and how to learn them. Because it focuses on surrogate loss functions amenable
to optimization, the framework also leads to efficient and practical prediction-learning methods. Thus it
has already been adopted by others in the algorithms with predictions community, e.g. for showing sample
complexity and regret bounds for problems in discrete convex analysis [40, 41, 37], and has been called a
“standard tool in the literature” for addressing when predictions can be efficiently learned [48]. The idea of
learning performance bounds has also been an important design principle in my own work on expanding
the scope of learning-augmented algorithms beyond online and graph algorithms. In particular, we
have recently used algorithms with predictions to rigorously study the use of multi-dataset information in dif-
ferential privacy (DP), where statistics are released about sensitive datasets while protecting individuals by
injecting noise. For tasks such as private covariance estimation and multiple quantile release, we introduced
learning-augmented algorithms that can be provably learned by optimizing well-chosen surrogate losses on
external datasets [1]. We also made novel insights even in the single-task setting, such as the first method
for DP quantile release that does not require knowing an interval containing the data. Our results yielded
substantial reductions in the error of privately released statistics, especially at high privacy levels [16].

Future work: The algorithms with predictions literature has developed a powerful set of design princi-
ples for data-driven methods, including robustness to poor predictions and—from my own work—learnability
of performance guarantees. I intend to continue to apply these in areas of theoretical CS—e.g. metrical task
systems [10], graph algorithms [8], and mechanism design [4]—where learning-augmented algorithms have
already shown great promise, and also to develop them in other important subfields of CS and data science.

The first area is scientific computing, where I have experience developing both classical [20] and data-
driven [39, 43] tools and which is awash in multi-instance data. For example, physics simulations can require
solving thousands of related linear systems, so learning can both directly accelerate standard solvers and
indirectly speed up ML approaches that use them to generate training data [31]. I have already begun work
on the theory of data-driven linear system solvers [21] and aim to expand this line of work to (1) incorporate
more expressive models for preconditioning and smoothing and (2) use learning to help solve other important
numerical tasks, e.g. matrix decomposition and approximation, eigenvalue problems, and nonlinear systems.

My work on private statistics [16, 1] opens another area of application: improving statistical algorithms
across multiple datasets. Statistical procedures are often run on multiple related instances, which might
be used to mutually improve the results; for example, inverse solvers use expensive sampling schemes on
numerous related distributions. As another example, evaluating the fairness of ML systems involves hard es-
timation tasks because intersectional subgroups can have few samples. However, a model provider might have
clients willing to share statistics to improve the estimation quality of other clients. Using both my past work
and the existing statistical literature, I aim to design robust that benefit from such multi-dataset information.

A last direction is learning-augmented inference to accelerate generative AI. Inference on LLMs and
other systems is both expensive and queried many times, and one can significantly reduce inference time [46]
and possibly even the number of queries by exploiting their relatedness. I aim to develop learning-augmented
approaches to reduce the cost of these processes on average while ensuring robust performance for all users.
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Efficient and automated machine learning

While large-scale neural networks have achieved incredible success in recent years, progress is distributed
very unevenly. Methodological development has focused on a set of well-studied domains—vision, text, and
audio—and data and compute demands have made it difficult for academic and some industry researchers
to apply state-of-the-art ML. This has led to important research directions aimed at making such models
more efficient and widely applicable, such as neural architecture search (NAS) and more broadly automated
machine learning (AutoML). These are also fundamentally about learning from computations: how do we
efficiently use expensive training runs to figure out the best architectures and hyperparameters for our task?

Contributions: I have a broad set of contributions in this area, but the main line of work is AutoML
for diverse tasks, a broad agenda of allowing any scientist with data from any domain to quickly obtain
good performance using ML. I have led this push together with several collaborators, starting with the ambi-
tious goal of discovering the “right” operation for a novel domain, in the same way that convolutions are the
“right” operation for vision data. To do so, we came up with XD, a search space over linear operations con-
strained—like convolutions—to run in time at most linearithmic in the input size [39]. This constraint on the
expressivity allowed us to find XD operations that outperformed comparably sized neural partial differential
equation (PDE) solvers and protein folders, which we used as examples of relevant but understudied domains.
To address issues with scaling this initial approach, we introduced the more efficient DASHmethod [43], which
restricted the operation search space even further to just the kernel sizes and dilations of basic convolutions.
DASH obtained better performance than expert, hand-crafted architectures on seven out of ten tasks in NAS-
Bench-360 [47], a benchmark of diverse tasks we built to address the lack of consistent evaluation in this area.

Beyond diverse tasks, I have worked in many other areas of efficient and automated ML. For efficient ML,
I showed that with the right initialization and regularization, low-rank neural networks can compete with
sparsity or tensor-based approaches in terms of accuracy per parameter, while being more GPU-friendly [25];
low-rank methods are now a key component of fine-tuning foundation models [14]. In AutoML, I developed
the foundational methods in the challenging federated setting, introducing the aforementioned FedEx ap-
proach [26] and taking part in an industry collaboration that demonstrated the power of hyperparameter
transfer in FL [28]. Lastly, in NAS, I made the first progress on understanding the breakthrough technique of
weight-sharing [38, 33], in which the performance of multiple neural networks is (noisily) evaluated by train-
ing one large “supernet.” My work advanced both the optimization [29] and statistical [22] understanding
of this approach, which underlies much of NAS today, including my own work on diverse tasks.

Impact: Spurred by our work, AutoML for diverse tasks has become an important direction for applied
research. Twenty-four teams participated in our AutoML Decathlon competition at NeurIPS 2022, which
evaluated automated methods on a diverse set of ten tasks; a similar competition was incorporated into
the AutoML Cup at the AutoML 2023 conference. Our method DASH turned out to be a hard baseline to
beat in the Decathlon and was even incorporated by the second-place team’s submission; a multi-objective
variant has since been developed by a leading AutoML lab [6]. Our NAS-Bench-360 benchmark [47] has also
been crucial for advancing the state-of-the-art; in my own work, we used it to show that many cheap NAS
heuristics do not generalize beyond vision tasks [50] and it was the main evidence of success for ORCA [44],
a breakthrough method that showed that state-of-the-art AutoML on diverse tasks could be achieved with
transfer learning from readily available pretrained models like RoBERTa and Swin Transformer.

Future work:While there has been strong progress in building out methods, benchmarks, and a commu-
nity dedicated to AutoML for diverse tasks, there remains a great deal of effort before ML is truly accessible
to most fields of science and engineering. To push this forward, I plan to work with experts in diverse
domains and design methods that both (1) optimize their metrics while satisfying their constraints and (2)
can be generalized to large classes of learning problems. To do so, I aim to incorporate ideas from multi-
objective optimization and transfer learning, with the goal of developing as simple a workflow as possible for
general-purpose ML. At the same time, I also plan to work on a better understanding of AutoML in the
age of large-scale pretrained models. While most automated approaches often assume a single dataset,
in practice transfer learning is used because of its strong performance benefits. In fact, in work with my
collaborators we found that tuning hyperparameters on out-of-distribution data first can often be helpful [28]
and that pretrained models do not even need to be in the same modality to be useful for attaining state-of-
the-art on downstream tasks [44]. My goal here is to understand how to best integrate AutoML approaches
into ML workflows dominated by fine-tuning or even in-context learning, taking advantage of outside data
or even prior computation while still incorporating useful techniques developed by NAS and other subfields.
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