

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, Nikunj Saunshi {arora,hrk,orestisp,nsaunshi}@cs.princeton.edu, khodak@cmu.edu

Mysterious Success of Contrastive Learning

Unsupervised methods for representation learning, reminiscent of word2vec for word embeddings, have been very successful in NLP [1] and to some extent in vision [2]. With access to **semanti**cally similar points and random negative samples from unlabeled data, they minimize objectives that look like

$$L_{unsuperv.}(f) = \mathbb{E}_{x,x^{+},x^{-}} \left[\log \left(1 + e^{f(x)^{T} f(x^{-}) - f(x)^{T} f(x^{+})} \right) \right]$$

Why are these representations successful on future **linear classi**- $L^{\mu}_{sup}(f)$ is defined as loss of f when the difference of means fication tasks? We attempt to demystify this by providing classifier $w = \mu_{c_1} - \mu_{c_2}$ is used for the task $T = \{c_1, c_2\}$, where - Framework connecting unlabeled data with downstream tasks $\mu_c = \mathop{\mathbb{E}}_{x \sim \mathcal{D}_c} [f(x)].$ Clearly $L_{sup}(f) \leq L^{\mu}_{sup}(f).$ - **Provable guarantees** for such algorithms under the framework: Unsupervised loss is **surrogate** for *average supervised loss* **Key observation**: Jensen's inequality to upper bound super-

Framework

Semantic similarity \approx membership in same latent class.

Connection

 \mathcal{X} : Set of inputs, \mathcal{C} : Set of classes, ρ : Distribution over \mathcal{C} \mathcal{D}_c : Universal distribution over \mathcal{X} conditioned on class c.

Unlabeled Data

Similarity data: $(x, x^+) \sim \mathcal{D}_{sim}$ $c^+ \sim \rho$ $(x, x^+) \sim \mathcal{D}_{c^+}^2$ Negative samples: $x^- \sim \mathcal{D}_{neq}$ $c^- \sim \rho$ $x^- \sim \mathcal{D}_{c^-}$

Supervised Tasks

Task: Subset of latent classes $\mathcal{T} = \{c_1, \ldots, c_k\} \subseteq \mathcal{C}$

Labeled samples: $(x, c) \sim \mathcal{D}_{\mathcal{T}}$ $c \sim \mathcal{T}$ $x \sim \mathcal{D}_c$

Evaluation Metric (Binary)

$$L_{sup}(\{c_1, c_2\}, f) = \min_{\|w\| \le R} \frac{1}{2} \mathop{\mathbb{E}}_{x \sim D_{c_1}} \log\left(1 + e^{-f(x)^T w}\right) + \frac{1}{2} \mathop{\mathbb{E}}_{x \sim D_{c_2}} \log\left(1 + e^{f(x)^T w}\right)$$
$$L_{sup}(f) = \mathop{\mathbb{E}}_{(c_1, c_2) \sim \rho^2} \left[L_{sup}(\{c_1, c_2\}, f) \mid c_1 \neq c_2\right]$$

A Theoretical Analysis of Contrastive Unsupervised Representation Learning

Unsupervised Loss Bounds Supervised Loss

 $\mathcal{F} \subseteq \{f : \mathcal{X} \to \mathbb{R}^d, \|f(\cdot)\| \le R\}$: Function class of interest. τ : Probability that two classes sampled from ρ are the same. f: Minimizer from \mathcal{F} of empirical unsupervised loss.

$$L_{unsup}(f) = \mathbb{E}_{\substack{(x,x^{+})\sim D_{sim} \\ x^{-}\sim D_{neg}}} \left[\log\left(1 + e^{f(x)^{T}f(x^{-}) - f(x)^{T}f(x^{+})}\right) \right]$$

vised loss. Mean is better than random point as classifier. $\log\left(1 + e^{f(x)^{T}(\mu_{c^{-}} - \mu_{c^{+}})}\right) \le \mathop{\mathbb{E}}_{x^{+} \sim \mathcal{D}_{c^{+}}} \log\left(1 + e^{f(x)^{T}f(x^{-}) - f(x)^{T}f(x^{+})}\right)$ $x^{-} \sim \mathcal{D}_{c^{-}}$

Price of Negative Sampling: Class Collision

Inherent limitation of contrastive learning: negative samples can be from same class as similar pair $\implies L_{un}(f)$ can be large. Need to understand when L_{un} can be made small

$$L_{un}(f) - \tau = \underbrace{(1 - \tau) L_{un}^{\neq}(f)}_{c^{+} \neq c^{-}} + \underbrace{\tau (L_{un}^{=}(f) - 1)}_{c^{+} = c^{-}}$$
need contrastive f need intraclass concentration

Theorem 2: Sufficient Conditions on \mathcal{F}

Let $x \sim \mathcal{D}_c$. λ_c : maximum standard deviation of f(x) in a direction, R_c : mean norm of f(x). Let $s(f) = 2 \mathbb{E}_{\lambda_c} \lambda_c R_c$,

$$L_{sup}(\hat{f}) \leq \boldsymbol{L}_{un}^{\neq}(\boldsymbol{f}) + \frac{1}{1-\tau} [\tau \boldsymbol{s}(\boldsymbol{f}) + Gen_M] \ , \forall f \in$$

Multiple Negative Samples: Can bound the loss of average (k + 1)-wise task with k negative samples. Increasing negative samples can hurt beyond a point (increased class collision).

Blocks of Similar Data: Can use the mean within a block as a proxy classifier. Gets tighter upper bound and improves performance on IMDb classification (beating SOTA model in [1]).

(a) Supervised loss roughly tracks unsupervised test loss as predicted by the Theorem 1

		SUPERVISED		Unsupervised	
		Tr	μ	TR	μ
WIKI-3029	AVG-2	97.8	97.7	97.3	97.7
	тор-10	67.4	59.0	64.7	59.0
	тор-1	43.2	33.2	38.7	30.4
CIFAR-100	AVG-2	97.2	95.9	93.2	92.0
	TOP-5	88.9	83.5	70.4	65.6
	TOP-1	72.1	69.9	36.9	31.8

Table: Performance of supervised and unsupervised representations on average k-wise classification tasks (AVG-k) and full multiclass TOP-1 (not covered by theory). Classifier can be trained (TR), or the mean is used (μ).

[1] Logeswaran & Lee. An Efficient Framework for Learning Sentence Representations. ICLR 2018.

[2] Wang & Gupta. Unsupervised Learning of Visual Representations Using Videos. ICCV 2015.

