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Abstract
Spoken dialog systems have been widely used, such as the voice applications or

agents in smart phone or smart car environments. However, speech systems are built
using the developers’ understanding of the application domain and of potential users
in the field, driven by observations collected by sampling the population at a given
time. Therefore, the deployed models may not perfectly fit the real-life usage or
may no longer be valid with the changing dynamics of the domain/users over time.
A system which automatically adapts to the domain and users is naturally desired. In
this thesis, we focus on three realistic problems in language-based communication
between human and machine. First, current speech systems with fixed vocabulary
have difficulty understanding out-of-vocabulary words (OOVs), leading to misun-
derstanding or even task failures. Our approaches can learn new words during the
conversation or even before the conversation by detecting the presence of OOVs or
anticipating the new words ahead of time. Our experiments show that OOV-related
recognition and understanding errors can be therefore prevented. Second, cloud-
based automatic speech recognition (cloud-ASR) is widely used by current dialog
applications. The problem though is that it lacks the flexibility to adapt to domains
or users. Our method, which combines hypotheses from 1) a local and adaptive
ASR and 2) the cloud-ASR, can provide better recognition accuracy. Third, when
interacting with a dialog system, users’ intention may go beyond individual domains
hosted by the system. However, current multi-domain dialog systems do not have the
awareness of the user’s high-level intentions, resulting in lost opportunities to assist
the user in a timely manner or personalize the interaction experience. We built mod-
els to recognize the complex user intentions and enable the system to communicate
with the user at the task level, in addition to the individual domain level. We believe
that adaptation in these three levels can contribute to the quality of human-machine
interactions.



Acknowledgement
First of all, I am grateful to have my four committee members. My advisor Alex guided me for
the past 6 years and encouraged me to work on the research I am interested in. He taught me
how to shape research ideas and design experiments. He has been extremely supportive to my
research ever since — giving me freedom to experiment my ideas, offering helpful advice when
I stray off path and even presenting my work at international conferences on my behalf due to
travel visa issue. Alan is the one who sparked my curiosity about the speech world when I took
his undergraduate course and built a pizza delivery dialog system back in 2009. He has been a
fantastic resource for me in brainstorming research ideas, planning my career and telling good
jokes. Roni introduced me to statistical language modeling and machine learning. I am honored
to have worked with him as teaching assistant in these two courses. His critical thinking and
excellent teaching skills (e.g., deriving every formula on board using colorful chalk) equipped
me with the necessary techniques to conduct my own research. Amanda has been so supportive
and resourceful to me throughout my dissertation. She directed me to all types of inspiring
external resources that broadened my horizons. Every time I left a meeting with her, I was able
to imagine entirely new research directions which I previously had not thought were possible. I
am so lucky to have these four excellent committee members on board throughout my journey of
discovering new possibilities in language technologies.

I want to thank Aasish Pappu for playing April fool on me the night before my defense:
he tricked me into thinking that it is a US convention to mail a hard copy of the dissertation
to my external committee. Alok Parlikar consistently asked me about my defense date almost
every other week in the past two years (for some hidden reason). I am fortunate to collaborate
with my lab-mates in different projects: Long Qin, Matthew Marge, Yun-Nung Chen, Seshadri
Sridharan, Zhenhao Hua and Justin Chiu. It has been a great experience and I have learned a lot
from each of them. My work is not possible without the research assistants in my lab: Yulian
Tamres-Rudnicky and Arnab Dash. We spent a long but fun time together in the lab collecting
data. I also want to thank Thomas Schaaf, Ran Zhao, Jill Lehman and Albert Li for helping me
with preparing the defense talk. I want to thank tutors in CMU Global Communication Center
for helping me revising the structure and language of this document.

I am grateful to my sponsors — General Motors Advanced Technical Center (Israel) and
YAHOO! Research. Especially, I want to thank Dr. Ute Winter. She funded part of my research,
brought me to Israel for an internship and since then has been a great resource for me in planning
my career.

Most of all, I want to thank my parents and my grandparents for believing in me to complete
my PhD. They have to develop so much independence at this age while I am 7000 miles away
from home. Without their constant love and understanding, I could not have gone this far. Last
but definitely not the least, I want to thank Fei Lu, my fiance and her family for their support.
This dissertation is not possible without Fei’s constant supervision. Thank you for having faith
in me and letting me pursue my dream. Thank you for tolerating me for not only the past two
years but also many more to come. This dissertation is as much yours as it is mine.

iv



Contents

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Lexicon Adaptation 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Detect-and-Learn Out-of-vocabulary Words . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 OOV Learning in Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Detect-and-learn Summary . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Expect-and-Learn Out-of-vocabulary Words . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Lexicon Semantic Relatedness . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 OOV Learning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Expect-and-Learn Summary . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Possible extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Combination of two approaches . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Topic level similarity in expect and learn . . . . . . . . . . . . . . . . . 22
2.5.3 OOV learning for dialog system . . . . . . . . . . . . . . . . . . . . . . 22

3 Cloud ASR Adaptation 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Local Recognizer Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Combine Local Recognizer with Cloud-based Recognizer . . . . . . . . . . . . . 28
3.5 Required Data for Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



4 Intention Adaptation 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 App Recording Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Task Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Task-Related Spoken Dialog . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Modeling User Intentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 High-level Intentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Online Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Possible extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.2 Sharing Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.3 Large Scale Dialog Framework with Web Connectivity . . . . . . . . . . 60

5 Conclusion 63

Bibliography 65

vi



List of Figures

1.1 Spoken Dialog System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 OOV detection performance for different fragments . . . . . . . . . . . . . . . . 7
2.2 OOV recovery results on 5K task . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 OOV recovery results on 20K task . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The OOV prediction performance across different resources . . . . . . . . . . . 19

3.1 Data split on the training set for comparing local recognizers . . . . . . . . . . . 27
3.2 Individual decoder performance . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Data split for combining local recognizer with cloud recognizer . . . . . . . . . . 29
3.4 System performance on different amount of adaptation data . . . . . . . . . . . . 32

4.1 Multi-domain dialog examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Example of activities grouped based on location. . . . . . . . . . . . . . . . . . 36
4.3 Annotation interface without user annotation . . . . . . . . . . . . . . . . . . . . 37
4.4 Multi-app annotation example . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Multi-domain dialog example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Histogram of number of annotation sessions . . . . . . . . . . . . . . . . . . . . 39
4.7 Histogram of number of dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Histogram of number of utterances . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 Histogram of number of apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 Intention understanding and realization example . . . . . . . . . . . . . . . . . . 43
4.11 Example of RepSeq with three app sequences. . . . . . . . . . . . . . . . . . . . 45
4.12 Evaluation of the neighbor-based intention models . . . . . . . . . . . . . . . . 48
4.13 Evaluation of the cluster-based intention models . . . . . . . . . . . . . . . . . . 51
4.14 Key phrases examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.15 Example of the agent learning a recurrence of task . . . . . . . . . . . . . . . . . 58
4.16 Example of the agent learning a new task . . . . . . . . . . . . . . . . . . . . . 59
4.17 Illustration of overlapping domain knowledge. . . . . . . . . . . . . . . . . . . . 61

vii



viii



List of Tables

2.1 Sentences with OOVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Candidate questions to elicit OOVs from user . . . . . . . . . . . . . . . . . . . 11
2.3 Oracle OOV discovery capability . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Examples of related words in different web resources . . . . . . . . . . . . . . . 17
2.5 Examples of salvaged OOVs and corresponding source IVs . . . . . . . . . . . . 18
2.6 Breakdown of the test set OOVs . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 The recognition and understanding performance of OOV learning procedures . . 20

3.1 Ranked performance of individual systems . . . . . . . . . . . . . . . . . . . . . 29
3.2 Ranked oracle performance of system combinations . . . . . . . . . . . . . . . . 30
3.3 Ranked performance of system combinations using basic features . . . . . . . . 31

4.1 Top content words and frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Multi-domain corpus characteristics . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Example of one user’s multi-domain commands . . . . . . . . . . . . . . . . . . 41
4.4 Examples of automatic intention clustering . . . . . . . . . . . . . . . . . . . . 44
4.5 Examples of intention realization with QryEnr . . . . . . . . . . . . . . . . . . . 49
4.6 Examples of intention realization with AppSim . . . . . . . . . . . . . . . . . . 49
4.7 Comparison of different AppSim approaches . . . . . . . . . . . . . . . . . . . 50
4.8 Mean number of phrases generated using different resources . . . . . . . . . . . 53
4.9 Online app prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.10 Online intention prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.11 System actions to acquire new user knowledge . . . . . . . . . . . . . . . . . . . 57

ix



x



Chapter 1

Introduction

The interaction between two parties requires having a shared channel transparent to both par-
ticipants. In language-based interaction, the factors that may impact the transparency of that
channel include, but are not limited to, 1) the capability or skills for both parties to communicate
with the same language (understandable vocabulary, accent, etc); 2) the understanding of the
goal of the conversation. For example, we can foresee an error-prone conversation if there is a
vocabulary mismatch. While one party is not able to recognize the other party’s intention for the
current conversation, the dialog becomes inefficient. These problems become more significant
when one of the two parties is an artificial agent (i.e., conversations between a human user and
a spoken dialog system as shown in Fig 1.1). From our daily life, we may experience difficulty
switching between two websites providing similar services, partially due to the fact that the vo-
cabulary they use do not transfer to each other with ease (e.g., “origin/destination” in website
A vs. “from/to” in B). Also, if the user’s intention is too complex to be fully understood by the
agent (e.g., “schedule a dinner with friends”), the user may be directed to some irrelevant domain
which could lead to failure. Alternatively, the user may have to manually open a series of apps
(e.g., SEARCH, OPENTABLE, CALENDER) in order to fulfill that intent. From these examples
we can see that, although human users can adjust themselves in many ways to accommodate the
agent’s incapability, we believe that if the agent can adapt itself toward the user or domain, the
amount of effort required from the user side can be reduced and the efficacy of the dialog can be
improved.

Adaptive communication systems should adjust dynamically to the peculiarities of interacting
with specific users and to reflect the structure of particular domains. Thus, the systems can evolve
to better understand users’ input and more efficiently generate behavior relevant to the needs of
users. Speech understanding provides the front-end for a dialog system and its quality impacts
the performance of all subsequent components in the dialog pipeline. Errors generated in speech
understanding risk failure in providing utility to the user and require the user to devote time to
recovery. Knowing and adapting to the user’s language is an important aspect of performance.

Another key aspect of maintaining good communication is being aware of the user’s inten-
tions, reflecting their goals, and their preferences in organizing their activities. These factors
define the structure of a dialog. Performance can be improved by evolving task models to reflect
interaction experience and making appropriate use of an activity’s context. Agents that learn
about their users could also share useful information and allow a group to benefit from each

1
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Figure 1.1: Spoken Dialog System

other’s experience.
In this thesis work, we mainly focus on better understanding users’ language and inten-

tions. First, as the front-end of a dialog system, the spoken language understanding component
(including speech recognition) affects the other components in the dialog pipeline. Vocabu-
lary/lexicon is an important part of the understanding model. Vocabulary is time-variant in that
more and more new words emerge. Vocabulary is also situated. Depending on who we talk to
and what subject we are talking about, the words are different. For example, when discussing
some physics problem, the term “electromagnetism” may occur in the conversation. But when
talking about sports, words such as “Steelers”, “NFL” are more likely. However, it is not always
a good idea to incorporate as many vocabularies as possible into the system since improving the
coverage of the lexicon may lead to the increase of acoustic confusability which degrades recog-
nition accuracy [62]. Moreover, although the vocabulary coverage is high with large vocabulary
ASR (e.g., cloud ASR), there are still domain-specific words such as people’s names that cannot
be captured. Therefore, an agent which can adjust its vocabulary to learn novel words is useful.
Without such capability to dynamically expand/adjust the vocabulary (language model as well),
the system is not able to handle the evolving language of users or domains. In chapter 2, we
demonstrate two approaches to learning out-of-vocabulary words (OOVs): 1) detect and recover
and 2) expect and learn. The former can identify OOVs in the ongoing conversation and recover
the spellings of the detected OOVs. Human knowledge can be incorporated as well through con-
versation. The latter predicts potential OOVs ahead of time and automatically adds those words
into the recognition vocabulary.

Dialog system developers either use a local closed-vocabulary speech recognizer or a cloud-
based recognizer. Either one has pros and cons. For the closed domain recognizer, although
the accuracy on in-domain language is high, the coverage (lexicon-wise and language-wise) is
not comparable with the cloud-based recognizer. Nowadays, people tend to use cloud-based

2



recognizers but the drop of accuracy becomes inevitable in situated dialog systems. However,
adaption, which seems to be a reasonable way to improve cloud ASR, is not feasible at this
moment due to the lack of such services. In chapter 3, we discuss the work on using a local
domain-specific recognizer together with a cloud-based recognizer to make use of the accuracy
of local recognizer and the coverage of the cloud-based one. In this thesis, we investigate the
form of the local recognizer (finite-state-grammar or statistical language model) and the potential
adaptation performance of system combination in terms of reducing word-error-rate (WER).

Dealing with user intentions in the context of individual applications would appear to be
tractable, especially as some applications operate in very limited functional domains (for ex-
ample, a dialer dials; a music player plays music). Contemporary devices, in particular, the
ubiquitous smart phone, present the user with suites of applications. Each application will have
limited functionality, but they can support fairly complex activities as an ensemble. From human
users’ perspective, they interact with artificial agents (e.g., smartphone applications) to fulfill
some goals. Sometimes these goals can be accomplished via single domain/app (e.g., “find a
restaurant” via YELP). However, in many cases, users have more complex goals/intentions that
may require coordination across domains. For example, to “organize a dinner event” may in-
volve selecting a restaurant (YELP), contacting friends (MESSENGER) and finding a bus route
(MAPS). Without asking a developer to create a single application to solve the “dinner” problem,
we would like our agent to automatically learn to perform complex multi-app tasks by using
existing apps (i.e., single-task agents). This is more scalable and adaptable to the user’s personal
needs. However, it requires the agent to be aware of the user’s complex multi-app intention so
that it understands what resources are necessary to support those goals. In this example, know-
ing that the user wants to plan a dinner, his preferred dining location and his friend’s contacts
need to be gathered. Currently, if the user has a multi-app intention, the dialog system does not
actively support such interaction unless explicitly configured by the developer. Or, it relies on
the user to mentally decompose the task into domains/steps and coordinate information among
these domains. Being able to understand user’s complex high-level intentions will give the agent
an opportunity to construct a specific flow composed of individual domains to accommodate the
user’s personal needs. This is similar to building a virtual app, mashup, or macro on top of ex-
isting functionalities. In Chapter 4 we describe our data collection and modeling process for the
agent to learn to recognize users’ complex intentions and to assist users at the task level.

3



1.1 Thesis Statement
In this thesis, we describe techniques that enable a dialog system to accommodate the user’s
language and intentions. Thus, the system can adapt its vocabulary to better understand the
speech input. It is also aware of the user’s high-level intentions and can provide assistance at the
task level.

1.2 Thesis Contributions
The primary contributions of this thesis are as follows:
• Techniques for improving speech recognition and understanding components in a spoken

dialog system by adapting its vocabulary towards the domain and users. By using our first
technique, detect-and-learn, the dialog system can learn new words during conversation.
In Wall Street Journal (WSJ) domain, our model can effectively detect out-of-vocabulary
words (OOVs) and reliably learn the correct spellings of those new words, leading to a re-
duction of the speech recognition word-error-rate (WER). By using our second technique,
expect-and-learn, the dialog system can harvest potentially useful vocabularies from dif-
ferent resources ahead of time. Experimented on WSJ domain, our system reduces OOV
rate by 16.7% and WER by 6.5% in relative by only mildly increasing the vocabulary
size. This also leads to improvement of the natural language understanding performance
(measured by F1) at the same time.

• Techniques for adapting cloud-based automatic speech recognition (cloud-ASR) by com-
bining it with local and adaptive recognition. Our hypothesis-selection method chooses
one hypothesis from those supplied by cloud and local ASRs. Our experiment on a tele-
phone domain shows that this approach is potentially and practically powerful in reducing
WER without heavy feature engineering.

• Techniques for enabling a multi-domain dialog system to understand the user’s high-level
intentions and actively provide task-level assistance. As a result, the user can address the
system with abstract or high-level commands and the system would coordinate several do-
mains to assist the user. Our novel technique, query enrichment, significantly improves the
personalized model performance (measured by F1) by addressing the language mismatch
problem. At the same time, the gap between the personalized model and the generic model
is significantly reduced after adapting the system output towards specific users. On the
other hand, during the conversation, the system can predict the next domain by leveraging
the conversational contexts. Our experiment shows that the top-1 prediction accuracy can
be improved by 67.7% in relative, compared with the majority baseline with 130 possible
apps. In addition to the level of individual domains, the system is also capable of commu-
nicating at the level of intentions — it can produce a ranked list of language references to
the complex tasks based on user-generated language resources and it can find an acceptable
reference within the top-2 of the list.

4



Chapter 2

Lexicon Adaptation

2.1 Introduction
For spoken dialog systems, vocabulary for a specific domain is often hard to define beforehand,
since the vocabulary would evolve over time and the domain data costs time and efforts to collect.
People turn to large and generic vocabulary but even that may not well cover the dynamically
changing and situated domain language, e.g., person names, landmarks, etc. Therefore, a system
which can adapt its vocabulary towards domain or users is more desired.

In this thesis, we designed two approaches to acquiring additional lexicon, similar to how
human users naturally acquire new vocabulary in their daily life. Our system can 1) discover
unknown words in conversation and recover those words either automatically or by asking the
human user for help; 2) expect potentially useful new words beforehand and incorporate them
into the lexicon. Two methods have their own use cases. The former learns one word at a time
and may involve human knowledge in order to recover words reliably. For example, the user
can be asked to provide spelling, meaning of an OOV word. The latter does not have to involve
human efforts and can learn a number of words in advance. In this chapter, we discuss the detect
and learn approach in section 2.2 and the expect and learn in section 2.3. Conclusion and future
work are provided at the end of this chapter.

2.2 Detect-and-Learn Out-of-vocabulary Words
Most speech recognition systems are closed-vocabulary recognizers and cannot handle out-of-
vocabulary. On average, 1 OOV word introduces 1.2 word errors[62]. OOVs are usually content
words, like names or landmarks. Therefore, it is important to enable the dialog systems to detect
OOVs and incorporate OOVs into the understanding models.

2.2.1 Related Work
People are aware of the out-of-vocabulary problems and investigated ways to handle OOV words
in recognition. Hybrid language model with phones, subwords and graphones are adopted [4, 9,
31, 66]. Other information such as confidence score is used to locate possible OOV regions as
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well [39, 74, 86]. After detecting OOV regions in an utterance, people use phoneme-to-grapheme
alignment to recover the written form of OOV [9, 82].

In this thesis, we adopted a fragment-hybrid language model to detect OOV words during de-
coding [59, 60]. Different types of fragments are investigated and evaluated in terms of detection
and recovery. Based on the work described in this section, detection and recovery of recurrent
OOV words can be improved [56, 57]. Language model score can be estimated in order to in-
corporate the new words into existing understanding models [58]. As a result, 90% of recovered
OOV words can be recognized. Moreover, OOVs can be incorporated into other understanding
models such as grammar, either by using syntactic or semantic similarities, or by asking human
users to provide such information [52].

2.2.2 Method

We trained an open-vocabulary word LM from a large text corpus and a closed-vocabulary
fragment LM from the pronunciations of all words in a dictionary. Fragments can be phones,
subwords, and graphones etc. When training the word LM, all OOV words were matched to
unknown token “〈unk〉”. Then by combining the word LM and fragment LM, a single fragment-
hybrid LM was generated.

As mentioned above, fragments can be phones, subwords, and graphones, etc. Phone and
subword only model the phonetic level while graphone considers orthography as well. Such a
result of using a fragment-hybrid language model, ideally in-vocabulary words are decoded as
words and out-of-vocabulary words are presented as a sequence of fragments. For example, OOV
word “ashland” may show up as “AE SH AH N” in a phone-hybrid system, or “EY SH AH N”
in a subword-hybrid system, or

(
ash

EY SH

)(
en

AH N

)
in a graphone-hybrid system. Note that in these

systems, OOVs may not be presented correctly via phone, subword or graphone sequences (as
shown in the examples). The goal is to identify such regions and recover from the erroneous
presentations.

OOV detection can be further improved by combining three individual systems together via
ROVER. The goal here is to more accurately locate OOV word in an utterance, given the OOV
reported by three systems. By converting fragment sequences into an “OOV” token, three word
hypotheses can be aligned.

To recover OOV words’ spellings from recognized fragment sequences, we apply a phoneme-
to-grapheme conversion for the phone and subword systems. For graphone system, we simply
concatenate the letters together. Other methods such as using search engines (Google, Bing, etc)
to auto-correct recovered spellings to further provide more accurate spellings are exploited.

2.2.3 Experiments

We tested our system on the WSJ Nov. 92 5k and 20k evaluation sets [54] using Sphinx3 decoder.
The WSJ0 text corpus was used for word LM training. The top 5k and 20k words in this text
corpus were used as vocabulary, yielding an OOV rate of 2% for both tasks. Then an open-
vocabulary 5k-word LM and 20k-word LM were trained. The dictionary was generated using
CMUDict(v.0.7a). The fragment LM was trained from the dictionary. We use WSJ-SI284 as our
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acoustic model. We trained bigram fragment-hybrid models for phone, subword and graphone.
Word-error-rate using the word bigram LM was 9.23% for 5k task and 12.21% for 20k task.

We reported recall and precision of OOV detection to evaluate individual system’s perfor-
mance (see definition below).

Recall =
#correctly detected OOVs

# OOVs in reference
× 100% (2.1)

Precision =
#correctly detected OOVs

# OOVs reported
× 100% (2.2)

As shown in the equations, we calculate recall and precision at word level which measures
both the presence and positions of OOV words in an utterance since for practical purposes,
knowing where OOVs are located in an utterance is more valuable than simply knowing that
OOVs exist. Location information can be used later when communicating with humans about
OOVs and their meanings since context is available.For OOV recovery, we compared the WER
before and after restoring the written forms of OOV words.

2.2.4 Results
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Figure 2.1: OOV detection performance for different fragments

As shown in Fig 2.1, in 5k task, subword outperforms the other two hybrid systems. Both
subword and graphone system can utilize longer fragment history than phone system. But gra-
phone system has too many variations even if we constrain the grphone length as short as 2,
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Figure 2.2: OOV recovery results on 5K task
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Figure 2.3: OOV recovery results on 20K task
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which requires more training data for a reliable language model estimation. Thus, in 20k task,
graphone system performance catches up with the subword system and they both are better than
phone system.

Fig 2.2 and 2.3 show the OOV recovery performance. Notice that the baseline recognition er-
ror without OOV detection and recovery is 9.23% and 12.21% respectively. From the figures, we
can see that: 1) OOV recovery improves recognition (compare each solid line with dashed line);
2) subword hybrid system is the best in 5k task and graphone is the best in 20k task (similar to the
detection task); 3) in low recall region, system WER can be lower than baseline, which implies
that OOVs can be detected with hybrid models without affecting recognition performance.

2.2.5 OOV Learning in Dialog
We integrated OOV detection and recovery into a dialog system and focused on detecting out-
ofvocabulary (OOV) words and learning the correct pronunciation and spelling through conver-
sation. After detecting the presence of an OOV words, the dialog system would encourage the
user to say that isolated word once again or put it in a template. As a result, a better phonetic rep-
resentation would be obtained. Based on this more reliable phone sequence, a preliminary guess
of the spelling of the OOV word is generated by a phonemetographeme conversion model and
corrected by a spelling correction model. Bing search engine is then used to refine the spelling.
After adding the proper pronunciation and spelling into dictionary and LM, the system is able to
recognize this OOV word in the next turns. We present a preliminary study as well as the results.

2.2.5.1 User Study 1

The purpose of the experiment is to examine that given the recognized OOV words via a hybrid
model, whether or not the system can use dialog strategies to elicit a better representation of
the OOV words. We controlled the experiment by forcing the participants to use five sentences
from wall street journal data set as the initial input (see Table 2.1). Each sentence contains one
OOV word. The OOV detection result shows that four of the five OOVs are recognized with
correct boundary and one is partially recognized. For each sentence, we display the text to the
participant and asked him/her to read it out, so that the participants knew what they had been
talking about. In the system’s turn, user’s speech was discarded and the original WSJ speech was
used together with an OOV detection model. In other word, the system would always find the
same OOV region for the same sentence, no matter who is speaking.

To elicit an isolated instance of the OOV word correctly from the user, we designed two
types of tasks. First, the system would prompt the participant with a question containing the
recognized phone sequence. The candidate questions are shown in Table 2.2. However, since
the OOV words are impacted by the context, sometimes the decoder can only produce part of
the OOV’s real phone sequence. This leads to difficulty for the participants to know which word
the system cannot understand indeed. For instance, in the “DEDICATED” example in Table 2.1,
only part of the phone sequence of the word is found by the system while the beginning part is
recognized as an IV word. Therefore, a recognized OOV should be concatenated with its left or
right context (word) to yield better phone sequences, if needed. We adopted a heuristic that if the
recognized OOV contains less than 4 phones, the system would apply the context concatenation.
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Table 2.1: 5 sentences with OOVs from WSJ

OOV Sentence Recognized Phone Sequence

AIRING

As part of the marketing plan the com-
pany will begin *AIRING* television
commercials during prime time on elec-
tion night next Tuesday

*EH*R*IH*NG*

DEDICATED

Money managers who sell their firms but
then continue working for them may be
less *DEDICATED* under new owner-
ship they say

*IH*K*EY*T*AH*D*

SAFRA

The company said its European banking
affiliate *SAFRA* republic plans to raise
more than four hundred fifty million dol-
lars through an international offering

*S*AA*F*ER*

REFUGEES
Sending *REFUGEES* back isn’t their
idea it’s just what the opposition politi-
cians are saying in our country these days

*R*AH*F*Y*UW*JH*IY*Z*

SALANT
*SALANT* shares closed unchanged on
the big board at nine dollars and seventy
five cents

*S*EY*L*AH*N*T*

But we found in the pilot study that some participants would answer these question in long
sentence, although we specifically asked for an isolated word. This is difficult for the system to
generate a precise phonetic representation for the OOV. Even for those who spoken the isolate
words, they tend not to speak naturally (e.g., over-articulation issue).

To overcome this problem, we adopted the second task where the participant was asked to use
the OOV word in a sentence template when the first answer is much longer than the recognized
OOV region. We used “(Please say:) write the word on the paper” as this template. By
using this approach, among 7 participants we recruited, 5 succeeded in identifying all 5 OOV
words and only 2 failed on “DEDICATED” case. This approach performed better than the first
approach so we decided to always ask the template sentence.

2.2.5.2 User Study 2

In the second user study, we integrated this OOV learning into a dialog system. The agent would
ask the user to speak about a certain topic. Although our experiment is not topic specific, it
helps people to come up with something to talk. This continues until the agent detects an OOV.
Then we elicited new instances of the recognized OOV by 1) asking people for the isolated word
(Table 2.2) and 2) letting the participant to use the word in a template. As a result, we obtain
3 instances of the same OOV words which allow us to get the spelling. Once recovering the
spelling, the agent notifies the user that this word has been learned and encourages the user to
speak more about it. Finally the agent would correctly recognized this word as an IV word. In
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Table 2.2: Candidate questions to elicit OOVs from user. PHONE represents the recognized
fragment sequence.

Questions
There was a word that I didn’t understand. It sounded like
PHONE . Can you repeat the word once more?
PHONE ? I didn’t catch the word. Can you repeat the word
once more?
I think I heard something like PHONE . Can you repeat the
word once more?
Can you give me one keyword? I guess it sounds like
PHONE .

the following, we describe the components in this dialog system.

2.2.5.2.1 ASR and TTS We have three ASR language models to decode three different types
of input speech — regular sentence, isolated word and template sentence. To decode a regular
speech, we used a subword hybrid LM. The subword LM is trained from WSJ5K dictionary. The
subword LM is then merged with a word LM which is trained from WSJ0 text corpus. The total
number of subwords we are using is 89 including 39 phones in English and 50 iteratively trained
subwords. This setting is reported to perform best for subword hybrid system. To decode a single
word utterance, we train a subword trigram model based on the WSJ5K dictionary. To decode the
template, we use finite state grammar as our LM. In this LM, only bigrams are modeled. For those
transitions between the template words, we set them to 1. For transitions among subwords, we
use the bigram LM score in the subword LM. As for the transitions from left context of the OOV
into subwords are assigned a probability the same as entering a subword from a startofsentence
mark in the subword LM. Similarly, the probabilities for the transitions from subwords into
the right context are the same as leaving subwords and entering the endofsentence mark. The
acoustic model we are using is si284 model. We observed no much difference by switching to
hub4 model.

We used festival with the default voice as our speech synthesizer. For mixed input of text
and phoneme sequence we converted it into sable format and used text2wave utility. Before and
after every OOV word we inserted a break to make it easier to distinguish.

2.2.5.2.2 Learning OOVs To learn the written form of the OOV word, instead of letting the
user spell out the word, we tried to make the system guess the spelling using several resources like
phonemetographeme conversion model, spellcorrection model (i.e., Bing search engine). Once
initial guess is made by the conversion model which is trained from WSJ5K IV dictionary, we
applied a spellcorrection model on top of that. To correct the spelling, we used spell correction
service from Bing. Though the exact algorithm is not published it is believed the service is based
on not only edit distance but also query similarity to other queries and stored document phrases.
We supplied Bing with the initial spelling guess and its surrounding context. For the context
we used a window size of 2. We can extract the context words from the user’s initial utterance.
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However, as mentioned above, in the first run, the context and the OOV phone sequence will
influence each other such that neither the OOV nor the context is highly reliable. We proposed a
method to address this issue. We temporarily add the phone sequence learned from the template
and the initial spelling guess generated by conversion model to the dictionary and LM. Then
by redecoding the user’s initial utterance which contains the OOV word, the system can get a
relatively accurate context.

For simplicity, we assigned a unigram for the OOV and set the LM score and the backoff score
high. Alternatively, one can find the class of the OOV and use a classbased LM. Theoretically
this should work better than simply assigning a unigram. However, additional conversational
turns are required and natural language understanding issues might be involved, which is beyond
this course.

2.2.5.2.3 Preliminary Results We recruited two participants (native English speakers). Each
of them interacted with the system twice, yielding found dialogs. Two out of these four dialogs
were successful — the system learns the OOV and recognizes this word in the future turns.
The template-based OOV instance provided reasonable detection of OOV region as well as the
fragment sequence. This led to near correct spelling output from the conversion model. For
example, in one successful dialog, the conversion model got the exact spelling which was “today”
from the initial sentence “I Xeroxed five copies today” by using the template. In this case,
the spell correction process would not have further improvement. However, when conversion
model produces erroneous spellings, the spell correction is useful. For example, in another
successful dialog, the conversion model generated “storrow” from the initial sentence “I am a
man of constant sorrow”. Even though the spell correction process with only the word as input
failed, with the context word “constant”, we got the corrected spelling “sorrow”.

2.2.6 Detect-and-learn Summary
From the experiments we conducted, we found that OOV detection and recovery is feasible via
applying fragment-hybrid language model. Among three individual fragment-hybrid systems,
we found that subword and graphone hybrid systems are better than the phone hybrid system for
both OOV detection and recovery.

2.3 Expect-and-Learn Out-of-vocabulary Words
Most speech recognition systems use closed-vocabulary [17, 21, 25, 91] and do not accommodate
OOVs, leading to recognition errors not only for the OOVs themselves but also the surrounding
context words [62]. The OOV-related recognition problem challenges applications such as voice
search or spoken dialog systems since OOVs are usually content words such as locations and
movie names, which carry the crucial information for the task success [17, 21]. Therefore, a
dialog system which can actively learn new words may improve the quality of the conversation.

We want our agent to effectively expand its lexicon guided by in-vocabulary words (IVs)
which, by definition, indicates the system’s domain of interest to a certain extent. For example, an
agent with IVs (or phrases) like NBA, Kobe and Chicago Bulls can probably talk about basketball.
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Another agent with IVs such as availability, meeting and calendar can possibly help schedule
meetings. However, IVs collected before the deployment of the system may not well cover all
possible words in the domain due to aforementioned reasons such as the emergence of new words
or the expense of exhaustive domain corpus collection. In this section, we describe our approach
to growing the domain vocabulary by incorporating words that are semantically related to the
IVs. For example, an IV (e.g., “Celtics”) may help the system learn an OOV (“Lakers”) if these
two words are closely related with each other. We introduce 1) web resources for learning the
semantic relatedness among words in Section 2.3.2 and 2) algorithms to expand the vocabulary
in Section 2.3.3. Then we describe two experiments in Section 2.3.4 to 1) compare these web
resources in terms of their effectiveness in learning new words and 2) demonstrate that with the
augmented vocabulary the system performs better in speech recognition and understanding.

2.3.1 Related Work
Out-of-vocabulary words (OOVs) have been studied in the context of speech recognition for a
long time. Conventional approaches enable the system to discover the presence of OOVs during
conversation [59, 60, 66]. The outcome is that the system would learn one new word at a time.
Arguably, approaches of this kind learn OOVs with reasonable precision since the user could a)
verify the correctness of the detected OOV region and b) provide additional information to aid
the learning (e.g., spelling or an isolated pronunciation of that word). However, large quantity
of OOVs may not be learned with limited amount of interactions. Therefore, different from this
well-known detect-and-learn approach, we enable our system to proactively expect and harvest
novel words from web resources ahead of time. We call this less intrusive approach expect-and-
learn. This method is inspired by [85] where they expand the vocabulary of a parser by adding
synonyms of the in-vocabulary words (IVs). We investigate the performance of adding new
words into the speech recognizer and we do not restrict new word candidates to just synonyms.
For example, given the existing word “dog”, in addition to “puppy”, we could also learn “cat”.
We developed two algorithmic heuristics to anticipate new words by leveraging publicly available
web resources.

2.3.2 Lexicon Semantic Relatedness
We use semantic relatedness to harvest novel words given a set of IVs. There are multiple ways
to measure the semantic relatedness between two words. Linguistic-based semantic relatedness
such as WordNet [48] encodes the assumption that words that have similar senses in common
are more related to each other. For example, (knock, punch) is more related to each other than
(knock, kick), since “knock” and “punch” use hand to touch an object while “kick” uses foot.
Another resource is Paraphrase Database (PPDB) from [23] where two words in language A are
considered related if they can be translated to the same word in language B.

On the other hand, the data-driven semantic relatedness approach has been developed to first
project a word to a vector space of fixed dimension, i.e., Word2Vec [47] and then directly com-
pute the relatedness between two word vectors. The underlying assumption is that two related
words share similar context. For example, (cat, dog) is more related than (cat, turtle) in the
context of “ is running in the room”.
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2.3.3 OOV Learning Procedure
In this part, we first discuss how to anticipate useful new words based on the training vocabulary.
Two algorithms are described in details. We then briefly describe how to add these newly-learned
words into recognition models such as lexicon and language model.

2.3.3.1 Anticipating New Words

The first algorithm (see Algorithm 1) learns the OOV words based on the most frequent IV words,
where we iteratively extract the most related OOV w∗ for each IV word v where v’s are ordered
by frequency in the training corpus, arguably indicating the importance of each v. On the other
hand, the second algorithm (see Algorithm 2) selects OOVs which have high relatedness with all
IVs (weighted by IV frequency). In other words, Algorithm 1 focuses on local relatedness while
Algorithm 2 cares about global relatedness.

A word relatedness matrix M is built based on the semantic relatedness introduced in Sec-
tion 2.3.2. Each entry in this matrix represents the similarity between an IV and an OOV: Mv,w

corresponds to the similarity between the (IV, OOV) pair (v, w). We use M.,w as the vector
representation of the similarities between all IVs and an OOV w.

Considering that web resources often have noisy information, the aforementioned data-driven
semantic relatedness may generate some noisy words. This issue can be attacked by filtering out
garbage words such as mis-spellings or words composed of special characters. In this work, we
consult a large external resource to threshold (T ) the word frequency for the learned words. We
found this helps the agent learn new words with good quality (see Section 2.3.4 for more details).

Algorithm 1 Local OOV Learning Procedure
Require: a set of IV words V , a set of OOV candidatesWv for each v ∈ V , the word relatedness

matrix M , a frequency function fD(v) indicating the word frequency v in domain-specific
data D;

Ensure: a set of newly-learned OOV words W ∗ ⊂ Wv1

⋃
Wv2 ...

⋃
Wv|V |

1: Initializing W ∗ = {}, V ∗ = {};
2: repeat
3: v∗ = argmaxv∈{V−V ∗} fD(v);
4: w∗ = argmaxw∈{W−W ∗}Mv∗,w;
5: W ∗ = W ∗ + w∗ and V ∗ = V ∗ + v∗

6: until |W ∗| > θ
7: return W ∗;

2.3.3.2 Adding New Words to Model

With the two algorithms above, we can learn a list of OOVs which are likely to occur in the future.
The current vocabulary can be expanded by adding these learned OOVs. The pronunciation of
acquired new words can be learned by looking up a bigger dictionary or applying letter-to-sound
conversion model (more details in Section 2.3.4).

14



Algorithm 2 Global OOV Learning Procedure
Require: a set of IV words V , a set of OOV candidates W , a word relatedness matrix M ,

a frequency function fD(v) indicating the word frequency v in domain-specific data D, a
frequency vector ~fD(V ) = [fD(v1), ..., fD(v|V |)]

T ;
Ensure: a set of newly-learned OOV words W ∗ ⊂ W

1: Initializing W ∗ = {};
2: repeat
3: w∗ = argmaxw∈{W−W∗}M.,w · ~fD;
4: W ∗ = W ∗ + w∗

5: until |W ∗| > θ
6: return W ∗;

In addition to expanding the vocabulary, the corresponding language model should be up-
dated to incorporate the OOVs. In this work, we use Kneser-Ney smoothing technique to better
estimate the probabilities of the unigrams of the learned OOVs. With the expanded vocabulary
and language model, we can perform decoding by using the same acoustic model to evaluate the
recognition performance.

2.3.4 Experiments
In this part, we first describe the data sets used in the experiments. Then we discuss two exper-
iments to investigate the expect-and-learn approach in the following aspects: 1) the capability
of discovering new words and 2) the benefit of learning new words in speech recognition and
understanding.

2.3.4.1 Data

To demonstrate the performance of our expect-and-learn approach, we examine the results on
the Wall Street Journal (WSJ) data set. Since dialog systems are often limited by the insufficient
training data, we constrain the training and testing sets in our experiments to be of the same size.
This makes the task difficult. In the experiments, we use WSJ 1992 20k-word and 1993 64k-word
speaker-independent Eval sets as the test set. We randomly sampled sentences from WSJ SI284
text corpus as our training and development data sets. The sizes (number of sentences) of the
training, testing and development sets are 546, 546, 300 sentences respectively. The development
set is for tuning the parameters.

In the first experiment, we use three different web resources (PPDB, WordNet and Word2Vec)
to generate ranked lists of semantically related words for IVs (e.g., “dog”) and harvest new
words from the ranked lists. For PPDB, we selected size-L. For WordNet, we compute the path
similarity1 between individual synset in WordNet with each synset of the IV (e.g., there exist
multiple entries of “dog” such as ’dog.n.01’ and ’chase.v.01’ indicating different word senses)
and keep the maximum one. For Word2Vec, we used the pre-trained vector representation2 and

1http://www.nltk.org/howto/wordnet.html
2GoogleNews-vectors-negative300.bin, https://code.google.com/p/word2vec/
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compute the cosine similarity between two words.
When preparing related words for each IV, we constrain the maximum number of related

words per IV to be 100 to reduce computation complexity. In the filtering process (introduced in
Section 2.3.3.1), we consult the word frequency estimated from a portion (360MB) of 1-billion-
word language modeling benchmark data3 to ensure the quality of the words learned from web
resources. We constrain a valid novel word to have occurred at least 1000 times. This could
remove 1) rare words and 2) noisy words such as mis-spellings (this is useful for data-driven
approach).

In the second experiment, to recognize and understand the speech containing OOVs, we
adopt standard WSJ GMM-HMM semi-continuous acoustic model. Word pronunciations are
automatically generated by LOGIOS Lexicon Tool4 based on CMU dictionary5. An external
vocabulary can be leveraged to compensate the training vocabulary coverage. We use the words
extracted from the off-the-shelf US English Generic Language Model6. Pocketsphinx is used
as our speech recognizer [26]. SEMAFOR, a state-of-the-art frame semantic parser is used for
language understanding [18].

2.3.4.2 Experiment 1: OOV Discovery Capability

To compare different learning algorithms with different resources, we measure the OOV rate on
the test set as with the training vocabulary augmented by the words learned through the expect-
and-learn algorithms. Without this learning mechanism, the OOV rate is 22.6%. Three web
resources (PPDB, WordNet and Word2Vec) have different characteristics in terms of finding
useful new words. As shown in Table 2.3, we can see that first WordNet has the best coverage of
IVs. This coverage is important since our algorithms use IVs as seeds to extract related words.
Secondly, even though we allow 100 related words to be prepared per IV, WordNet does not find
so many words. Path similarity does not exist between some word pairs. This is more severe
in PPDB. Word2Vec projects each word into a vector space, allowing computing relatedness
between arbitrary word pairs. Third, there is still gap between the rate achieved by the current
setup (discussed later in more details) and the oracle OOV rate which incorporates all the related
words (100 per IV). Among different web resources, Word2Vec has 1) the lowest OOV rate,
2) the lowest oracle OOV rate and 3) the biggest gap between 1) and 2). The lowest oracle
OOV rate may be due to the fact that Word2Vec covers much of the IVs (92.1%) and each IV
can generate more related words than the others (97.0 per IV). The remaining gap indicates that
useful new words are contained in the related words, requiring a more sophisticated algorithm to
be developed in order to mine those words. We show the top related words (phrases) in Table 2.4:
Word2Vec can learn more than synonyms. Examples of OOVs salvaged by Word2Vec are shown
in Table 2.5.

We implement a baseline which randomly incorporates new words from a (large) domain-
independent language model (US English generic language model). We compare our approaches
with the baseline. We can use the filtering mechanism mentioned earlier to threshold the min-

3http://www.statmt.org/lm-benchmark/1-billion-word-language-modeling-benchmark-r13output.tar.gz
4http://www.speech.cs.cmu.edu/tools/lextool.html
5http://www.speech.cs.cmu.edu/cgi-bin/cmudict
6https://sourceforge.net/projects/cmusphinx/files/
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Table 2.3: Oracle expect-and-learn OOV discovery capability for each web resource by using
training vocabulary alone. External (large) domain-independent dictionary is not used to supple-
ment the domain-vocabulary. Avg. Length: average number of related words per training word.
Minimum OOV rate is selected from both algorithms and with thresholding the occurrence of
the new words to T = 1000.

Resource IV Coverage Min. OOV Rate Oracle OOV Rate Avg. Length
Word2Vec 92.1% 10.8% 5.1% 97.0
WordNet 100.0% 14.6% 12.9% 77.0

PPDB 80.9% 15.1% 13.5% 2.0

Table 2.4: Examples of the top 5 related words (or phrases) for the word “yellow” with differ-
ent resources. In WordNet, “yellow” occurs mutliple times due to different senses. In PPDB,
“huang” (a common Chinese family name) and “yellow” in English both map to the same Chi-
nese character.

Rank Word2Vec WordNet PPDB
1 red yellow yolk
2 bright yellow jaundiced jaune
3 orange chicken wong
4 blue yellow huang
5 purple yellow lutea

imum frequency of learned words, yielding Fig 2.4a and 2.4b. We want to understand the fol-
lowing questions: 1) is there any benefit of using semantic relatedness to harvest new words? 2)
is there significant difference between two proposed algorithms? We also discuss other findings
such as the utility of the filtering process.

In Fig 2.4, we show the comparison between our approaches and the baselines. Fig 2.4a does
not use the word frequency filter while Fig 2.4b does. The baselines (solid lines without markers)
mildly reduces the OOV rate, intuitively suggesting that having more words in the vocabulary can
prevent OOV occurrence to certain extent. However, note that if these words are noisy, acoustic
confusion would be brought to the decoding process.

To address the question 1, we compare our approaches with the baselines in Fig 2.4a and
2.4b. We find that our approaches yield larger OOV rate reduction with less new words. This
means that the new words acquired by semantic relatedness are of better quality.

For question 2, we do not see big difference between Algorithm 1 (solid lines with markers)
and Algorithm 2 (dashed lines with markers) when filtering process is enabled. In fact, three
resources (PPDB, WordNet and Word2Vec) perform similarly at the early stage. But when the
filtering is disabled, PPDB benefits from Algorithm 2 while WordNet and Word2Vec works better
with Algorithm 1. The difference of OOV rate between two algorithms could be as much as 10%
in absolute. Since Algorithm 1 limits the number of new words can be learned per IV, for certain
IVs the system cannot find valid new words in their lists of related words — those related words
either are IVs themselves or have been learned from previous IVs already. Thus, as we can see
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Table 2.5: Examples of OOVs in the test set salvaged by using Word2Vec on source IVs with
Algorithms 1. For example, from the IV “American”, the algorithm learned the word “British”
which occurs in the test set.

Salvaged OOV Source IV
structure structures

fell falling
cost costs
less than

British American
need should
did not

above below
February month
afternoon day

in both Fig 2.4a and Fig 2.4b, the solid lines corresponding to Algorithm 1 are in general shorter
than the dashed lines corresponding to Algorithm 2. This would limit Algorithm 1’s capability
to further reduce OOV rate.

We can see the slopes are much steeper when the filter is enabled. This shows the effec-
tiveness of the filtering process and aligns well with the conventional and intuitive practice that
adding frequently used words provides better coverage. However, as we can see from Fig 2.4b,
our approaches further improves this intuitive practice. Note that, enabling the filtering mech-
anism can ensure the quality of learned words, but would restrict the quantity of these words.
Compared with Fig 2.4a, PPDB’s total number of words generated by both algorithms are re-
duced by half if the filtering is used. WordNet also suffers mildly. This is probably due to
the fact that PPDB and WordNet cannot generate enough words related to IV, compared with
Word2Vec (see Table 2.3 for more details).

Table 2.6: Breakdown of the test set OOVs. Salvaged OOVs are harvested by using Word2Vec
with Algorithm 1 on full training vocabulary. External dictionary is not used to supplement the
training vocabulary. Filtering is not enabled. Salvageable OOVs exclude those salvaged ones.
Top 10 frequent test set OOVs are shown as examples. “OOV Count” is based on word types.

Condition OOV Count (pct.) Examples
Baseline 1399 (100%) structure, accounting, fell, seoul,

ciba, station, cost, research, yuk
Salvaged 513 (37%) structure, accounting, fell, seoul,

cost
Salvageable 536 (38%) research

Non-salvageable 350 (25%) ciba, station, yuk

Nevertheless, as we can see from Table 2.3 and 2.6, even if all related words (no more than
100 per IV) in Word2Vec resource are added to the training vocabulary (no additional generic
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Figure 2.4: OOV rate drops when new words are learned through different resources. OOVs
are harvested on full training vocabulary (2853 entries). For algorithm 1, we allow at most 1
new word to be learned from an IV. For algorithm 2, the maximum number of OOVs allowed
to be learned is no more than the number of IVs. For Fig 2.4a, external corpus is not used for
thresholding the minimum frequency of the learned words. For Fig 2.4b, external corpus is used
and the minimum frequency of the learned words is T = 1000.
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vocabulary is used), 5.1% of the word tokens (350 word types accounting for 465 tokens) in the
test set are still OOVs (i.e., non-salvageable OOVs). Note that although we could have included
more related words for each IV, we suspect that those words in the tail of the ranked list may not
be useful since the relatedness goes down. Additional external resources may be leveraged such
as the aforementioned generic dictionary.

To compare the expect-and-learn with the conventional detect-and-learn approach, we show
isolated dark circles in Fig 2.4, referring to the OOV rate in the test set if all OOVs in the
development set can be detected and correctly learned, i.e., an oracle upper bound for detect-and-
learn. As we can see from [59], detection and recovery are not perfect. Although Fig 2.4 shows
that the oracle performance of detect-and-learn is better than (however close to) our expect-
and-learn approaches, the number of new words detect-and-learn can acquire is limited by the
number of OOVs in the previous interactions, not to mention the potential intrusion if the user
has to be involved. We believe that expect-and-learn complements detect-and-learn and both
contribute to adapting spoken dialog system’s vocabulary.

Table 2.7: The recognition and understanding performance of OOV learning procedures.
Word2Vec is used as the resource to harvest new words. Filtering is enabled. Domain (D):
training IVs are from domain corpus. Generic+Domain (G+D): training IVs and learned words
are further combined with a generic vocabulary.

Condition Vocab Size OOV Rate
Recognition Understanding

WER P R F

Domain

(a) Baseline 2854 22.6 49.9 62.6 52.3 57.0
(b) Alg 1 5394 11.7 41.6 62.4 68.7 65.4
(c) Alg 2 5394 11.6 42.0 61.8 68.8 65.1
(d) Oracle 4254 0.0 23.5 81.4 80.5 80.9

Generic+Domain

(e) Baseline 20175 3.6 21.7 80.2 84.4 82.2
(f) Alg 1 22599 3.0 20.3 81.7 84.8 83.2
(g) Alg 2 22599 3.0 20.4 81.6 84.9 83.2
(h) Oracle 20431 0.0 15.1 86.9 87.3 87.1

2.3.4.3 Experiment 2: Benefit of Learning New Words

To investigate the impact of the acquired new words on speech recognition, we compare the word
error rate (WER) before and after performing the expect-and-learn. There are two baseline se-
tups. First, we constrain the model by building the vocabulary and language model purely based
on the training data only (denoted as D). Second, we relax this hard constraint by interpolating
the current vocabulary and language model learned on the training data with a generic model
(the US English generic language model mentioned above). This is denoted as G+D. On top of
both baselines, we use expect-and-learn to harvest new vocabulary and adjust the lexicon and
language model accordingly. Note that even though G+D has external dictionary, we solely rely
on the training vocabulary to learn new words, since the generic dictionary does not tell us the
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nature of the domain. In this experiment, we used Word2Vec resource as an illustration. The
results are shown in Table 2.7.

The first setup (D) is shown in rows (a)-(d). Row (a) is the baseline result, which only takes
domain training data for model training, and performs poorly in recognition due to the limited
domain-specific training data. Rows (b) and (c) apply Algorithm 1 and 2 to learn OOVs respec-
tively. It is shown that after learning OOVs, the OOV rates significantly decrease and recognition
performance is also improved. Comparing between these two algorithms, their performance is
close to each other, which aligns well with the finding from Figure 2.4b. To examine the po-
tential of the OOV learning technique, row (d) shows the oracle results by adding all OOVs in
testing data into the vocabulary and language model. The performance can be referred to as the
upper bound, where the WER can be decreased from 50% to around 24%, showing the promising
potential of OOV learning techniques. However, as indicated in Table 2.3, expect-and-learn still
has its limitation that not all OOVs can be found from the related words of IVs — resulting in the
remaining 5.1% OOV rate if we do not use external resource such as a large generic dictionary.

In the second setup, we interpolate the US English generic language model with the domain
language model to analyze the effectiveness of the learning process, as shown in rows (e)-(h).
Similarly, it is found that applying the OOV learning approaches improves the OOV rate and
the recognition performance compared with the baseline. Also, the oracle result (row (h)) still
shows the potential room for improvement. In G+D condition, the US English vocabulary (about
20K words) already covers most of the words in the test set (yielding only 3.6% OOV rate in the
baseline). Our learned OOVs, which are outside the generic vocabulary, further improve the vo-
cabulary coverage. As a result, recognition performance is also improved. We believe in a more
mismatched situation where dialog system developers have to deal with limited domain data,
together with a mismatched generic model, the improvement would be even more noticeable.

In addition to the recognition performance, we also examine the understanding performance
after learning OOVs. We conduct semantic parsing on all utterances and extract the outputted
semantic frames by SEMAFOR parser. The reference semantic frames are generated by this
parser using the manual transcripts. By comparing the outputted semantic frames between the
manual transcripts and the decoded results, precision, recall, and F1 measurements are reported.
The results are shown in the last three columns of Table 2.7.

It is obvious that understanding performance can be affected by OOVs. For rows (b) and (c),
where a system is built with limited domain data, the understanding performance after learning
OOVs becomes better (from 57% to 65% on F1). The oracle performance achieves even 81% on
F1, showing that it is very important for a system to adapt its vocabulary so as to ensure decent
language understanding. The similar trend can be found in the rows (e)-(h). They both suggest
that the OOV learning procedure may enable dialog systems to better understand speech input.

2.3.5 Expect-and-Learn Summary
We described our approach to anticipate novel words based on the training vocabulary so as to
reduce the occurrence of out-of-vocabulary words. We conducted experiments to investigate and
compare different resources and algorithms. We found that having this capability to learn new
words ahead of time does reduce OOV rate, yielding better speech recognition and understanding
performance.
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2.4 Conclusion

In this chapter, we designed and implemented two approaches to learning out-of-vocabulary
words. In general, the detect and learn and expect and learn can effectively reduce the OOV
rate and thus improve recognition and understanding performance. Detect and learn can be
applied during the conversation and can take advantage of human knowledge by using dialog to
elicit better pronunciation or orthography of the detected OOV words. Expect and learn is an
offline learning method and can harvest a batch of semantically related words into the current
model. We believe that by adopting these techniques, dialog systems/agents can actively learn
novel words and thus effectively preventing OOV-related recognition/understanding errors in the
future conversation.

2.5 Possible extensions

2.5.1 Combination of two approaches
Detect and learn should be combined with expect and learn in real life, since people naturally
apply these two methods to learn new words. Detect and learn could provide insight into the
weakness or bottleneck of the current lexicon. That would help expect and learn to target what
words to acquire. For example, during the conversation, if the system detected a few unknown
words such as “NFL” or “Steelers”, it actually indicates that the agent cannot handle words
related to “American football”. Given that hint, the agent could expect that users may talk about
this sports in the future. Thus, words related with “NFL” or “Steelers” should be harvested.

2.5.2 Topic level similarity in expect and learn
Moreover, the agent may need to abstract word-level similarities to topic-level ones. Currently,
novel words close to in-vocabulary words are incorporated. In other words, given a set of words,
the system would find another set of words. It would be beneficial if the agent can fetch a set of
new words given a topic name, e.g., “football” or “food”. A use case would be when the user
realizes the bottleneck of the system, he could say “learn more words about football”. This is
more feasible and direct than listing a set of words, when the agent would like to involve human
knowledge.

2.5.3 OOV learning for dialog system
In this chapter, we demonstrated the feasibility for the agent to learn new words so that it can
recognize it from speech input in the future. However, for the rest of the dialog pipeline, it is
still an issue to use the newly learned words. As shown in Fig 1.1, suppose “New Orleans” (in
red) is the OOV word (phrase), the natural language understanding component needs to under-
stand that it could belong to “destination” category or word class. Thus, the dialog manager can
interpret the input and store the extracted information — destination. If this “destination” slot
is predefined by the developer, the problem becomes to relate the new word with this existing
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slot. Possible techniques include measuring the semantic relatedness between word and slot,
where the slot is represented by a set of words collectively, e.g., (“New York’, “Pittsburgh”, “San
Francisco”). Consequently, in natural language generation (NLG), by using template-based gen-
eration approach, the system just need to use “New Orleans” when the “destination” slot occurs.

However, it is also possible that the newly acquired word does not belong to any of the
predefined concepts/slots. Thus, the problem becomes creating a concept for the dialog system
on the fly. Using the example above, assuming “destination” is not defined at all, the system
needs to create a concept with a label. The label could be arbitrary or meaningless.
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Chapter 3

Cloud ASR Adaptation

3.1 Introduction

Large-vocabulary cloud-based speech recognizers are widely used because of their stable per-
formance across environments, domains and users. For example, the Google recognizer [67] is
commonly used for Android application development. However, specific domains or users have
their own language behavior which cannot be precisely captured by cloud-based recognizers
[50]. Intuitively, adaptation to domains, users or environment should improve system perfor-
mance [6, 34, 84]. In a common use case, smart phones can collect personalized data and use
it for adaptation. But such adaptation data do not appear to be practically communicable to a
cloud-based speech recognizer. Some companies do not offer this customization service while
others do so at a cost that is prohibitive to the individual user.

We propose an alternative scheme that uses a local recognizer capable of dynamic adaptation
in combination with cloud ASR. The advantage of doing so is to exploit the domain/user adapt-
ability of the local ASR while using the large coverage provided by cloud ASR. This combination
potentially can compensate for the individual weakness of the respective recognizers.

Previous research has examined combining domain-/user- independent Google ASR with
domain knowledge to improve recognition by filtering Google results with domain constraints at
the word or phonetic level [81]. This approach post-processes Google recognition hypotheses but
requires a defined domain and assumes a set of restrictions. Anything beyond this defined domain
is not allowed. In addition to the difficulty of precisely defining a domain language, out-of-
domain sentences will still be encountered, especially when switching among voice applications
via speech. Our proposed method adapts to the domain/user dynamically and out-of-domain
hypotheses are not excluded.

In speech recognition, the language model is used to constrain the set of utterances that can
be recognized. Two statistically-based paradigms have traditionally been used to derive prior
probabilities of a word sequence: finite state grammars and n-gram models [5, 28, 49]. Rule-
based finite state grammars are reported to perform better than n-gram models on in-grammar
sentences but performs considerably worse on out-of-grammar utterances [32]. Integration of
these two models has been investigated previously and has been shown to overcome individ-
ual model weakness [5, 45]. In this work, we train probabilistic FSG and SLM models from
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the same data and compare their performance given language model adaptation under different
circumstances.

Model interpolation can be used for adaptation [6] by training separate models (an adapted
one and background one) and then combining the two models. Alternately, an engineer can merge
the adaptation corpus and background corpus together and train a single model. However, such
background model/corpus is expensive and time-consuming to create and run locally on smart
devices. Cache-based language model adaptation has also been used [29]. This method works
when the cache size is sufficiently large—implying that a long discourse history is needed. In real
life situations, especially in smart device voice applications, interactions with a given application
will usually be short in length. And similar to model interpolation, this approach still requires
running a large vocabulary recognizer locally on the device.

In the current work, we use collected domain- /speaker- dependent data to directly build a
local language model and skip the step of building/adapting a background model. A cloud-based
recognizer is used as the background model in combination with local ASR to improve overall
recognition performance. We consider language adaptation from three aspects: 1) What form of
the local ASR is better suited in a given use case? 2) How much improvement can combining
local ASR with cloud-based ASR provide and how can such improvement be achieved? 3) How
much data is needed to observe useful adaptation?

The remainder of the chapter is organized as follows. Experiment setup is discussed in Sec-
tion 3.2. FSG and trigram SLM models are compared in adaptive performance in Section 3.3.
Individual model combinations are evaluated in Section 3.4. The necessary amount of adaptation
data is assessed in Section 3.5.

3.2 Experiment Setup

We conducted systematic evaluation using data collected from a telephone-based system fea-
turing a small number of calling-oriented applications. A user could ask the system to call a
particular individual, call a certain number, redial a previous number, listen to voice mail, etc. In
total, 1761 utterances from three native English speakers were collected. Manual transcriptions
were made for the material. During data collection, users were shown animations of the tasks to
perform, as opposed to written instructions, so as not to restrict the form of their language and
to allow for their personal style in specifying names and actions. The number of utterances from
each user was 556, 599 and 606 respectively. The total vocabulary size for the 1761 utterances
was 195.

Compared with running a large vocabulary recognizer, running locally adapted recognizers
is much faster. For example, using the same decoder on a workstation, we achieved 0.35xRT
with large vocabulary models (Sphinx US English Generic language model and dictionary1).
But running with the locally trained recognizer we achieved 0.01-0.02xRT.

We used PocketSphinx0.8 as the local recognizer. A trigram model was trained using the
SRILM [73] toolkit, with default settings. A probabilistic FSG was trained using OpenFST [1].

1https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%
20Language%20Models
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Figure 3.1: Data split on the training set for comparing local recognizers

We used Google ASR2 as our cloud-based recognizer. We used the same acoustic model for
FSG and trigram SLM — the Sphinx US English Generic Acoustic Model. The dictionary was
generated using the LOGIOS Toolkit3 according to the vocabulary of the collected corpus.

3.3 Local Recognizer Comparison

We ran 10-fold cross-validation on 70% of the 1761 utterances to compare FSG and trigram SLM
performance. As illustrated in Fig 3.1, 90% of the full training set was used for training FSG
and SLM models and the remaining 10% was for validation. We created two conditions with low
and high out-of-language rates (OOL rates) respectively. Here, OOL rate indicates how often the
testing sentence has been seen by the model during training. For example, between {“Nice to
meet you”, “It is nice to meet you”}, if the language model has only seen the sentence “Nice to
meet you” during training, the OOL rate is 50%. Therefore, evaluation was performed on these
two conditions in each fold respectively. Average word-error-rate (WER) across the 10 folds was
reported.

Fig 3.2 shows the performance of each model when the OOL rate is low (Fig 3.2a) or high
(Fig 3.2b). We first focus on the “overall” condition, which corresponds to the average WER
on the full low-OOL and high-OOL data sets in Fig 3.1. We can see that when the OOL rate
is low, both FSG and trigram SLM significantly outperform cloud ASR (p < 0.01) and FSG is
significantly better than trigram. However, when fewer sentences are seen (high-OOL), trigram
significantly outperforms the other two (p < 0.01). We can see that the performance of both
SLM and the cloud ASR is more stable between low and high OOL conditions, while FSG is
jeopardised by the OOL sentences.

To confirm the findings above, we then separate the evaluation data into in-language (OOL
rate = 0%) and out-of-language (OOL rate = 100%) parts, essentially two extremes for OOL

2http://www.chromium.org/developers/how-tos/api-keys
3http://svn.code.sf.net/p/cmusphinx/code/trunk/logios/
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(b) Validation Set (Average OOL rate = 34%)

Figure 3.2: 10-fold cross-validation on individual system performance (WER)

rate. From Fig 3.2 we find that for the in-language data, both FSG and trigram SLM perform
significantly better than cloud-based ASR (p < 0.01). FSG is better than the SLM (significantly
better on the full training set). This aligns with the well-known property of FSG that it handles
seen sentences well. However, for those out-of-language sentences, FSG performance declines
drastically. The domain-specific trigram model is better than the cloud ASR. Observations above
indicate that choosing an appropriate local language model may depend on the expected out-of-
language rate: domains with very limited language variations may benefit from a FSG model.

Unsurprisingly, we conclude that in a small domain, domain/user dependent local language
models will benefit speech recognition accuracy compared with cloud-based recognition. FSG
is more suitable when OOL rate is low. Otherwise, trigram SLM is more suitable.

3.4 Combine Local Recognizer with Cloud-based Recognizer

As shown above, local recognizers can improve system performance significantly when adapted
to the domain and users. However, by looking into the errors, when OOL rate is high (e.g.,
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Figure 3.3: Data split for combining local recognizer with cloud recognizer

the validation set in Section 3.3), the majority of the errors (around 80% for FSG and 50% for
trigram) are from word sequences not seen in training data. When OOL rate is low (e.g., the
training set in Section 3.3), errors related with out-of-language sentences still contribute around
30% of the total errors for FSG. Fortunately, the cloud-based ASR has better performance in this
part because of its high coverage: 40% of its errors are from OOL sentences when OOL rate is
high and less than 5% of its error are from OOL sentences when OOL rate is low. Therefore,
combining the local recognizer with the cloud-based one is intuitively promising.

In this experiment, we combined local recognition with cloud-based recognition to quantify
the benefit. Our goals were: 1) to gauge the potential of system combination if a correct hypoth-
esis selection can be made between the local ASR and the cloud-based ASR (an oracle baseline);
2) to build a classifier, using readily available features generated in both recognizers to pick the
most likely correct hypothesis.

We segmented the full data into three parts as shown in Fig 3.3: 50% of the data was used
for training FSG and trigram SLM. The remaining 50% data was further divided into 20% and
30% for testing. Similar to the practice earlier, we evaluated the trained language models on two
conditions: low-OOL and high-OOL conditions. For the low-OOL condition, we combined the
LM training data and the 20% portion of the testing data as the evaluation set. For the high-OOL
condition, we used the 30% portion of the testing data alone.

Individual system performance is shown in Table 3.1 with WER (%) is shown next to system
names. The OOL rate for the low-OOL condition is 11% and 38% for the high-OOL condition.
Among individual systems, the trigram adaptive system performs the best. Its WER is 55.4%
less than Google WER in relative in the low-OOL condition and 42.6% less than Google WER
in the high-OOL condition. FSG performs poorly when the OOL rate is high. Google ASR does
not show much difference across between the two conditions (as should be expected).

Table 3.1: Ranked performance of individual systems

Rank WER (OOL rate = 11%) WER (OOL rate = 38%)
1 Trigram (7.4) Trigram (10.1)
2 FSG (11.0) Google (17.6)
3 Google (16.6) FSG (27.2)
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Table 3.2: Ranked oracle performance of system combinations

Rank WER (OOL rate = 11%) WER (OOL rate = 38%)
1 FSG+Trigram+Google (2.3) FSG+Trigram+Google (4.4)
2 FSG+Trigram (3.3) Trigram+Google (6.0)
3 FSG+Google (3.6) FSG+Trigram (6.4)
4 Trigram+Google (4.5) FSG+Google (8.6)

We investigate combinations of the three individual systems to evaluate potential improve-
ment. Three two-system combinations (FSG + Google, Trigram + Google, FSG + Trigram) and
one three-system combination (FSG + Trigram + Google) are considered. In a real-life use case,
depending on the availability of computing power and Internet connection, some individual or
combination of the individual systems can be selected according to circumstance.

To combine individual systems, those examples on which recognizers do not agree with each
other are labeled as fsg, trigram or cloud depending on which recognizer produces the lowest
WER compared with the reference transcription. We use logistic regression from SKLEARN [55]
to train a classifier for the two-system combination. For combining three individual systems
together, we use K-NEAREST. The classifiers are based on basic features: 1) the number of
words in each system’s hypothesis; 2) utterance acoustic score (accessible from FSG and SLM
systems though not from Google ASR). We show oracle WER in Table 3.2. We also report WER
achieved using the basic classifier in Table 3.3. In both tables, systems are ranked according to
WER (shown next to system name). Systems which outperform all the individual systems within
the combination are italicized.

By comparing the oracle results of system combinations (Table 3.2) and individual systems’
performance (Table 3.1), we can see that potentially, system combinations will outperform each
individual systems. Combining local FSG, trigram with cloud-based recognition provides the
best potential recognition accuracy. From Table 3.2 we can also see: 1) combining more informa-
tion sources (recognizers) improves the performance; 2) when the OOL rate is low, combinations
with local FSG as one component is better than those without FSG since the performance for in-
language utterances is most important; 3) when the OOL rate is high, combinations that include
the trigram model should be preferred since the adapted trigram demonstrates its advantage in
handling both seen and unseen utterances (as described in Section 3.3).

Practically, as shown in Table 3.3, all system combinations achieve lower WER than Google
ASR by itself regardless of the amount of OOL utterances. When the OOL rate is low, all
combinations beat individual systems comprising the combination. When the OOL rate is high,
all combinations show at least 12% relative improvement from Google ASR WER. Trigram
combined with Google shows 5% relative improvement compared with trigram alone and 46%
less than Google ASR alone.

To summarize, we find that system combinations have the substantial potential in reducing
WER compared with individual systems. Combining local ASR (FSG or trigram) with cloud-
based ASR can practically (without sophisticated feature engineering) be used to adapt systems
to specific domains or speakers without losing the coverage of large vocabulary cloud-based
recognizer.
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Table 3.3: Ranked performance of system combinations using basic features

Rank WER (OOL rate = 11%) WER (OOL rate = 38%)
1 FSG+Trigram+Google (3.4) Trigram+Google (9.5)
2 FSG+Trigram (5.0) FSG+Trigram+Google (11.1)
3 Trigram+Google (6.5) FSG+Trigram (11.9)
4 FSG+Google (6.9) FSG+Google (15.5)

3.5 Required Data for Adaptation

After observing the benefits of combining local ASR with cloud-based ASR as an adaptation
framework, the next question we want to address is how the amount of adaptation data governs
improvement. In this experiment, we vary the amount of adaptation data available for building
FSG and trigram models and note performance. The ratio between the size of the training set
and the size of the testing set is from 0.5:1 to 3:1, reducing the OOL rate from 73% to 29% in the
testing set. Recognition performance on the testing set (439 utterances) is reported. Similar to
the previous section, we also report the potential improvement (oracle) of combining individual
systems. Results are shown in Fig 3.4.

We can observe that when more data is available, individual local systems (dashed lines with
markers) perform better and oracle performance of system combinations also improves (solid
lines). The two horizontal dashed lines without markers are WER for Google ASR (higher one)
and half of its WER as reference baselines. As we can see, for individual systems, FSG WER is
approaching Google performance as more training data becomes available. On the other hand,
the trigram model beats Google WER even with a small amount of training data (a little more
than half of the size of testing data). Moreover, as additional training data is accumulated, trigram
performance actually reaches half of the Google WER.

As we can see from the figure, combining trigram with Google (noted as G in the figure)
improves faster than the other two combinations (FSG + Google and FSG + trigram). When
more data is accumulated, it can reach as low as 30% of Google WER. With training data whose
size is only half of the testing data, combining trigram with Google can potentially achieve
half of Google WER, while the other two combinations require either equal size of the testing
data (FSG + trigram) or more (FSG + Google) to potentially achieve the same performance.
Combining three systems together is even more powerful potentially. It can reach as low as 20%
of Google WER.

3.6 Conclusion

A real-life limitation of cloud-based speech recognition is the drop in performance observed
in application domains that introduce specific vocabulary (for example, personal names) and
language use patterns. We investigated a potential solution to this problem that involves sup-
plementing cloud recognition with specialized recognizers that are directly adapted to the do-
main/speaker. We find that rather modest amounts of adaptation data are sufficient to produce
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Figure 3.4: System performance (WER in log scale) on different amount of adaptation data

better performance. This suggests that in some use cases, in particular, personal devices with
limited computation, a combination of specialized recognition residing on the device with cloud
recognition (when available) may show superior performance in comparison with any single rec-
ognizer. We should note that the hypothesis-selection classifier we implemented, even in its
simple form, leads to better performance. We expect a more systematic investigation of combi-
nation strategies will yield even better performance: for example, word-level combinations can
produce better performance (as we are observing in other domains).
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Chapter 4

Intention Adaptation

4.1 Introduction

Consumers interact with smart devices such as phones, TVs, or cars to fulfill many tasks. Re-
searchers have built numerous academic and commercial systems to handle specific tasks, such
as restaurant search [24, 89], event scheduling [53], transit information [61, 75] and so forth.
However, a user may use domains such as these collectively to execute higher level intentions:
to plan an evening event, for example, requires first finding a restaurant, then booking an event,
and, at last, checking the bus schedules to a restaurant or an event afterward. Unless a specific
app (dialog agent) is built to handle higher level user intentions, which are themselves comprised
of complex combinations of individual domain-specific tasks, the user has to mentally arrange
the appropriate set of domains themselves and carry forward information from one domain into
subsequent planning stages, across domain boundaries.

Therefore, people have been studying multi-domain dialog systems in the past [13, 14, 38,
43, 51, 63]. These systems host several dialog applications and select a specific one for each
speech input. However, such systems are not aware of the user’s high-level intentions, nor the
potential relationships between different domains. As a consequence, these systems can only
passively support cross-domain interactions, i.e., rely on the user to manually transit to the next
domain and mentally maintain a shared context across domain boundaries.

Fig 4.1 shows some obvious drawbacks to this approach. First, the agent may miss the
opportunity to provide timely assistance to users. For example, if the agent knows that the user
actually wants to plan a dinner, it could offer to send messages to friends about the arrangement
right after a restaurant is reserved. Second, the conversation between the user and the agent is
not efficient. The user may need to input the same information a few times in separate domains.
For example, the system first helps the user to find a restaurant. But later, during NAVIGATION

domain, it would ask for the destination again since it does not know there exists a relationship
between slots in RESTAURANT and NAVIGATION given the current user intention. Redundancies
in the process of transferring information from one domain to another are unnecessary. Third,
the agent cannot provide the user with any insight into the current state of its understanding
about what the user desires in term of the complex intentions. The user would not know if the
agent indeed understands what it is asked to do. As dissonance accumulates over time during
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S: What can I do for you? 

U: Could you arrange a dinner for me 
and my friends? 

S: Sorry I don’t understand that. What 
can I do for you? 

U: Can I book a table for three in Täkō 
downtown for this Friday? 

… 

S: OK. What can I do for you next? 

U: Show me the bus from here. 

S: Where is your destination please? 

U: Täkō downtown Pittsburgh. 

… 

S: What should I do next? 

U: Send the bus route to Carrie and 
Peter. 

S: OK. Sending the following message 
to Carrie and Peter: “the bus route”. 

A: What can I do for you? 

U: Could you arrange a dinner for me 
and my friends? 

A : What kind of food do you prefer? 

U: Mexican? 

A : How about Täkō? I can book a 
table for you. 

U: Sounds good! Can I take a bus 
there? 

A : 61 A/B/C/D can take you there. Do 
you want to send this to your friends? 

U: Great! Send it to Carrie and Peter. 

A: OK. The bus route 61 has been 
sent. 

Figure 4.1: Left: example dialog between user (U) and classic multi-domain dialog system (S);
Right: example dialog between user (U) and human assistant (A).

the conversation between the agent and the user, the output becomes increasingly less likely to
be what the user needs and errors become more difficult to repair. In short, without knowing the
user’s high-level intention, the agent will perform poorly.

In response to this, we conducted research to investigate how an intelligent agent can rec-
ognize a complex intention from user speech input and provide assistance at the level of inten-
tion [77, 78, 79]. Our research demonstrates that our intelligent agent can 1) understand the user’s
abstract and high-level intention-embedded language; 2) accurately predict the user’s follow-up
actions; 3) communicate with the user via language at the level of intention, above the level of
individual task domains.

In this chapter, we first discuss the related work in Section 4.2. Then our data collection
and modeling techniques will be described in Section 4.3 and 4.4, followed by user studies as
component-wise and end-to-end evaluation. We focus on 1) high-level intention understanding
in Section 4.4.1 and 2) context-based domain prediction in Section 4.4.2. Possible extensions
will be provided at the end.

4.2 Related Work

It has been long since the first dialog framework was developed so that domain experts can
build their own domain-specific dialog applications [12, 36, 40]. Developers conventionally
build dialog apps to handle conversation in specific domains such as restaurant selection, bus
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scheduling and navigation [24, 53, 61, 75, 89]. People have been working on extending the
dialog systems to handle multiple domains. However, most of the support for transitioning from
one app into another and for transporting information from one app into another is handled
passively by current technologies, selecting appropriate domains for current user input regardless
of centralized or distributed setup [14, 37, 38, 43, 51, 63, 65]. A domain selector (classifier)
plays an important role in the spoken language understanding (SLU) component to associate the
current speech with one domain. Speech input is passed along to the recognized domain’s dialog
managemer. As a result, the user still has to verbally initiate/authorize a domain transition.
Moreover, the system does not have an understanding of the user’s high-level intention, thus
missing the opportunity to offer timely assistance.

Besides the conventional domain selection method, some domain is programmed to support
transition into another explicitly. For example, although not in the context of spoken dialog
systems, YELP (restaurant domain) actually allows users to use MAPS if some navigation infor-
mation is needed. This approach is promising only if all potential transitions are programmed in
advance. This is time-consuming and thus not scalable. Moreover, it cannot adapt to the user’s
personal needs.

Researchers have found that users conduct a sequence of actions for specific purposes. For
example, when browsing the Internet, a sequence of queries (e.g., within a window of time)
may contribute to one common interest (information need) [30, 71]. Similarly, we observe that
people may use a sequence of apps which handle different domains to accomplish an intention
when interacting with smart devices. This will be discussed in more details later.

4.3 Data Collection
We designed a user study to investigate how human users arrange multiple apps together in their
daily lives, and also to understand how they would interact with an intelligent agent via speech
instead of conventional touch screen. The agent is capable of handling the domains represented
by the apps. To collect data for understanding the high-level intentions, we propose a process
to: 1) record users’ daily app usage by a mobile app; 2) elicit users’ knowledge about the nature
of those high-level intents; and 3) reenact the intents via speech interactions by a wizard-of-oz
system.

In the rest of this section, we first describe the data collection procedure including the logging
interface (Section 4.3.1) and user annotation (Section 4.3.2). We then introduce a wizard-of-Oz
setup to let the user reenact the interaction through speech in Section 4.3.3. Finally we provide
statistics of the corpus we collected in Section 4.3.4.

4.3.1 App Recording Interface

We adopted an Android app1 that logs each app invocation as an event, together with the date/time
and the phone’s location (if GPS is available). Episodes were defined as a sequence of app invo-
cations separated by periods of inactivity; based on pilot data we determined that 3 minutes was

1This app was developed by Troy Hua and is available at https://github.com/troyhua/
AndroidLogApp
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Figure 4.2: Example of activities grouped based on location.

a good minimum duration for episodes in smart phone. Time-based segmentation of a sequence
of events is widely used in search query chain analysis [71].

4.3.1.1 Privacy Control

Logs were uploaded by participants on a daily basis, after a privacy step that allowed them to
delete episodes that they did not wish to share. As shown in Fig 4.2, activities occurring near each
ohter in time were grouped together first. Each such group was represented by an address. The
participant could expand a group to see further details such as the apps involved (e.g., GMAIL,
WECHAT, etc in Fig 4.2). Participant can swipe this group to remove it from the log if there is any
privacy concern. We were informed by participants that they made use of this feature. However,
we did not solicit further information about the frequency of use or categories of events. Only
information explicitly passed by the user was uploaded.

4.3.2 Task Annotation
Participants were invited to come to our lab on a regular basis (about once a week) to annotate
logs and describe the nature of their smart phone activities. Uploaded data was formatted into
episodes. Participants were presented with their own episodes with meta-information such as
date, time, and location, to aid recall (see Figure 4.4). They were then asked to group events
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Figure 4.3: Annotation interface without user annotation

Figure 4.4: Multi-app annotation example; time and location are in red; constituent apps are
blue. Users link apps into sequences corresponding to a particular activity (orange link).

(apps) in each episode into high-level intention(s). We observed that episodes could include
several unrelated intentions since users could multi-task. Participants were asked to produce
two types of annotation, with the brat tool [72] configured for this project. A screen-shot of 4
episodes before user annotation is shown in Fig 4.3.

1. Task Structure: link applications that served a common goal/intention.

2. Task Description: type in a brief description of the goal or intention of the task.

One example of user annotation is shown in Fig 4.4. The user first linked four apps (GMAIL,
BROWSER, GMAIL and CALENDAR) together since they were used for the intention of schedul-
ing a visit to our lab. The user then wrote a description “scheduling LACS session”. As we
observed in the collected data, some of the task descriptions are detailed. In other words, such
descriptions themselves propose an app sequence (e.g., “took a picture of my cat and then sent
to XXX”). However, many of them are very abstract, such as “look up math problems” or “send
picture message”.

4.3.3 Task-Related Spoken Dialog
Participants were presented with tasks that they had previously annotated, including the meta-
information (date, location and time), their task descriptions, and the apps that had been grouped
(Meta, Desc, App lines in Fig 4.5). They were then asked to use a wizard-of-Oz system to
perform the task using spoken language. The experiment took place in a lab setting. There was
no effort to conceal the wizard arrangement from the participant. An assistant (a 21-year-old
male native English speaker) interacted with the participant and was in the same space (albeit
not directly visible). The wizard was instructed to respond directly to the participant’s goal-
directed requests and to not accept out-of-domain inputs. The participants were informed that it
was not necessary to follow the order of the applications used on the smart phones. Other than
for remaining on-task, we did not constrain their utterances.

The wizard can perform very simple tasks such as “finding a restaurant using the browser”,
“composing a text message”, “pointing and shooting a picture”, etc. When asked to take some
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TASK59; 20150203;Tuesday;10:48am Meta 

Connected to Bluetooth speaker Task Description 

com.android.settings -> com.lge.music Apps Used 

Ready. 
Connect my phone to Bluetooth speaker. 
Connected to Bluetooth speaker. 
And play music. 
What music would you like to play? 
Shuffle playlist. 
I will play the music for you. 

1W :

2W :

1P :

2P :

3W :

3P :

4W :

settings 

music 

music 

Figure 4.5: Multi-domain dialog example. The top display was shown to the participant; the
resulting dialog is shown below.

action, the wizard may request additional information from the participant if necessary according
to common sense. For example, the wizard would ask “what would you like to say in the mes-
sage?” or “which phone would you like to connect to, cell phone or work phone?”. Otherwise,
the wizard simply informs the participant of the completion of the task, e.g., “Ok, I will upload
this picture to Facebook”.

Conversations between the participant (P) and the wizard (W) were recorded by Microsoft
Kinect device. Recordings were manually segmented into user and wizard utterances. Each
utterance is manually transcribed and also decoded by cloud speech recognizer (Google ASR).
An example dialog is shown in Fig 4.5.

Each user utterance was later manually associated with the corresponding apps/domains that
would handle it. As shown in Fig 4.5, SETTINGS would deal with P1 to setup a bluetooth con-
nection and MUSIC would take care of P2 and P3. However, sometimes users produce utterances
which may involve several apps, e.g., “Boost my phone so I can play [game] spiderman” requires
CLEANMASTER to clear the RAM and the game SPIDERMAN. Among the total of 1607 utter-
ances, 154 (9.6%) were associated with more than one app — 146 require two apps and 8 require
three.

4.3.4 Data Statistics
We recruited 14 participants who already owned Android smartphones, with OS version 4. The
participants were recruited via two main channels: 1) flyers on the Carnegie Mellon Pittsburgh
campus and 2) the Carnegie Mellon Center for Behavioral and Decision Research2 (CBDR)
participation pool. Table 4.2 provides the demographic breakdown.

2http://cbdr.cmu.edu/
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Figure 4.7: Histogram of number of dialogs
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Figure 4.9: Histogram of number of apps

We collected 533 multi-app spoken dialogs with 1607 utterances (on average 3 user utter-
ances per dialog). Among these sessions, we have 455 multi-turn dialogs (involving 2 or more
user turns). The breakdown of the 533 dialogs is shown in Table 4.2, where we list the number of
participants (#), average age (Age), the number of unique apps involved (#Apps), the number of
all dialogues (#Tasks) and multi-turn dialogues (#Multi). As an illustration, we manually cluster
part of one participant’s multi-domain interactions into groups, based on his commands and the
involved apps. As we can see in Table 4.3, this user’s language varies even for the same type
of tasks. For example, when the user communicates with his family about daily step count, he
could say “talk with my family about the step challenge” or “look at my step count then brag to
my family”. As we will see later, we designed algorithms to overcome address issue.

We used a cloud-based ASR engine (Google ASR) to decode all 1607 utterances and ob-
served word error rate (WER) on the top-1 hypotheses to be 23% (with text normalization).
On average, there are 6.6±4.6 words per user utterance. After removing stop-words3, there are
4.1±2.5 words per utterance. The most frequent words across the 14 participants are shown in
Table 4.1.

Participants dropped out of the study at different times (see Fig 4.6). On average, each
participant annotated 42.4±21.6 logs during the study. Note that each participant submitted one

3http://www.nltk.org/book/ch02.html
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log per day. In each visit to our lab (less than 1 hour), we asked participants to annotate as much
as possible. On average, they annotated 4.3±1.5 logs per visit. Some participants have more than
one multi-app task per day while others have less. On average, in our collection, each participant
has 1.03±0.70 such tasks per day.

Fig 4.7 and Fig 4.8 show the distribution of number of tasks and utterances over the 14
participants. The correlation between a participant’s total number of tasks and the total number
of utterances is strong (r=0.92), which is intuitive.

In total, there are 130 unique apps across 14 participants. On average, each user has 19.1±6.1
unique apps. The distribution of the number of apps in shown in Fig 4.9. The correlation between
a participant’s number of unique apps and number of tasks is moderate (r=0.65). The more multi-
app tasks a participant performs, the more unique apps are involved across these tasks.

Table 4.1: Top content words and frequency.

Word Frequency (%)
open 6.08
text 1.99
go 1.74

please 1.74
send 1.52

picture 1.50
call 1.44

check 1.20
facebook 1.16
message 1.16

Table 4.2: Corpus characteristics. A native Korean and Spanish speaker participated; both are
fluent in English.

Category # Age #Apps #Tasks #Multi
Male 4 23.0 19.3 42.5 33.3

Female 10 34.6 19.1 36.3 32.2
Age < 25 6 21.2 19.7 44.8 36.3
Age ≥ 25 8 38.9 18.8 33.0 29.6

Native 12 31.8 19.3 34.8 28.8
Non-native 2 28.5 18.0 57.5 55.0

Overall 14 31.3 19.1 38.1 32.5

4.4 Modeling User Intentions
People may interact with a multi-domain agent in two ways. First, the user could utter a high-
level and abstract instruction/command at the beginning of the interaction such as “plan a dinner
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Table 4.3: Manual clustering of one user’s multi-domain tasks based on commands and app
invocations. Naming of Category is created manually. Contact names are annonymized for
privacy concern. Verbs are lemmatized.

Category Example Commands (count) Typical Apps
Play games Allocate memory for spiderman and then play it

(2); Play spiderman (2); Play Crossy Road [game]
with optimum ram (1); Play and optimize ram for
Crossy Road [game] (1); Update and play spider-
man (1)

CLEANMASTER,
SPIDERMAN,
CROSSYROAD,
GOOGLEPLAY

Contact people Text XXX about meeting up (3); Message XXX
(2); Text and call XXX (2); Try to contact XXX
(1); Ask XXX if she is free to talk via text then
call her (1); Look at pictures (1); Download and
view a picture XXX sent (1); Message friends (1);
Text XXX (1); Text and snapchat with XXX (1);
Text friend XXX about going to CVS look up how
to get to CVS (1); Send a picture to XXX (1)

MESSENGER, DI-
ALER, SNAPCHAT,
CAMERA, MAPS,
GALLERY

Do homework Look up math problems (1); Do physics home-
work(1); Use calculus software (1); Look up and
calculate integrals for calculus (1); Look at home-
work questions then look up answers online (1)

CAMERA,
BROWSER, CALCU-
LATOR, WOLFRA-
MALPHA

New apps Download a new game from the app store (2);
Look for a song on the play store (1); Listen to
and try to buy a new song (1); Purchase Wolfram
Alpha on the play store (1)

SHAZAM,
GOOGLEPLAY

Share informa-
tion

View a link XXX sent me (1); Read email and fol-
low link provided in the email (1); Share a link
with a friend (1); Make weekend plans with XXX
(1); Look at a link XXX sent me and then message
her back (1); Look up links to a place my girlfriend
and I want to visit (1)

MESSENGER,
GMAIL, BROWSER

Exercise Talk with my family about the (FitBit) step chal-
lenge (3); See how much time left I have to win a
step challenge on the FitBit app (1); Look at my
(FitBit) step count then brag to my family (1);

CLOCK, FITBIT,
MESSENGER

Project Com-
munication

Create an email list for a project group (1); Talk
with project group (1); Conversation with project
group (1); Talk and share with group members (1);
Talk with group members about project (1); Email
and text group members for a project (1)

GMAIL, MESSEN-
GER
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for me”. We want our agent to understand this high-level intention and automatically coordinate
a set of domains (e.g., RESTAURANT, NAVIGATION, MESSENGER) to assist the user. As a
result, the user does not need to mentally coordinate a sequence of domains. This would be
especially useful when hands-free interaction is required (e.g., in-car ) or for those who have
visual disabilities or difficulty with smart devices (e.g., an older population).

The second way in which the user could interact is that s/he may mentally break his intention
down into a few steps and communicate each step in order. We want our agent to recognize the
high-level intention and provide a smooth transition to the next domain/app. Our model utilizes
the current context during a conversation to decide the most probable i) next application and
ii) current user intention. For example, when the user requested a restaurant in the afternoon,
our model may predict that i) the user may need directions to that restaurant and ii) the user is
probably organizing a dinner. Thus, the agent could actively offer the useful information before
it is explicitly requested.

In this section, we describe the models suitable for these two use cases. In Section 4.4.1,
we introduce an end-to-end framework called HELPR to handle high-level user requests. In
Section 4.4.2 we discuss online prediction (i.e., turn-by-turn prediction).

4.4.1 High-level Intentions
We want our agent to help organize apps/domains automatically given user requests expressed
at the level of intentions. For example, upon receiving a request like “can you help me plan an
evening out with my friends?” we would like our agent to find a restaurant with good reviews
(YELP), reserve a table (OPENTABLE) and contact friends (MESSENGER).

Conventional multi-domain dialog systems passively select one domain from multiple do-
mains according to user input, ignoring relationships between domains and the ultimate user
intention requiring cross-domain behaviors [13, 14, 15, 16, 37, 38, 43, 51, 63, 65]. This sec-
tion describes a layer above individual applications that organizes the domain-specific tasks ap-
propriate to overarching user intentions [77, 78]. By doing so (and in combination with other
techniques), an agent would be able to manage interactions at the level of intentions, mapping
intents into domain sequences. In the example above, the agent may respond “Okay, to plan a
dinner event, I need to know where, when and who”. Here, by responding with the “plan a dinner
event” phrase, the agent provides the user with an opportunity to correct potential misunderstand-
ing. Where, when and who collectively construct a shared context across app boundaries. Thus,
a unified interaction could be provided, instead of the user having to manage individual domains
on their own. This thesis focuses on an agent which is capable of 1) discovering meaningful
intentions from user’s past interactions; 2) realizing intentions with groups of apps; 3) talking
about intentions via natural language. We first describe our HELPR framework and then discuss
user studies that evaluate this framework.

4.4.1.1 HELPR Framework

As illustrated in Fig 4.10, the agent maintains an inventory of past interactions, such as “plan a
trip to California”, each associated with information such as the sequence of involved apps and
the user utterances in the (wizard-of-Oz) speech interaction. Given a new input (yellow node),
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Intention 
Realization 

Model 

“Arrange evening out” 

“Plan a trip to California” 

“I am going to Oregon for vacation” 

“Plan a weekend in Virginia” 

“Share picture to Alexis” 

Infer: 
1) Supportive apps, e.g., TripAdvisor, United Airlines, AirBnB 
2) Semantics such as  “plan trip” 

Figure 4.10: Intention understanding and realization example. Solid nodes denote past interac-
tions (blue) and current input (yellow).

the agent first identifies similar past experience (denoted as the ones within the dashed circle).
This is the intention understanding process. Next, an intention realization model is built from
those similar interactions to generate 1) participating apps and 2) natural language reference.
Thus, the intelligent agent transparently conveys its understanding of the input intention in these
two modalities.

4.4.1.2 Intention Understanding

We define a complex intention collectively by the set of previous interactions of similar nature.
We used two approaches to find similar past experiences. A cluster-based method first groups
training examples into KC clusters (i.e., segmenting the semantic space). The input language is
used to identify the closest of these clusters; the members of this cluster define the nature of the
intention. Similar to identifying tasks from search queries for Web Search Engines [42], our goal
is to identify basic tasks/intentions from interaction data which is composed of sequence of apps,
speech input and a task description. We cluster each participant’s data into KC clusters based on
features including 1) apps being used; 2) words in the description; 3) words in user utterances in
the dialog.

The group of apps in a multi-app dialog is a natural hint of what the user is trying to achieve,
except that the same set of apps may serve different purposes. For example, MAPS can give
directions to certain places (navigation task) or provide review information/phone numbers for
some business (restaurant reservation task). Using words in user descriptions (“finding a good
restaurant”) or the actual user utterances (“find me the nearest route to campus”) may disam-
biguate the task identity.

Examples (task descriptions) for clusters in Table 4.4 show that, in general, similar tasks
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Table 4.4: Examples of automatic intention clustering of tasks based on utterances, with typical
descriptions.

Cluster Item Examples (task descriptions supplied by participant)
1 “Picture messaging XXX”, “Take picture and send to XXX”
2 “Look up math problems”, “Doing physics homework”, “Listening to

and trying to buy a new song”
3 “Talking with XXX about the step challenge”, “Looking at my step

count and then talking to XXX about the step challenge”
4 “Playing [game] spiderman”, “Allocating memory for spiderman”
5 “Using calculus software”, “Purchasing Wolfram Alpha on the play

store”
6 “Texting and calling XXX”, “Ask XXX if she can talk then call her”
7 “Talking and sharing with group mates”, “Emailing and texting group

members”

cluster together. To evaluate this cluster-based approach, we asked 6 participants to evaluate the
clustering performance on their own data. We showed them the members of each cluster—task
descriptions, full dialogs, time and location. For each cluster, we asked them for their agreement
with the statement that “the dialogs shown are essentially the same task”, from 1 (do not agree
at all) to 5 (strongly agree). On average, these 6 participants rated their agreement with 4.2± 1.2
out of 5.0. Among the total 51 clusters automatically proposed by the agent, these 6 participants
would further divide 10 of them (19.6%) into 27 subgroups. In short, people appear in general
satisfied with the clustering algorithm we are using. It is possible that people would manually
separate a certain amount of system-proposed clusters each into, on average, 2.7 subgroups. But
this interactive process is optional.

In addition to the cluster-based intention model, we also investigated a K-Nearest Neighbors
approach that finds the KN most similar past interactions given the input. We anticipate some
major differences between the cluster-based and the neighbor-based intentions. (i) The cluster-
based method should provide insight into the basic intentions of a user. This may become useful
when the agent is actively learning tasks, i.e., asking the user to label the current activity while
suggesting one of the (ranked) list of basic intentions. (ii) The cluster-based method can uti-
lize richer contextual information (such as the apps used or utterances spoken by the user) when
segmenting the semantic space of past interactions. Ideally, this yields better clustering perfor-
mance. Such post-initiate information is not available in the neighbor-based approach since it
does not have a training process. (iii) The cluster-based approach has hard boundaries between
intentions. Instances close to the boundaries may not be characterized well by their cluster mem-
bers, compared with the neighbor-based method. However, regardless of the differences between
these two approaches, we believe that by referring to shared (past) experiences, the agent can (i)
better indicate (mis-)understanding of user’s intention; and (ii) build rapport with the user [90].
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3 app sequences of similar experience 

1.      Yelp            ->  Maps  -> Messenger 
2.      Yelp            ->  Maps  ->       Email 
3.  OpenTable    ->  Maps  ->       Email 
 
         Yelp             ->  Maps  ->       Email 

 

Figure 4.11: Example of RepSeq with three app sequences.

4.4.1.3 Intention Realization in Two Modes

4.4.1.3.1 Participating Applications As an intelligent user interface, the agent needs to as-
sist the human user in pursuing complex intentions that span multiple domains. We propose two
strategies to generate sets of supportive apps. In the first one, we combine the individual app
sequences in a set into a single app sequence to cover the activity (denoted as RepSeq). For
example, as shown in Fig 4.11, three app sequences are first aligned and then a majority vote
is performed at each position to generate one sequence. An alternate strategy would be to have
a classifier assign multiple labels (app ids) to the input (MultLab). The advantage of RepSeq
is that it can preserve common ordering among apps. However, from the example above, once
the members are selected, the input language has no further influence on the selection of apps.
Arguably, during this process we can weight each set member by its closeness to the input; we
did not investigate this possibility. In this work, we focus on the quality of the proposed set of
apps. At present, we do not consider app order.

In the user interface, the agent could a) present the clickable icons of these apps to reduce
the navigation through installed apps; b) warm up these apps to speed up the activation; c) build
unified conversation based the set of apps.

4.4.1.3.2 Language Reference The human-agent communication channel needs to be trans-
parent in both directions. The agent must be able to verbally convey its understanding of the
user’s high-level intention, allowing the user to track the agent’s inner state. For example, it can
use explicit or implicit confirmation [11], e.g., “do you want to share a picture?” Practically this
can simply be a template (“do you want to ?”) and the reference to the intention (“share a
picture”). However, echoing content extracted from the user’s current language input does not
indicate whether the agent understands or not. Our approach, on the other hand, better communi-
cates the agent’s (mis-)understanding by summarizing or abstracting the semantics from similar
past experience. This allows timely detection and recovery of errors.

To enable this we want our agent to automatically infer the semantics of the high-level inten-
tion from the related past experience. Text summarization can be used to generate a high-level de-
scription of the intention cluster [22, 41]. Keyphrase extraction provides an alternative [8, 44, 88].
In our case, we mainly need a short text (“share a picture”) so the keyphrase approach is more
suitable.
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4.4.1.4 Study 1: End-to-End Evaluation

We investigated the differences within: 1) the cluster-based vs. the neighbor-based intention
models; 2) personalized vs. generic setups; 3) RepSeq vs. MultLab realization strategies. For
each user, the chronologically first 70% of his own collected data was used to train the personal-
ized mode (in principle mirroring actual data accumulation). The other 13 users’ first 70% data
was combined and used to train the generic model.

The number of intentionsKC for the cluster-based intention model and the number of nearest
neighbor KN for the neighbor-based model were tuned. KC was automatically optimized (from
1 to 10) via gap statistics [80]. KN was set to the square root of the number of training exam-
ples [19]. For RepSeq we used ROVER [20] to collapse multiple app sequences into one. For
MultLab, we used a support vector machine (SVM) with a linear kernel.

There are intra-user and inter-user inconsistencies in the use of language/apps, creating the
problems of vocabulary mismatch [42, 69], where interactions related to the same intention may
have non-overlapping 1) spoken terms (“take picture” vs. “shoot photo”), sometimes caused by
different word selection; 2) app choice, e.g., people may use different apps with essentially sim-
ilar purposes (MESSENGER vs. EMAIL). To address these issues, we applied query enrichment
(QryEnr) and app similarity (AppSim). We describe them in detail.

QryEnr will expand the query by incorporating words semantically close to its words [76], for
example {shoot, photo} → {shoot, take, photo, picture, selfie}. See Algorithm3 for more de-
tails. In short, the chance of observing sparse input feature vectors caused by out-of-vocabulary
words (OOVs) is thereby reduced. In this work, we used word2vec with the gensim toolkit4

on the model5 pre-trained on GoogleNews [47]. Each word wt in the preprocessed (lemmatiza-
tion on verbs and nouns) query q = {w1, w2, ..., wT} yields mass increases for N semantically
close words in the feature vector ~fq [78].

Algorithm 3 Query Enrichment

Require: lemmatized words of the query q = {w1, ..., w|q|} and their counts C = {c1, ..., c|q|};
training vocabulary V ; bag-of-words feature vector ~fq = {f1, ..., f|V |} constructed on q; the
word semantic relatedness matrix M ; the number of semantically similar words N allowed
to be extracted for each word in q;

Ensure: an enriched bag-of-words feature vector ~f ∗q = {f ∗1 , ..., f ∗|V |}
1: for each wi ∈ Q do
2: Use M to find N words closest to wi: VN = {v1, ..., vN} ∈ V ;
3: for each vj ∈ VN do
4: f ∗j = fj +Mi,j × ci
5: end for
6: end for
7: return ~f ∗q ;

AppSim maps a recommended app, e.g., BROWSER to the preferred (or installed) app on

4https://radimrehurek.com/gensim/
5 https://code.google.com/p/word2vec/
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a specific user’s phone, e.g., CHROME. Therefore, similarity metrics among apps are needed
to either convert all apps in the generic model training data into the ones that are in this user’s
phone (as a pre-processing step) or map the recommendation results output by the model to fit
this user’s preferred (or installed) apps (post-processing step). In the real world, pre-processing
may not be feasible since there are many individual users and adapting the (huge) generic training
data for each of the users is expensive. Therefore, in this work we adopted the post-processing
approach.

We can construct a similarity matrix among all 130 apps in our collection by three means: (i)
rule-based: the app package names can be useful, e.g., com.lge.music is close to com.sec.andr-
oid.app.music since both contain the string “music”; (ii) knowledge-based: the Google Play
store provides a finite ranked list of “similar apps” for each entry; (iii) data-driven: app de-
scriptions from the store can be projected into a low-dimensional semantic space to directly
compute similarity. In the rule-based method, we used normalized edit distance with 50 hand-
crafted fillers (e.g., “com”, “android”) removed from package names. For the knowledge-based
approach, we used reversed rank (1/r) as the similarity. For the data-driven approach, we used
the doc2vec toolkit to train the space for over 1 million apps then used cosine similarity [33].
The knowledge-based and data-driven matrices are sparse since some (vendor) apps were not
found in our snapshot of the Google database; 15.5% of the 130× 130 cells are non-zero for the
data-based approach and only 1.0% for the knowledge-based approach.

4.4.1.4.1 Neighbor-based Intention Realization Results We compare the apps suggested
by our model with the ones actually launched by users. This prediction task is difficult; in our
corpus, on average each user has 19 unique apps and 25 different sequences of apps.

We conduct experiments on the neighbor-based intention model. We want to understand the
difference 1) between two realization methods — {RepSeq, MultLab}; 2) the effectiveness of
the techniques to address language and domain mismatches — {QryEnr, AppSim}. The perfor-
mance at predicting the participating domains (average F1 score across 14 participants’ testing
data) is shown in Fig 4.12. F1 is higher in Fig 4.12a compared with Fig 4.12b, intuitively sug-
gesting that the personalized model is better than the generic model. We conduct a paired t-test
between the base conditions in Fig 4.12a and 4.12b. For RepSeq and MultLab, personalized
models are significantly better (p < 0.01). The effect size (Cohen’s d) is 1.14 and 1.29 respec-
tively.

One can also see that RepSeq outperforms MultLab in both the personalized model and the
generic model — the difference is more obvious in the generic model (Fig 4.12b). By conduct-
ing a paired t-test, we find significant improvement of the RepSeq base over the MutlLab base
(p < 0.05) with Cohen’s d = 0.29, in the personalized setting (Fig 4.12a). In the generic setup
(Fig 4.12b), the RepSeq base is significantly better than the MultLab base (p < 0.01) with Co-
hen’s d = 0.62. This shows that our RepSeq approach can effectively learn people’s temporal
behavior pattern. It is better than the conventional multi-label classification approach.

Since QryEnr impacts both the personalized and the generic models while AppSim only
influences the generic model, we first examine QryEnr in the personalized setup and then in-
vestigate QryEnr, AppSim, and their combination in the generic setup. For the personalized
model, we conduct a paired t-test between the prediction performance with QryEnr and without
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Figure 4.12: Evaluation of the neighbor-based intention: Average F1 on the total 166 testing
data across 14 participants. In both figures, base is either RepSeq or MultLab without enabling
QryEnr or AppSim. KN is 18.5± 0.4 for generic models and 4.9± 1.4 for personalized models.
AppSim combines rule-based, knowledge-driven and data-driven approaches with equal weights.
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Table 4.5: Examples of intention realization with QryEnr (personalized model). Underlined apps
in reference are salvaged.

Command Reference Base Base+QryEnr
Talk to Brooke
about step chal-
lenge

MESSENGER, FITBIT MESSENGER MESSENGER,
FITBIT, SNAPCHAT

Turn on WiFi and
browse site

SETTINGS, BROWSER,
CHROME

BROWSER, BIRD-
STEP

SETTINGS,
BROWSER, BIRD-
STEP

Look at calendar
and call Mom

CALENDAR, DIALER - DIALER

Table 4.6: Examples of intention realization with AppSim (generic model). Underlined apps in
reference are salvaged.

Command Reference Base Base+AppSim
Send picture mes-
sage

SELFIECAMERA,
MESSENGER

ANDROIDCAMERA,
MESSENGER

SELFIECAMERA,
MESSENGER

Snooze alarm and
check notification

CLOCK,
WEATHER,GMAIL,
FACEBOOK

ANDROIDCLOCK CLOCK

Add photo Insta-
gram and send pic-
ture message

INSTAGRAM, AN-
DROIDCAMERA,
MESSENGER

SNAPCHAT, MES-
SENGER

INSTAGRAM, MES-
SENGER

QryEnr (base). For the generic model, we first conduct a correlated one-way ANOVA6 on {base,
base+QryEnr, base+AppSim, base+QryEnr+AppSim} to verify whether there is a significant dif-
ference among them. If so, a Tukey HSD test is performed for pair-wise comparisons. In the
following, we report our findings in details.

In the personalized models (Fig 4.12a), QryEnr improves the performance at predicting the
appropriate set of participating domains. The improvement is significant, measured by the paired
t-test for both RepSeq and MultLab bases (p < 0.05) with Cohen’s d = 0.41 and 0.56 respec-
tively. This suggests that individual user’s language input is not consistent even for the same
task (shown in Table 4.3) and leveraging the semantic relatedness between words can address
this issue. Examples in Table 4.5 shows that QryEnr improves the model’s ability to recall more
domains. However, the drawback is that it may draw forth too many apps.

In the generic models (Fig 4.12b), to examine the usefulness of {QryEnr, AppSim} and
their combination, we conduct the ANOVA on the factor with the following four conditions:
{base, base+QryEnr, base+AppSim, base+QryEnr+AppSim} for each realization base method.
ANOVA finds a significant difference across these conditions (p < 0.01). By further adopting
the Tukey’s HSD test for pair-wise comparisons among the four conditions, we find that QryEnr

6Tests are done via http://vassarstats.net
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Table 4.7: Comparison of different AppSim approaches on neighbor-based intention in a generic
model. Precision, recall and F1 score are reported. For the data-driven method, the vector
dimension D = 500.

RepSeq MultLab
Precision Recall F1 Precision Recall F1

Baseline 33.3 18.9 23.8 45.8 12.3 19.1
Rule 43.3 24.3 30.7 59.4 15.9 24.7
Knowledge 41.8 22.3 28.7 53.0 14.6 22.6
Data 38.1 21.2 27.0 54.6 13.9 21.7
Combine 44.7 25.0 31.7 61.0 16.4 25.5

significantly benefits MultLab (p < 0.05) but not in RepSeq. One possible reason is that MultLab
uses language input twice: it first uses the language command to find similar past experiences
and then within that experience cluster, it builds a mapping from commands to apps — errors in
finding similar experiences may be recovered. This indeed shows the advantage of the semantic
relatedness. On the other hand, AppSim’s improvement over the base is more significant in the
RepSeq (p < 0.01), intuitively suggesting the usefulness of mapping the suggested participating
domains to the preferred (or installed) ones. Examples in Table 4.6 shows that the model can
effectively personalize the suggestions. In short, in the neighbor-based intention model, QryEnr
and AppSim benefit both RepSeq- or MultLab-based generic models in predicting participating
apps. While QryEnr works better in the MultLab-based generic model, AppSim works for both
RepSeq and MultLab.

Table 4.7 compares the difference across AppSim methods. The rule-based approach outper-
forms the other two methods, although it requires filters. This is probably due to the sparseness of
similarity matrices in the knowledge-based and the data-driven approaches. Nevertheless, com-
bining three similarity scores yields the best performance, showing the effectiveness of leverag-
ing inter-app similarity for this task.

4.4.1.4.2 Cluster-based Intention Realization Results We conduct the same analysis as
Section 4.4.1.4.1. Similarly, as shown in Fig 4.13a, we find the following: 1) QryEnr signifi-
cantly benefits the personalized models regardless of RepSeq or MultLab (p < 0.01). Cohen’s
d = 0.40 for both baselines. This aligns well with the finding in the neighbor-based results.
2) For the generic models (Fig 4.13b), QryEnr significantly improves the base (p < 0.05) with
MultLab but not with RepSeq. Again, this aligns with neighbor-based results.

There are some major differences from the neighbor-based intention models. First, RepSeq
in general performs worse with the cluster-based intention model (Fig 4.13). The reason could be
two-fold: 1) RepSeq relies purely on the selection of cluster members — once the members are
fixed, the output participating apps remain the same regardless of the language command. The
cluster-based intention model inevitably introduces noise to the process of finding the experience
similar to the command. 2) The cluster-based approach may not be ideal when the incoming
command is projected close to the intention boundary, suggesting that the current command does
not lie close to all the members. However, MultLab could remedy the errors since it leverages
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Figure 4.13: Evaluation of the cluster-based intention: Average F1 on the total 166 testing data
across 14 participants.

51



1. solutions online  
2. project file  
3. Google Drive 
4. math problems 
5. physics homework  
6. answers online 
7. recent picture 
… 

Looking up math problems. (Desc) 
Go to slader.com. (Manual) 
Doing physics homework. (Desc) 
… 
Check the solutions online. (Manual) 
Go to my Google Drive. (Manual) 
Look up kinematic equations. (Manual) 
Now open my calculator. (Manual) 

Figure 4.14: Key phrases (ranked) extracted from user-generated language, with user judgment.

the input language to influence the classification output.
The second difference is that we do not see the superior performance of AppSim over the

base with the cluster-based intention model. However, as shown in Fig 4.13b, AppSim gains
improvement to some extent even though no significant difference is found. Moreover, if AppSim
is combined with QryEnr, the system performs significantly better in suggesting appropriate set
of apps, compared to QryEnr alone in the MultLab method (p < 0.01).

In short, in the cluster-based intention model, QryEnr significantly advances both RepSeq-
and MultLab-based personalized models. It also benefits the generic model significantly with
MultLab for the same reason as in the neighbor-based intention model. AppSim, on the other
hand, shows significant usefulness when it is used together with QryEnr.

4.4.1.5 Study 2: Intention Representation in Natural Language

We used Rapid Automatic Keyword Extraction (RAKE7) algorithm [8], an unsupervised, language-
and domain-independent extraction method, reported to outperform other unsupervised methods
such as TextRank [27, 46] in both precision and F score. In RAKE, we required that 1) each
word have 3 or more characters; 2) each phrase have at most 3 words; and that 3) each key
word appear in the text at least once. We did not tune these parameters. We used 3 individual
resources and 2 combinations, reflecting constraints on the availability of different contexts in
real-life. The three individual resources are the manual transcription of user utterances from their
dialogs (MANUAL), the ASR transcriptions (ASR) thereof and the high-level task descriptions
(DESC). The number of key phrases that could be generated by each resource or their combina-
tion depends on resource size (Table 4.8).

We asked 6 users to first review and refine their own clusters, by showing them all cluster
members. To aid recall we displayed, 1) context e.g., location, time; 2) task descriptions (e.g.,
“planning a dinner”), 3) dialogs produced and 4) apps involved. Users could decide whether to
split each cluster into subgroups. Then, based on the refined clusters, we generate ranked lists
of key phrases using the different resources. Users were asked to provide a binary judgment for
each phrase in the list (randomized) indicating whether it correctly summarized all the activities
in the current (refined) cluster. See Fig 4.14 for an example list of key phrases extracted from
one user’s one intention cluster, along with his binary judgment of individual phrases.

7https://www.airpair.com/nlp/keyword-extraction-tutorial
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Table 4.8: Mean number of phrases generated using different resources

MANUAL ASR DESC DESC+ASR DESC+MANUAL

20.0 20.3 11.3 29.6 29.1

To focus on a practical goal, we used Mean Reciprocal Rank (MRR)—“how deep the user
has to go down a ranked list to find one descriptive phrase?” Average MRR was 0.64 across
different resources and their combinations, meaning that on average the user can find an accept-
able phrase in the top 2 items shown; although MRR is lower when the individual resource was
used, an ANOVA did not show significant differences between resources (and their combina-
tions). Other metrics such as Precision at position K or Mean Average Precision at position
K shows DESC+ASR and DESC+MANUAL do best, especially when K is larger. Results in-
dicate that having a task description is useful. Using the more sensitive MAP@K and P@K
metrics, DESC+ASR and DESC+MANUAL do best. The improvement becomes significant as K
increases: having a user-generated task description is very useful.

To conclude, if the agent can observe a user’s speech commands or elicit descriptions from
the user (ideally both), it can generate understandable activity references and could communicate
more effectively than using alternatives (e.g. lists).

4.4.2 Online Prediction

Conventional multi-domain systems do not maintain expectations of any follow-up domains. It
is equally likely that the user would talk about food or weather next, regardless of the context.
The consequences include 1) the system may not be fully prepared as it could be if it understands
how users actually structure such tasks; 2) the system may lose the opportunity to provide timely
assistance to smoothly guide the dialog across domains (“Do you want to send this picture to
someone?”) or share the context of the multi-app interaction to the next basic task (“You mean
the picture you just took?”). In this thesis, we address this issue by conducting a user study
investigating how users perform multi-app tasks via language. We demonstrate that systems
with shallow understanding, such as what the user said and the common task structures, can still
provide improved interaction quality.

It has been shown that based on simple context such as time or location, smart phones that
anticipate a user’s needs can significantly improve the efficiency of app navigation [70, 83].
However, language interaction may generate more information, allowing for better assistance.
In this work, we investigate both conventional features (e.g., previously used apps, time, and
location) and language features (e.g., the words in previous user turns) to predict the next domain
of interest in the conversation.

4.4.2.1 Context-Aware User Models

Context has been shown to improve the performance of interactive systems [35, 68]. To predict
an individual user’s next app (e.g., MUSIC) or current intention (e.g., “organize a dinner”) dur-
ing the conversation, we trained personalized user models that include the following contextual
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information: 1) meta context: time, day of week, location; 2) behavioral context: the previ-
ously launched app; 3) language context: words spoken by the user (e.g., “And play music” in
Fig 4.5). These types of context are motivated by our observations; for example: a) people use
ALARM more often in the morning on weekdays at home; b) for some user CAMERA is more
often followed by MESSENGER to share photos instead of EMAIL; c) “find the address of the
Karaoke House in Oakland” not only indicates the use of BROWSER but also hints that the user
may want to find the route to the address via MAPS.

However, using content-based language features such as words may result in the vocabulary
mismatch problem [42, 69], where statements related to the same topic may end up with non-
overlapping terms, caused by minor differences such as misspellings, morphological differences,
synonyms, etc. This can be addressed by enriching the input (user utterances in our case) so
similarity measurement can more easily capture semantic relatedness described in Algorithm 3.
In the current work we removed stop words and kept only lemmatized8 verbs and nouns to reduce
(morphology) noise.

The proposed system can communicate at the level of low-level actions such as “OK, let
me first find a restaurant in Oakland” and at the level of high-level intentions such as “I think
you want to plan a dinner. Let me help you.” We implemented this two-level communication
by classifying input history to the predicted ranked list of apps or of intentions, respectively.
The above three contextual (”meta”) features are combined in a bag-of-words. For time, we use
hours, from the 24-hour clock. For day, we use {weekday, weekend}, which appears to be more
informative than {Monday, ..., Sunday}. For location, we use the street name instead of areas
based on actual distances if GPS is enabled. We evaluate using top-1 prediction accuracy (ACC)
or mean average precision (MAP) over the ranked list of apps reflecting practical use cases.

4.4.2.2 Experiment Setup

In this section, we describe how the agent learns to predict: 1) the next app (low-level); 2) the cur-
rent user intention (high-level). We also investigate features important for this functionality, and
how to combine available features to further improve performance. We introduced approaches to
discover basic intentions from the past interactions in Section 4.4.1.2. In this part, we investigate
features to recognize the user’s high-level intentions during a conversation. We use each user’s
chronologically first 70% interactions as training data and used the remainder for testing.

4.4.2.3 Predicting the Next App

Results for different features across 14 participants’ test data are shown in Table 4.9; we use
multi-class logistic regression (individual features are ordered according to MAP on the test set).
We use L2 regularization and use 10-fold cross validation on the individual user’s training set
to determine the optimal regularization strength (C ∈ [0.1, 10]). The baseline, majority class,
is also shown. Note that this is a difficult task; on average each participant has 19 unique apps.
As we can see, Last App outperforms Meta features (time, location, day), which others have
observed [70]; the Language feature (lemmatized verbs and nouns) is better than Last App.

8http://www.nltk.org/api/nltk.stem.html
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Table 4.9: App prediction

Feature
Train Test

ACC MAP ACC MAP
Language 60.5 66.5 39.1 44.0
Last App 41.9 50.7 29.7 37.2
Time 27.1 36.9 23.3 31.2
Day 26.7 36.2 22.8 30.7
Location 29.9 40.3 21.2 29.4
Majority 25.8 35.2 23.9 31.7
Meta 33.2 43.6 20.4 28.4
Meta+App 43.6 52.3 28.0 35.4
Lang+App 59.2 65.3 40.0 45.0
All 55.0 61.9 38.8 43.9

Table 4.10: Intention prediction

Feature
Train Test

ACC MAP ACC MAP
Last App 51.9 60.1 52.9 61.7
Language 44.6 53.6 39.3 50.5
Location 40.3 50.4 32.8 44.7
Time 31.5 42.4 31.5 44.4
Day 29.8 40.9 31.0 43.0
Majority 27.4 38.1 31.7 44.4
Meta 48.8 58.2 31.7 43.5
Meta+App 58.7 66.3 58.9 66.0
Lang+App 58.9 66.0 54.2 62.7
All 64.5 71.1 58.9 66.1

When we combine all individual features (All), we can improve the performance compared to
using individual context alone.

Table 4.9 demonstrates that shallow understanding (e.g., what the user said and what app was
launched earlier) can be predictive of a user’s next actions. For example, given that MAPS is the
predicted next app, the GUI can bring it into focus; the assistant can prompt “Would you like to
find the driving directions?” or even proactively fetch and offer the information, e.g., “By the
way, you can take Bus XXX in five minutes”.

4.4.2.4 Predicting High-Level User Intention

We want the system to be able to 1) discover meaningful intentions and 2) predict the intention
for ongoing conversation. We used the clustering process described in Section 4.4.1.2 to identify
meaningful basic intentions for each user, based on features such as user-generated language,
apps involved and contexts.

Similar to app prediction described earlier, we build a user-dependent multi-class logistic re-
gression model to predict the user intention at each dialog turn. We use data from the 6 users
mentioned above, whose clusters were initially proposed by the system automatically and then
refined by the user if necessary. We evaluate the performance of each feature in Table 4.10.
Again, L2 regularization is applied with strength C ∈ [0.1, 10] tuned through 10-fold cross val-
idation. Last App outperforms other features. Best performance is obtained by combining all
features. We observe improvement when language is incorporated (All vs. Meta+App), espe-
cially in the training set. Careful investigation is needed to understand the lesser improvement in
the testing set.

4.5 Conclusion
First, we present a framework, HELPR, that implicitly learns from past interactions to map high-
level intentions (e.g., “go out with friends”) to specific functionality (apps) available on a smart
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device. The proposed agent uses language produced by the user to identify interactions similar
to the current input. A set of domains/apps can be proposed from past experience and used
to support current activities. This framework is also capable of generating natural language
references to a past experience cluster. As a result, the communication channel may have greater
transparency, supporting timely recovery from possible misunderstandings.

Second, we demonstrate that during a conversation, our model can effectively predict the
next domain that the user may find useful. This provides the agent insight/expectations to what
could happen next. Thus, it can assist the user to smoothly transition to the next domain/app. It
is also possible to fetch useful information from the next domain before it is actually requested
by the user. As a result, we believe this capability can make the intelligent agent proactively help
the user in the conversation.

Our long-term goal is to create agents that observe recurring human activities, figure out
the underlying intentions and then provide active support through language-based interaction (in
addition to allowing the user to explicitly teach the agent about complex tasks). The value of
such an agent is that it can learn to manage activities on a level more abstract than that provided
by app-specific interfaces and would allow users to build their own (virtual) applications that
combine the functionality of existing apps.

4.6 Possible extensions
The work mentioned in this chapter demonstrates that people have complex tasks (i.e., high-level
intentions) to accomplish which span several domains/apps. Our model has been shown to assist
users at the task-level. However, there are several remaining challenges in this area. We will
describe two of them as follows:
• Efficient accumulation of agent’s knowledge of complex tasks from the user’s daily life;
• Unified dialog mixed from a set of supportive domains.
There are explicit and implicit ways to acquire knowledge of high-level intentions. First, the

user can explicitly instruct the agent by saying “Watch! To plan a trip, you should find a cheap
flight from PRICELINE and then look for a 3 star hotel in downtown via HOTWIRE ...” Such an
instructable agent has been studied in dialog setup [2, 3, 64]. The difficulties lie in the depen-
dency on the agent’s capability to comprehend complex language instructions. Alternatively, in
a more implicit way, the agent can observe a user perform activities and ask the user for more in-
formation if needed. If it does not understand which task category the current activity belongs to,
it should request an explanation of the nature of this new task. We focus on the implicit method
in this thesis.

The second bottleneck for a multi-domain agent is to produce a unified conversation from the
supportive domains. To elaborate, the fundamental communication skills are already provided by
domain experts (e.g., “request destination” in NAVIGATION domain, “inform re-
view” in DINING domain). It is now up to the agent to mix these skills into one conversation.
Two obvious issues remain challenging here: 1) The concepts/slots required by different domains
may overlap. For example, destination in NAVIGATION domain may be implied by the
restaurant name in DINING domain. Therefore, it is important for the agent to either pick a
subset of concepts or propagate information from observed concepts to unobserved ones, in order
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Table 4.11: System actions to acquire new user knowledge based on classification and confidence

ToI Type Confidence System Action Example Sub-dialog
Recurrence High Add to inventory N/A

Recurrence Mild Confirm
“I think you were planning a
party, am I right?”

Recurrence Low Request annotation
“Could you tell me what you
just did, is it one of [list of
tasks]?”

New N/A Request annotation

“I think you were doing something
new, could you teach me?”, “What
were you trying to achieve with
[list of apps]?”

to avoid potential redundancy in conversation. By relating concepts across domain boundaries,
the agent can construct and maintain a shared context. 2) The dialog flow to request the concepts
may be different from concatenating individual domain-specific dialog flows. We will briefly
discuss the first challenge. The second one is out of our scope.

In the rest of this section is organized as follows: In Section 4.6.1, we describe our proposed
data-gathering approach with preliminary results. Next, we discuss possible solutions to build a
shared context in Section 4.6.2. We also discuss a web-based solution to building a multi-domain
dialog system, compared with the conventional way of maintaining several dialog managers.

4.6.1 Data Gathering

In our previous work, we asked users to annotate each day’s log in terms of what tasks are there
and the nature of the tasks. The user would inevitably provide redundant annotation to similar
tasks. This would cause degradation of the user experience after the deployment of the agent. It
is naturally desired that, after acquiring the user’s annotations for a few instances, the agent can
by itself decide whether the current task is one of the seen categories of tasks or is a completely
new task.

We describe how an intelligent agent may reliably discover and learn complex tasks (i.e.,
macros) in a realistic setup. An active learning framework may be useful and certain learning
mechanisms can facilitate the process. Examples of knowledge acquisition are shown in Fig 4.15
and 4.16. Given the current input, the system may have strong belief that it is a recurrence of a
previously seen task. Thus, the agent can directly assign it to that task (see Fig 4.15). On the
other hand, the system may find the new observation differs from all past tasks. Thus, it should
wait until it observes the new task a few times (see Fig 4.16). Then it could ask the user questions
to obtain true nature of the task (Table 4.11).
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(a) Agent observes new activities

Apps: 
Desc: Share pictures 
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Desc: Share photos 
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Apps: 
Desc: Plan a road trip 

2 4 3a a a Apps: 
Desc: Plan vacation 

4 2 4a a a

Apps: 
Desc: [share pictures] 

1 5 3a a a

(b) Agent learns the nature of new activities

Figure 4.15: Recurrence: (a) the agent observes a new app sequence (blank node with dashed
box). (b) the agent strongly believes that this is similar to one of the previously seen tasks —
share pictures.
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Apps: 
Desc: Share pictures 

1 5 3a a a Apps: 
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Apps: 
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Figure 4.16: New task: (a) the agent has 3 observations for which it does not know the task
(blank nodes linked with dashed boxes) and 2 of them are similar to each other (within dashed
red circle). (b) the agent decides to create a new task for these 2 observations by asking the user
a question.
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4.6.2 Sharing Context

As mentioned earlier, having a shared context allows the intelligent agent to avoid requesting
information it already possesses. Thus, the interaction across multiple domains can be more ef-
ficient and natural. We believe this would improve the user experience. The problem of overlap-
ping domain knowledge as well as the targeted shared context are shown in Fig 4.17. In this ex-
ample, two domains (DINING and NAVIGATION) have a few concepts in common although with
different names. When collectively serving a common user intention (“plan a dinner”), know-
ing the value (or probability over hypotheses) of Restaurant slot in DINING domain induces
the value (or hypotheses) of Destination in the next NAVIGATION domain. A straightfor-
ward approach is to activate all domain-specific NLUs and propagate information to the future
(denoted as baseline 1). Thus, “Panda Express” (a restaurant chain) would be parsed as both
Restaurant and Destination when talking about DINING and simultaneously filling the
Destination slot in NAVIGATION. Alternatively, in baseline 2, the agent can look into dialog
history and pick up information. For example, it can parse the previously observed user sentences
with the currently active (NAVIGATION) NLU and load “Panda Express” to Destination,
with a decaying function favoring more recent input.

From a dialog state tracking perspective [87], we can formalize this context sharing prob-
lem as maintaining and updating the agent’s current belief b over all slots including unobserved
ones given a newly observed slot. We assume the agent possesses the following knowledge tuple
K = 〈g,Dg, Rg〉: a) user goal/intention g, e.g., “plan a road trip”; b) a finite collection of Dg

domains that would assist the current user goal goal, where Dg ≥ 2; and c) the relationship
matrix Rg between any two slots from Dg domains — sloti and slotj . We anticipate, with appro-
priate relation matrix Rg and belief update mechanism b′ = f(obs, b,K) where obs is the new
observation, the context sharing problem can be addressed. Moreover, the methods mentioned
earlier (baseline 1&2) are just special cases of this state tracking approach, where Rg(i, j) = 1
when input sentence can be parsed into sloti and slotj in two domains and 0 otherwise.

We believe that this class of information could be pooled across users: identifying the right
mappings in principle needs to be done only once for any given pair of apps, with extensions
being inferred through transitivity. At this point, this is speculative. But we believe that it can be
part of a strategy for establishing an operational ontology across apps.

4.6.3 Large Scale Dialog Framework with Web Connectivity

Current multi-domain dialog frameworks host several dialog managers from different domains.
The advantage of such a framework is effectively distributing responsibilities to domain ex-
perts. However, the risk is obvious that the characters or conversational skills are not consistent.
Imagine that MAPS talks conservatively (confirming each slot) while YELP talks aggressively
(pretending to understand all the user input), the user experience will degrade. Therefore, a
centralized agent (CA) may become useful in controlling the conversation quality and user ex-
perience. This would implicitly turn each domain into a (web) service, with APIs exposed to
the CA. Domain knowledge is now decomposed from a separate dialog manager into a backend
supplier. Its role becomes providing/seeking information, rather than deciding the dialog flow.
For example, the CA detects the user’s dining preference and calls http://example.com
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Figure 4.17: Illustration of overlapping domain knowledge.

(or an app) with parameters to suggest a place. This API would generate a structured reply with,
for example, restaurant name, address and reviews. The dialog manager would then decide the
next dialog act.

The intelligence behind such a framework needs to be able to transfer information between
the user and certain APIs. More specifically, it must understand the user’s language input and
parse it (together with history) into an appropriate service API. On the other hand, it also needs
to understand the (structured) reply from a service in terms of the dialog act (inform or request
information) and what information to present. For the CA to utilize the resources (domain ser-
vices), domain developers may use a shared vocabulary to mark up their services (e.g., web
pages) with a shared set of schemas such as those from Schema.org.
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Chapter 5

Conclusion

In this thesis, we investigated adaptation at several levels within spoken dialog systems. We
mainly focused on lexicon adaptation, cloud-based ASR adaptation and user intention adaptation
in practical use cases, and found such adaptations are possible and practically beneficial. First,
our detect-and-learn and expect-and-learn models can help dialog systems acquire useful novel
words such that it can better understand the language in a domain or from a user. Second,
by using a device-/domain-specific decoder, together with widely used cloud-based recognition
service, the dialog systems can leverage both resources to yield both domain-/user-accuracy as
well as coverage. Finally, by being able to understand or adapt to user’s personalized high-level
intention, the system can learn about people’s behavior across domains and learn how to perform
complex tasks. This provides intelligent assistance at the task level.

We demonstrated the feasibility and effectiveness of lexicon adaptation, leading to improved
recognition and understanding performance. We designed and implemented two strategies to
learn new words in real-life situation. First, the system can detect out-of-vocabulary words
(OOVs) when talking to a user by using word-fragment hybrid language models. We com-
pared three types of hybrid models to detect the presence of new words in utterances. To learn
the spellings of these novel words, we adopted a phoneme-to-grapheme conversion model. Our
experiment with the Wall Street Journal dataset demonstrated that the system can reliably detect
and learn new words. We also deployed this learning approach in a dialog system to identify new
words from real users’ speech. Several ways to elicit isolated segmentations of new words from
the user were compared and we found that asking the user to put the new word in a template may
be better than simply having the user repeat the new word. Our user study result shows that it is
feasible for an agent to acquire new words through conversation.

Second, a number of potentially useful new words can be learned beforehand such that when
mentioned in the user’s utterances later, these words are no longer new words to the agent. Our
approach acquired new words that are semantically related to the current vocabulary and put
them into recognition models. We experimented with different web resources and found that
word2vec outperforms others in terms of the quality of the harvested new words. In short,
knowing the current lexicon gives the agent useful directions to explore unknown words, leading
to improvement in speech recognition and understanding.

To tackle the current impossibility in adapting widely used domain-/user-independent cloud
speech recognizers, we investigated the benefit of combining local ASR with cloud ASR to marry
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each individual system’s strength, namely 1) domain-/user-adaptability with local ASR and 2)
stable performance across domains and users with cloud ASR. Local ASR provides in-domain
accuracy while cloud ASR has out-of-domain coverage. We implemented two local ASR models
and found that in different use cases, a finite-state-grammar based language model and an n-gram
model have their own advantages and disadvantages. We implemented a hypothesis selection
model to choose the appropriate decoding result from an ensemble of decoders, depending on
the availability of resources such as Internet or computing power. We found that this ensemble
of individual local decoders with cloud one can adapt the recognition towards domains or users
and thus yield better accuracy.

Intelligent agents are developed to assist a human user with tasks. As a consequence of the
users’ high-level intentions that may go beyond the individual domains, users inevitably have to
make an effort to maintain contexts across domain boundaries or initiate transitions between do-
mains. Therefore, it is desired that the agent can create macros or virtual apps based on existing
functionalities to assist users with complex tasks. We conducted a user study to collect real-life
multi-domain tasks from real users. The data is composed of two modalities — touchscreen
interactions on smart phones and spoken dialogs with a wizard-of-Oz agent. We implemented
user models to understand the user’s high-level intentions so as to provide personalized interac-
tion across sequences of applications/domains in two ways: 1) observe current context to predict
appropriate follow-up domains; 2) understand the user’s explicit and abstract cross-domain in-
tentions. As a result, our model can 1) transition to the next app smoothly by predicting the
follow-up domain given the current context and 2) assist the user at the task level by propos-
ing a set of relevant apps given a task-level speech command. We also investigated methods
to significantly reduce the gap between user-dependent models and user-independent models,
since the latter may be less expensive in large scale. To convey the agent’s understanding of
the user’s cross-domain intentions, we adopted key phrase extraction from user-generated lan-
guage resources to refer to specific intentions. Our user study demonstrated that understandable
references can be generated.

Based on what we have learned through this thesis, the following may be interesting exten-
sions of the current work. In OOV learning, we want to investigate how to effectively expand
the language understanding model to include the learned new words. For example, “Pittsburgh”
in the user utterance “I’d like to try some Pittsburgh cuisine” is the new phrase learned by the
agent (e.g., pronunciation and spelling are learned). We want the agent to automatically expand
the existing [cuisine type] class, rather than [destination], to incorporate “Pittsburgh”.
Sub-dialogs can be launched to ask the user for help if any ambiguity is presented. In cloud ASR
adaptation, a fine-grained hypotheses combination model should be adopted to further improve
the recognition accuracy. In user intention understanding, a system passively observing the user’s
behavior needs to analyze and then make judgements in the form of deciding to query the user
about the intentions. Seeking help from the user can improve the quality of the machine-learned
hypotheses, although causing human effort. Active learning should be deployed to optimize this
learning process, balancing quality and effort. Given the current smart environment which hosts
millions of applications/functionalities, it is time to re-think spoken dialog systems in this scale.
Functionalities in such a large scale should be decoupled from the dialog manager and indeed
become services to the intelligence. A bridge to commute between language (both the user’s and
the agent’s) and appropriate services is a future direction in scaling up dialog systems [7, 10].
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