Contents

Introducere

Terminologie

Ecranul

1.1 cuvant cheie. e

1.3 PRINT
1.4 Exercitii

Mai multa dinamica

2.3 Concatenarea sirurilor
2.4 Exercitii

Interactiunea cu calculatorul

3.1 STOP
3.2 CONTINUE o e e e e e e
3.3 INPUT o e
3.4 Exercitiu rezolvat
35 Exercitii

Culoare

4.1 GOTO
4.2 BORDER.
4.3 PAPER
4.4 INK. e
4.5 Exercitii

11

13

21
21
22
23
26

27
27
28
29
30

31
31
32
32
33
34

5 Curatenie si variatie

B.1 CLS . . . o e
5.2 CLEAR e
5.3 NEW
b4 IF - THEN. e
5.5 Exercitiurezolvato
5.6 Exercitiio

6 Matematici din plin

6.1 REM.
6.2 PAUSE
6.3 ABS . . . e
6.4 INT
6.5 SQR
6.6 SGN
6.7 EXP
6.8 LN
6.9 Exercitiurezolvat
6.10 Exercitii

7 Mai multe dimensiuni

7.1 DIM.
7.1.1 DIM pentru variabile numerice
7.1.2 DIM pentru variabilede tipsir.

7.2 Exercitiu rezolvat

7.3 Exercitiu

8 Cicluri

8.1 FOR - TO - STEP
8.2 NEXT
8.3 Exercitiurezolvat
83.1 FOR v=x TO y STEP z
8.3.2 NEXT Vv
8.4 Exercitii

9 intamplare si interactiune

9.1 RND
9.2 RANDOMIZE
9.3 Exercitiurezolvat

10

11

9.4 INKEY$.
9.5 Exercitiu rezolvat
9.6 Exercitii

Din nou culori si siruri
10.1 INVERSE
10.2 BRIGHT
10.3 FLASH
10.4 OVER
05T0
10.6 Exercitiu rezolvat
107 VAL

10.8 Formatul stiintific (exponential)

10.9 Exercitii

Logica, printre altele
11.1 NOT.
112 0R
11.3 AND.
11.4 Exercitiu rezolvat
115 LEN.
11.6 Exercitiu rezolvat
11.7 vaL$
11.8 Exercitii

12 Grafica

12.1 PLOT
12.2 DRAW
12.2.1 DRAW X,y

12.2.2 DRAW X, Y, U e

12.3 CIRCLE.
12.4 Actiunea culorilor
12.5 POINT
126 CHR$
12.7 CODE
12.8 Exercitiu rezolvat
12.9 Exercitii

13 Subrutine si trigonometrie

131 PT

66
66
67
68
68
69
70
71
72
73

74
75
76
76
79
80
80
81
81

83
84
84
85
85
86
86
87
88
91
91
92

93
93

14

15

16

13.2 GOSUB
13.3 RETURN
134 SIN
135 COS
13.6 TAN
13.7 ASN
13.8 ACS
139 ATN L L
13.10Exercitiu rezolvat
13 11Exercitii

Manipulari de date si sunet

141 READ
14.2 DATA
14.3 RESTORE
14.4 Relatii de ordine pentru siruri
145 BEEP
14.6 ATTR
14.7 Exercitiu rezolvat
14.8 Exercitiio

Memoria
15.1 POKE
15.2 PEEK
15.3 Harta memoriei
15.4 USR
1541 USRadresa
1542 USRSIN
15.5 Exercitiu rezolvat
15.6 Exercitii

Prin maruntaiele HC-ului

16.1 BIN
16.2 STR$
16.3 Exercitiu rezolvato
16.4 IN
16.5 QUT
16.6 Exercitii

17 Casetofonul

104
104
105
105
106
107
108
110
110

111
114
114
115
118
118
118
118
119

120
120
121
122
122
123
125

126

18

17.1 SCREEN$
172 DEF FN.
173 FN
174 SAVE

17.4.1 SAVE numeprg
17.4.2 SAVE numeprg
17.4.3 SAVE numeprg
17.4.4 SAVE numeprg
17.4.5 SAVE numeprg

175 LOAD

17.5.1 LOAD numeprg
17.5.2 LOAD numeprg
17.5.3 LOAD numeprg
17.5.4 LOAD numeprg
17.5.5 LOAD numeprg
17.5.6 LOAD numeprg

17.6 MERGE
17.7 VERIFY.
17.8 Exercitiu rezolvat . . .
17.9 Exercitii

Periferice

18.1 LLIST
18.2 LPRINT
183 copYy
18.4 Drivere
185 OPEN#
18.6 CLOSE#.
18.7 Discul
18.8 Exercitii

Erorile

Setul de caractere HC
Harta memoriei
Codurile culorilor

Baze de numeratie

SCREENS 130
CODE adresa, lung 130
DATA var () 130

SCREENS 130
CODE adresa, lung 130
CODE adresa 131

134
.............................. 135
.............................. 135
.............................. 136
.............................. 136
.............................. 138
.............................. 138
.............................. 140
.............................. 141

142
143
149
150

152

F Reprezentari interne

G Rezolvarile exercitiilor

G1
G.2
G3
G.4
G5
G.6
G.7
G.8
G.9

Capitolul 1
Capitolul 2
Capitolul 3
Capitolul 4
Capitolul 5
Capitolul 6
Capitolul 7
Capitolul 8
Capitolul 9
G.10 Capitolul 10
G.11 Capitolul 11
G.12 Capitolul 12
G.13 Capitolul 13
G.14 Capitolul 14
G.15 Capitolul 15
G.16 Capitolul 16
G.17 Capitolul 17
G.18 Capitolul 18

H Variabilele sistem la nivel de bit. Jonglerii cu variabile sistem

H.1 Variabilele sistemului BASIC

H.2 Jonglerii cu variabile sistem

Index

10

154

160
160
160
161
161
162
162
165
166
167
168
170
171
175
178
180
182
184
185

186
186
189

193

Introducere

Aveti in fat§ un HC. Dacd nu aveti aduceti-l acum. Dac3 nu v-ati cump3rat, purcedeti.
Dacad NU, aruncati cartea aceasta!

Nu se poate face programare la modul abstract, pe hartie, ca problemele de fizica. Oricat
ar parea de ciudat, informatica, prin metodele ei, este adesea o stiintd experimentald! lar eu
v3 invit s3 descoperiti HC-ul experimentéand.

Nu sunt multe lucruri asemenea programelor, pe care s3 le poti face si desface asa de
usor, pentru cd nu sunt prea multe lucruri care s3 fie ficute din nimic! Nimic material, vreau
s8 zic. Calculatoarele ne arat3 c3 existd un ceva imaterial cu care putem opera si care se
poate manifesta prin rezultate palpabile. Eu personal sunt pasionat de informatic3 fiindc3 ea
Tmi arat3 c3 efectiv pot transforma lucrurile folosind ,doar” informatie. Un calculator alc3tuit
dintr-o gramad3 de sarme si plastic, se transform3 cu niste programe puse pe el intr-o masinarie
colosal3, de fiecare dat3 alta! S& nu credeti c3 astea sunt basme: existj o Tntreagd teorie a
masinilor virtuale care se ocupd de astfel de probleme — cum pot face ceva sd par3d altceva,
folosind doar informatie.

C3 Tn BASIC nu se poate scrie vreo aplicatie profesional3 este un lucru care devine evident
oricui stie si un limbaj mai serios. Tns¥ HC-ul este un calculator dragut, pentru care s-au scris
o sumedenie de jocuri interesante. Mi se pare calculatorul ideal pentru un pusti care Tncepe s3
Tnvete s3 ,butoneze”. Asta pentru c3 partea mai atractivd (grafica) este bine dezvoltatd. Sie
si mult mai ieftin ca un PC.

Tntre persoanele implicate Tn activitatea didacticd din informatic3 existd o lungd polemic3
privitoare la BASIC. Problema principald nu este dacd limbajul este sau nu bun, ci dac3 este
sau nu ddundtor. Nu putini sunt cei care afirm3 c8 BASIC este un limbaj care nu incurajeaz3
gandirea disciplinat3 si, ca atare, poate sa duca la deprinderi nefaste pentru cineva care vrea s3
lucreze ceva mai des informaticd. Eu cred cd BASIC HC este un limbaj suficient de bun pentru
primul limbaj pe care 1l Thvat3 cineva. in primul rand pentru c3 este foarte simplu, iar acest
lucru nu este de loc de neglijat. A Tncepe informatica cu BASIC Tnseamnd a Tncepe urcusul
muntelui cu panta cea mai lind. Nu toat3 lumea vrea s3 facd alpinism. Pe de alt3 parte, e
suficient de distractiv ca s3 stimuleze perseverenta si curiozitatea cuiva.

(Dac3 sunteti nou Tn informatic3, sdriti va rog peste urm3toarele doud paragrafe)

De altfel, rog ca nimeni s& nu se opreascd aici. S3 preia din HC ceea ce este bun. lar eu cred
cd are multe lucruri ,tari”"; pentru cel care stie asamblare Z80, citirea programelor ce constituie
interpretorul BASIC din ROM poate fi o lectie plind de Tnvatdminte. Mie mi-a pldcut mai ales
cum e scris si folosit evaluatorul — un adevarat emulator de virguld flotantd — si partea de
canale, care este un concept de o putere egald cu cea din cele mai bune sisteme de operare.

Dac3 ne uitdm la aplicatiile care se dezvoltd Tn ultima vreme pe PC-uri — cu jocuri de
150Mo, atunci programele de pe SPECTRUM, utilizind numai 48K de memorie, sunt niste

11

capodopere. Cum observa un informatician american: ,0amenii au uitat s scrie programe
scurte!”

S3 vorbim acum despre aceastd carte. Ea se vrea n acelasi timp un manual (care s3 prezinte
lucrurile Tntr-o ordine progresiva, fard a se baza pe notiuni pe care nu le-a explicat deja) dar
unul complet (adic s3 spund tot ceea ce tine de BASIC HC). Aceste doud cerinte sunt foarte
greu de Tmp3cat. Cred c3 totusi am reusit, folosind o smecherie: de fiecare datd cind o
notiune trebuia introdusd, dar necesita cunostinte ulterioare, am amanat explicarea unora din
propriet&tile ei. Tn text sunt foarte multe trimiteri Tnainte (de genul ,,vezi Capitolul 18"). Ei
bine, acestea pot fi complet ignorate de cititor la prima trecere. Le-am pus doar ca s3 se stie
c3 voi reveni asupra unor aspecte, sau c3 ele vor fi deplin intelese abia mai tarziu. Cititi cartea
Tn ordine, fard a va |3sa distras de ele.

Anexe sunt multe, dar interesante. Acolo sunt prezentate si solutiile tuturor exercitiilor, pe
care am Tncercat s3 le fac cat mai amuzante, dar totodatd si ilustrative pentru diverse tehnici
de programare.

Cartea aceasta am scris-o Th urm3 cu opt ani, cand eram Tn liceu. Atunci aparitia ei ar fi fost
categoric mult mai utild (pentru c& PC-uri vedeai mai rar la noi), dar din p3cate si imposibil3
(alte vremuri...). Dup& ce mi-am ficut o socoteald am zis c3 poate nici acum nu-i prea térziu
si am zis s3 Tncerc marea cu destu’.

De un lucru Tmi pare r8u: pe vremea aceea nu stiam cat de important3 este o bibliografie!
Asa c3 nu mai stiu de pe unde am preluat informatiile pe care vi le expun. O mare parte
sunt originale, rezultdnd din experimentele mele, dar datorez mult manualelor calculatorului
SPECTRUM. O surs3 nepretuit3d a fost The Complete Spectrum ROM Disassembly de lan
Logan si Frank O'Hara, publicatd de Melbourne House in 1983. Rezolvarea unuia din exercitii
(de asta Tmi aduc aminte) se datoreste prietenului mei Cristi Francu (Exercitiul 2 din Capitolul
13). Multumesc, Cristi.

latd cd am ajuns la partea multumirilor. Tn primul rand acestea se cuvin adresate domnului
profesor Sorin Tudor, care m-a indemnat acum opt ani s3 scriu aceast3 carte. A fost un lucru
foarte important pentru mine, pentru c3 mi-a aratat c3 pot s3 fac singur o grdmad3 de lucruri
(cred c3 fiecare dintre noi poate...).

Nu pot sa precizez influente concrete, dar sunt sigur cd au fost o multime n acea perioad3,
din partea colegului meu Mihai Boicu. li multumesc si lui.

In fine, v@ multumesc dumneavoastrd pentru efortul financiar depus si increderea acordat3
prin cump3rarea acestei c3rti. Sper s& nu v& parj (foarte) rau.

Mihai Budiu
Bucuresti, 10 August 1995

12

Chapter O

Terminologie

Un capitol plictisitor, dar un r3u necesar cu privire la:

e programe;
e comenzi si functii;
e setul de caractere;
e parametri;

e erori;

e tipuri de date;

e constante si variabile.

Pentru a indica unui calculator ce trebuie s3 fac3, trebuie s3-i exprim3m doleantele noastre
Tntr-un anume fel. Succesiunea de operatiuni pe care el o va executa poarti denumirea de
program. Programul este — din punct de vedere al omului — un text ntr-o anumit3 , limb3",
pe care si calculatorul o Tntelege. Aceasta este destul de s3rdcutd Tn comparatie cu limbile
vorbite de oameni Tn mod normal, si de aceea numitd limbaj. Noi o s3 studiem Tmpreun3
limbajul pe care niste americani l-au numit BASIC. Tot asa cum limba rom&n3 are o sumedenie
de dialecte, asa si BASIC-ul cunoaste mai multe forme. Vom studia varianta pe care o pricepe

calculatorul HC85.

,Basic” Tnseamnd in limba englezd ,de bazd”. ,BASIC" este Tn viziunea creatorilor s3i
prescurtarea de la ,,Beginners’ All-purpose Symbolic Instruction Code™, adic3 ceva de genul
,,Codul de instructiuni simbolice bune-la-toate pentru Tncepatori.”

Asa cum Tn comunicarea dintre oameni folosim propozitii si fraze, Tn comunicarea cu calcu-
latorul folosim linii de text care cuprind instructiuni ale limbajului n care facem comunicarea.
latd un exemplu de linie BASIC:

13

FOR i=1 TO 100 : PRINT i, 12 : NEXT i

Nu ne preocupdm deocamdata de Tntelesul ei. Pentru cei extrem de curiosi, putem dezv3lui
c3, Tn urma execut3rii instructiunilor cuprinse n aceast3 linie, HC-ul trebuie s& scrie pe ecran

numerele de la 1 la 100 Tmpreun3 cu p3tratele lor. Incercati-!
|

Calculatorul este un ,sclav’ perfect (cand ntelege ce vrei de la el). Scopul sdu este s3

asculte comenzile primite si apoi s3 le execute. Tn BASIC i putem impune doud comportari
diferite:

e pentru fiecare linie primit3, el trebuie s3 Tndeplineascd imediat comenzile transmise (ca
n exemplul de mai sus);

e trebuie s3 adune mai multe comenzi, pe care s3 le execute apoi intr-o anumitd ordine
(un exemplu din categoria comunicatiei inter-umane: ,la bani din dulap, du-te péan3 la
librdria cea mai apropiatd si cump&r3 si pentru noi minunatul manual de BASIC pentru

HC85!").

Astfel de comenzi sunt stranse laolaltd Tn ceea ce se numeste un program. lata un scurt
exemplu:

5 FOR k = 0 TO 21
10 PRINT AT k+5,k; PAPER 7; INK 7; "BASIC HC VA SALUTA"
17 NEXT k
19 OVER 1 : INVERSE 1 : INK 2
20 FOR i=0 TO 255 STEP 8
30 PLOT i, O: DRAW PAPER 5; 0, 175
35 PAUSE 10
40 NEXT i

Ca s3 vedeti ce face acest program aveti o singurd metodd: scrieti-| si apoi tastati RUN.
Cum se Tntdmpl3 toate aceste grozdvii vom deslusi pe-ndelete de-a lungul celor 18 1/2 capitole
care mai urmeaza.

S3 vedem ce-am Tnv3tat: instructiunile pe care le ddm calculatorului spre executare se pot
comporta in doud moduri diferite. Si anume, unele dintre ele vor fi executate imediat ce au

fost transmise calculatorului (la apgsarea tastei — Carriage Return, numit3 de asemenea

ENTER | ea e plasat3 pe al treilea rand in dreapta), iar unele vor fi puse la pastrare pentru a

I executate mai tarziu, Tn Tnlantuire cu altele — formand un program.

Care este diferenta dintre aceste dou3 tipuri de instructiuni? P3i, liniile care intrd Tn pro-
gramul BASIC Tncep cu o etichetd, iar celelalte nu. Eticheta in BASIC HC85 este un numér
Tntreg, cuprins Tntre 1 si 9999. Priviti cele doud exemple de mai sus si identificati etichetele sau
lipsa lor! Ca verificare, v3 spun c3 al doilea exemplu este format din 8 linii care au, Tn ordine,
etichetele 5, 10, 17, 19, 20, 30, 35, 40.

Nu am deslusit Tncd forma unei linii. O linie poate s& contind zero, una sau mai multe
instructiuni BASICcare, atunci cand se vor executa, o vor face in ordinea fireasc3, de la stanga
spre dreapta. In caz c& o linie contine mai multe instructiuni, ele trebuie s3 fie separate de

semnul ;" (doud puncte). In al doilea exemplu, linia 40 contine o singurd instructiune, pe
cand linia 30 are dou3.

14

Hai s3 vedem la ce foloseste o etichetd.

e Pentru a identifica o linie. In programul BASIC nu pot exista doua linii cu aceeasi etichet3.
Introducerea unei linii cu o etichetd egald cu a unei linii deja existente se soldeaz3 cu
pierderea vechii linii si inlocuirea ei cu cea noud. Pentru a elimina o linie dintr-un program

BASIC, se va introduce doar eticheta ei (urmata de , bine-niteles). Folosind exemplul
de mai sus, tastati 20 si apoi ap3sati . Linia ar trebui sa dispara.

e Pentru a indica ordinea de executare a liniilor. Liniile se aseazd in program in ordinea
crescitoare a etichetelor lor, aceasta fiind si ordinea in care se executd. Nimeni nu ne
obligd s3 le scriem Tn ordine crescdtoare; daca am uitat ceva, vom putea s3 introducem o
linie noud printre cele deja existente. Din aceastd cauz3 este recomandabil s3 numerotdam
liniile nu chiar consecutiv, ci — de exemplu — din 10 Tn 10. Rescrieti linia 20 si verificati
c3 a fost pus3 la locul ei, Tntre 19 si 30.

Sau, mai deslusit, dacd avem programul:

10 FOR i=1 TO 10
20 NEXT i

putem apoi introduce
15 PRINT SQR i
ca sa obtinem

10 FOR i=1 TO 10
15 PRINT SQR i
20 NEXT i

S& trecem mai departe, examinand ,cuvintele” ce formeaza limbajul BASIC. Ele se numesc
cuvinte cheie. Putem distinge doud mari clase:

Comenzile indic3 niste imperative adresate calculatorului. Fiecare linie incepe cu o comanda.
n scurtul program de mai sus, comenzi sunt FOR, PRINT si NEXT. Semnul ,dou3 puncte”
este, de asemenea, urmat mereu de o noud comand3 (Tn afara cazului cand este scris Tntre
ghilimele). Comenzile sunt cateodatd Tnsotite de parametri, pentru a descrie mai precis
actiunea. Tn programul de mai sus, tot ce urmeaz3 in fiecare linie dupd comand este un
parametru al acesteia (in linia 15 parametru este SQR 1i; n linia 20 parametru este i).
Vom vedea c3 fiecare comand3 se asteaptd si fie urmat3 de parametri de un anumit tip,
pe care il vom indica cand o vom studia.

Functiile indic3 un proces de calcul, care furnizeaz3 un rezultat. Functiile se folosesc Tntotdeauna
pentru a calcula parametrii unei comenzi. Cu alte cuvinte, rezultatul pe care o functie
il Tntoarce in urma calculului trebuie s3 fie folosit de ,.cineva” (o altd functie sau o co-
mand3), mai departe. Tn linia 15 avem functia SQR. Unele functii au nevoie de argumente
pentru a genera un rezultat, altele nu. SQR din linia 15 are un argument, si anume i.
NumZrul si tipul argumentelor fiecrei functii sunt fixate. De exemplu, functia radical
SQR are Tn mod evident nevoie de un argument al carui radical s3-| calculeze.

15

Interesant este faptul c3, oriunde se poate afla un parametru (sau un argument), se poate
afla si o expresie oricat de complicata care, in urma evaluarii, genereaza un rezultat potrivit.
(Putinele exceptii de la aceastd regul3 vor fi semnalate pe parcurs.)

Lucrurile sunt destul de anoste, dar nu v3 descurajati: inceputul e mai greu, pana ne formam
un vocabular comun. Dup3 aceea lucrurile merg mai repede si mai cursiv, iar termenii abstracti
cu care am operat pan3 acum devin limpezi.

Am spus c3 un program e un text, format din linii (atentie, o linie de program poate s3 se
desfdsoare pe mai multe linii de ecran sau de héartie!). Textele, fie ele n roméan3 sau in BASIC,
tot niste Tnsiruiri de caractere sunt (c3 nu orice insiruire de caractere e un text, asta cred c3
e clar). Care sunt caracterele pe care le putem folosi pentru a ne exprima, nu e un lucru chiar
evident: de pildg, limba romana are 3,7, s, t, 3, care Tn alte limbi nu existd. De aceea, nu este
lipsit de interes s3 vedem care sunt caracterele pe care BASIC-ul le poate folosi.

Putem Tmp3rti setul de caractere in cateva grupe:

Caractere de control (le vom discuta in Capitolul 12).
Litere mari Si mici abcdefghijklmnopqrstuvwxyz ABCD...Z
Cifre 0123456789

Cuvinte cheie (acesta este un lucru specific HC-ului: un caracter nu se infatiseazd neaparat
ca un singur simbol grafic, ci uneori ca un cuvént intreg); de exemplu, prin programele
scrise mai sus am ntalnit:

FOR PRINT NEXT SQR

Fiecare din aceste semne este in BASIC HC un singur caracter!
Semne speciale, cu dou3 subgrupe:
semne speciale cu functionalitate BASIC:
s+ — k0= () #<=d>= <> O
semne speciale decorative:
her?r_e{ |} (¢ [\]

Caractere grafice definite (arati ca un p3trat Tmp3rtit in 4, din care unele buc3tele sunt
colorate).

Caractere grafice definibile (le vom detalia in Capitolul 16).

Caracterul spatiu (blanc).

Ce vreau s3 zic prin ,functionalitatea” unui caracter (special)? Anume c3 un caracter cu
functionalitate are un rol extrem de important pentru semnificatia programului care 7l contine.
De exemplu, punctul ,,." se foloseste in engleza (si in BASIC) acolo unde noi folosim virgula
zecimal3d Tn scrierea numerelor! Atentie, deci: 23.45 si nu 23,45!

Caracterul spatiu si caracterele de control au un statut aparte: ele sunt nesemnificative
(adica pot s3 lipseascd sau s3 fie oricat de multe) oriunde apar in program, cu exceptia aparitiei
ntre caracterele care formeaz3 o constantd. (Ce e o constantd o s& explicdm un pic mai incolo.)

16

Ele (spatiul si caracterele de control) nu influenteazd nicicum executia programului — cu sau
fard ele un program face acelasi lucru.

]
Cam asta-i cu caracterele.

S3 introducem acum o conventie de notatie cu ajutorul c3reia vom explica sintaxa BASIC.
Sintaxa, ca si la gramatic3, este setul de reguli pe care le folosim pentru a scrie programe corecte.
Existd comenzi care se pot folosi Tn mai multe feluri, cateodatd cu un parametru, cateodat3
farad. Cand vom descrie sintaxa unei comenzi care are parametri optionali (adicd parametri
care pot s3 fie prezenti sau s3 lipseascd), vom indica acest lucru punénd ntre paranteze p3trate
[] acei parametri. Cum [si] nu au vreo functionalitate in BASIC, nu se vor ivi confuzii. Toate
functiile, cu exceptia uneia (BIN) nu au niciodatd parametri optionali.

Conventia aceasta, de notare cu [], nu permite din p3cate a se descrie foarte precis sintaxa
diverselor instructiuni, dar este extrem de simpld. Vom suplini, dac3 este nevoie, prin cuvinte
lipsa ei de precizie.

Deci, cand scriu ca sintaxa comenzii RUN este:
SINTAXA: RUN [eticheta]
asta Tnseamn3 c3 RUN se poate folosi in doud feluri intr-un program; fie in forma:
RUN
fie:
RUN eticheta
Tn acest exemplu eticheta este un parametru optional al comenzii RUN.
|

Cand vorbesti cu un englez si i te adresezi Th roméneste, sunt multe sanse s3 nu te inteleag.
Probabil cd dupd mai multe tentative de a comunica in acest fel cu el, o s3 dea din umeri.
Ei bine, si calculatorul face cam la fel: cand nu pricepe ce-i ceri, sau nu poate face ce-i ceri
(nimeni nu-i perfect!), iti r&spunde cu un mesaj de eroare. Cand termini de tastat o linie

BASIC si apesi , calculatorul se uitd s3 vad3 dac linia ar putea fi o linie BASIC — adic3
dac3 respectd sintaxa. Dac3 nu, atunci nu acceptd linia si afiseazd un semn de intrebare clipitor
n locul unde se afld ceva neasteptat.

Dac3 veti scrie ceva de genul:

FOR TO STOP

veti obtine la apasarea |ui un astfel de semn:

FOR 7 TO STOP

Pe de altd parte, se poate Tntampla ca linia s3 fie corectd din punct de vedere sintactic,
dar imposibil de executat. O astfel de eroare poate fi depistatd numai Tn timpul executiei
programului de c3tre calculator. Un exemplu tipic ar fi Tncercarea de a Tmparti ceva la zero.
Dac3 un lucru nu poate fi facut de calculator, atunci executarea programului se opreste Tn chiar
locul acela, iar utilizatorului i se aratd un mesaj de eroare.

Mesajele Tncep cu un caracter care identificd cu precizie eroarea. Acesta este unul dintre
caracterele 0-9 sau A-R. Dupd acestea urmeaz3 alte informatii despre eroarea obtinutd. Lista
textelor generate Tn cazul erorilor si corespondenta cu literele este datd in Anexa A; zgérciti

17

cum suntem la tastat, noi vom referi erorile numai prin caracterul lor de identificare, pentru a
scurta textul.

Mesajul erorii se termind cu numarul liniei si numarul comenzii din linie la care s-a obtinut
eroarea. (O linie nu poate avea mai mult de 127 de comenzi cu parametrii lor, dar poate avea
si comenzi ,vide")

De exemplu, Tncercarea de a executa linia
PRINT O::::PRINT 1/0

va da eroarea
6 Number too big, 0:5

adicd Tmpaértire prin zero n linia 0 (o linie f&r3 etichetd), comanda a cincea. (Ce face PRINT
vom discuta la momentul oportun, important e c3 aici ,,/"” a fost folosit pe post de Tmpartire,
Tncercandu-se Tmpértirea lui 1 la 0.)

Existd un mesaj care nu corespunde unei erori Tn sensul rdu al cuvantului, ci dimpotriva;
este vorba de mesajul 0 OK, care indicd utilizatorului c3 ceea ce el daduse calculatorului de
facut s-a terminat. Se poate spune c3 este o eroare de ,iesire din program”. Ea se deosebeste
de celelalte erori prin faptul c& NU afecteazi locul repornirii programului cu CONTINUE (vezi

Capitolul 3).
|
Acum trebuie s3 despicidm alt fir Tn patru, discutand despre tipurile de date.

De prin clasele mici ni se tot spune ca nu putem aduna mere cu pere. Aceastainseamn3 c3 nu
putem face aceleasi operatiuni cu toate lucrurile ce se g8sesc pe lumea asta. Si informaticienii

s-au vazut siliti s3 clasifice valorile cu care opereazad programele dup3 tipul lor. 1 n termeni
abstracti, un tip de date este definit de operatiile care se pot face cu acele date. Noi o s3 ne
multumim, pentru moment, cu atat, I3sand o discutie mai ampl3 in seama unor alte manuale.
Pentru a lucra n BASIC, ajunge s& stim c3 datele pe care el le manipuleaz3 au una din dou3
forme (sau tipuri):

e numere;
e siruri de caractere.

O notiune cruciald Tn informatic3 este cea de variabila. Ea se defineste in opozitie cu cea
de constanta. Constantele sunt niste date a c3ror valoare nu se schimb (si nici nu se poate
schimba) Tn cursul executiei programului. (Definitia asta nu este suficient de precisd, pentru c3,
dupd ea, programul Tnsusi este o constanta!) Totusi nu o vom rafina, ci vom da doar exemple.

Putem avea deci patru combinatii de obiecte care ,,contin” date si tipurile lor:

1. constante numerice (a c3ror valoare e un numar);
2. constante ,sir de caractere” (a cdror valoare este un sir de caractere);

3. variabile numerice;

18

4. variabile ,sir de caractere” (sau mai scurt ,variabile sir").

latd cum arat3d fiecare:

1. O constantd numeric3d apare in program cam cum apare pe hértie: o Tnsiruire de cifre,

care poate avea un semn (— sau —|—), un punct zecimal sau un exponent (despre exponenti
prin Capitolul 10). lat3 niste exemple concrete:

10 1000 0.0002 -12345.5678 2e-5

(cel din urm3 contine si exponent).

De exemplu, in linia

FOR i =1 TO 10 PRINT i : NEXT i

apar doud constante numerice: 1 si 10.

. O constantd de tip sir (de caractere) este indicatd Tn programul BASIC prin delimitarea
ei ntre ghilimele. Orice caracter (cu exceptia lui CR) poate face parte dintr-o constant3
de tip sir. Ghilimelele de la inceput si sfarsit nu fac parte din constantd (din valoarea ei,
de fapt). Daca in constant3 trebuie s& apard si ghilimele, atunci ele se vor scrie de dou3
ori. lat3d si niste exemple:

constantd

valoare

"constanta sir"
"HC - 85, bun !"

constanta sir
HC - 85, bun !

"zic ’salut’" zic ’salut’
"niste "" ghilimele" niste " ghilimele
"o (sirul nul, farg nici un caracter)
llto be = "N a fillllll to be = Ila fill

Tn ultimul exemplu, cele trei ghilimele de la sfarsit trebuie interpretate dupd cum urmeaza:
ultima pereche indic3 sfarsitul constantei, celelalte doud sunt de fapt o singura ,,ghilimea”,
dar reprezentatd dublat n interiorul constantei.

Variabilele sunt niste obiecte informatice identificate prin numele lor, care este cu totul
altceva decit valoarea lor. E ca si cum as zice ,,obiectul de la mine din buzunar”, sintagm3
care poate s3 Tnsemne cdteodatd batista, altddatd cheile, sau mai stiu eu ce (mai rar
bani). ,Buzunar” este numele ,variabilei”, iar valoarea ei este fie batista, fie cheile etc.

Variabilele se diferentiazg in tipuri dupd tipul valorilor pe care le pot avea. In BASIC
avem deci variabile de tip numeric si variabile de tip sir de caractere. Pentru a evita
confuziile, numele pe care o variabild 7l are arat3 si tipul (valorii) ei, dupd cum urmeaz3:

. Variabilele de tip numeric au numele format din litere si cifre, dar Tncepand cu o liter3.
Numele nu are (teoretic) o limitare Tn lungime. Literele mari sunt totuna cu cele mici, iar
eventualele spatii si caractere de control sunt ignorate (acesta este un alt lucru cu totul
specific BASIC-ului HC). Exemple de variabile numerice:

19

a
abc

A b C

Aceasta variabila are un nume mult prea lung pentru a fi utila
vari2b

In aceste exemple, al doilea si al treilea nume reprezintd aceeasi variabil3!

Exist3 si specii mai bizare de variabile numerice, si anume cele FOR-NEXT si cele dimen-
sionate, dar le vom analiza Tn Capitolele 7, respectiv 8. Deocamdat3 nici nu ne sunt
utile.

. In fine, variabilele de tip sir au numele format dintr-o singur3 literd urmat3 de caracterul

dolar ($). Literele mari sunt echivalente cu cele mici. In general, in BASIC semnul dolar
indicad faptul c3 se asteptd o valoare de tip sir. El vine de la prescurtarea cuvantului
englezesc pentru ,sir’" — ,string”. Pentru c3 existd exact 26 de litere diferite, deducem
8 pot exista simultan cel mult 26 de variabile sir (cele numerice sunt mult mai multe!).
Pan% acum, Tns3, in programele pe care le-am scris in BASIC, nu am avut vreodat3 nevoie
de mai multe.

Valoarea unei variabile sir poate fi — teoretic — orice sir de caractere cu lungimea
intre 0 (sirul nul) si 65536 de caractere, dar ea este de fapt limitatd mult mai jos, de
memoria disponibild a calculatorului. Spre deosebire de constantele de tip sir, valoarea
unei variabile sir poate contine si caracterul CR.

Exemple de nume de variabile sir:
a$ b$ c$ A

ultima e totuna cu prima.

Mai exist3 si o specie de variabile sir numite ,indexate”, dar le discutdm n Capitolul 8.
Pan3 atunci, uitati c3 exist3.

Of, ce de teorie! Aici se incheie prezentarea principalelor obiecte informatice cu care lucreaz3

BASIC-ul. Din capitolul urm3tor trecem la treab3 si inv3t&m instructiunile.

Daca ati parcurs tot acest capitol, este prea tarziu ca s3 va mai descurajati; de aici Tnainte

lucrurile vor Tncepe s3 fie din ce Tn ce mai interesante. Pe deasupra, cred cd partea pe care ati
terminat-o este cea mai grea din intregul manual!

20

Chapter 1

Ecranul

In acest capitol vom discuta in amanunt:

e LIST pentru a examina programele introduse;
e scroll — alunecarea ecranului;
e PRINT pentru scriere pe ecran;

e forma ecranului din punct de vedere al textului.

Vom respecta urmitoarea form3 de prezentare a cuvintelor cheie din BASIC HC:

1.1 cuvant cheie

ENGLEZA: cuvantul englezesc din care provine;

SINTAXA: sintaxa folosirii sale; reamintim c§ parametrii intre [si] sunt optionali;
ceea ce e scris cu litere mici cursive reprezintd un nume generic (a
c3rui semnificatie o specifici Tn parte chiar el; de exemplu: eticheta va
fi o valoare numericd ce reprezintd o etichetd); alte caractere trebuie
reproduse intocmai;

CATEGORIE: comand3 sau functie — ce este cuvantul cheie;

DESCRIERE:

e explicatii detaliate;
e erori posibile;
e conditii speciale de folosire.

Si acum s3 vedem primele instructiuni:

21

1.2 LIST

ENGLEZA: to list = a face o list3

SINTAXA: LIST [#cale] [etch]
CATEGORIE: comand3
DESCRIERE:

Despre folosirea parametrului #cale vom discuta abia Tn Capitolul 18.

Efectul comenzii LIST: pe ecranul monitorului atasat la calculator apar listate (barbarism
englez) — afisate Tn ordine — toate liniile programului ce au eticheta mai mare sau egald cu
parametrul etch specificat. Dac3 LIST nu e Tnsotitd de nici un parametru, atunci listarea Tncepe
de la prima linie a programului.

Cum se efectueazd listarea?
Liniile sunt afisate una dup3 alta, fiecare incepand in stdnga ecranului cu eticheta. Pentru

c3, in general, programele sunt ceva mai lungi decat Tncape pe un ecran, este interesant de
vazut ce face calculatorul in acest caz.

Intotdeauna cénd are ceva de scris pe ecran (fie si textul unui program listat), calculatorul
scrie pand umple primele 22 de linii ale ecranului. Cand si ultima p3trdticd s-a umplut, calcu-

latorul ne Tntreab3d dac3d suntem gata cu cititul, ca sa treacd mai departe. Intrebarea este pus3
astfel: pe ultima linie a ecranului calculatorul scrie scroll?. Acest cuvant vine de la SCReen

ROLL, adicd ,alunecare (rotire) a ecranului”. In acest moment se asteaptd ap3sarea unei taste
de catre utilizator.

Raspunsurile lui pot fi dupd cum urmeazi:

e apdsand una din tastele E , D (spatiu), ‘STOP ‘ (adicd | SS ‘ + B) sau

(adic3 + @) (vezi Capitolul 3), programul se opreste, afisdnd eroarea D.

e apdsidnd o altd tastd (exceptdnd SHIFT-urile sau singure), scrierea continug sub

ultimul rénd scris anterior (deasupra lui scroll?, care dealtfel dispare), randurile deja
scrise urcand pe ecran. Dup3 ce prima linie care fusese scrisd pe ecran dupd scroll?
ajunge la randul ei Tn varful ecranului, calculatorul va intreba din nou scroll?.

Revenind acum la LIST:

Dac3 valoarea etch indicatd nu este o etichetd posibild Tntre limitele 0 si 9999, survine
eroarea B.

Dac3 valoarea parametrului etch nu este un numar intreg, atunci este rotunjitad la cel mai
apropiat Tntreg.

Un alt efect important al lui LIST etch este mutarea cursorului > al liniei curente la linia
cu eticheta etch. Linia curentd este cea care este adusd jos pentru modificare (editare) la

apdsarea tastei (+)

22

1.3 PRINT

ENGLEZA: to print = a tip&ri

SINTAXA: PRINT [#cale]l [valoare]l [;] [,] [’] [AT x, y] [TAB x]
[culori]

CATEGORIE: comand3

DESCRIERE:

Despre utilitatea ,,parametrilor” (nu sunt chiar parametri Tn sensul dat de noi cuvantului)
#cale si culori vom discuta Tn Capitolele 18, respectiv 4 si 10.

PRINT este o instructiune cu care realizeazd modificarea imaginii (textului) de pe ecran.
Denumirea ,a tipari" se trage din vremurile ancestrale ale anilor cincizeci, cand calculatoare-
le comunicau cu omul nu prin tastaturd si ecran ca acum, ci prin cartele perforate si masini
electrice de scris. Atunci actiunea de scriere din partea calculatorului era chiar o tiparire.

Principala actiune a lui PRINT este de a scrie pe ecran parametrul sju valoare. Cine este
valoare? O expresie care are sens in BASIC si care genereaz3 un rezultat, de tip numeric sau
sir. PRINT este una dintre putinele comenzi care trateazd far3d discriminare parametrii s3i, n
sensul c3 nu le impune un anumit tip. Cum aratd o expresie Tncd nu putem spune dar, pe
m3surd ce vom Tnvata noi functii, vom putea s3 alc3tuim expresii din ce Tn ce mai complexe.
Cel mai simplu tip de expresie este o constantd si are ca rezultat chiar valoarea constantei
respective. Hai s& vedem cum lucreazd PRINT, pe niste exemple. Tastati:

PRINT "afisam un numar'":PRINT 50

Tot expresie este si cea formatd numai din numele unei variabile. O astfel de expresie are
ca rezultat chiar valoarea pe care o are acea variabild Tn momentul evalu3rii expresiei. Tncd nu
stim cum pot c3péata valori variabilele (vom afla Tn Capitolul 2), dar presupunénd ca XY=24.34
si a$="texte", atunci

PRINT xy: PRINT a$: PRINT xY
va avea un efect de genul:

24 .34
texte
24 .34

Tn realitate, pentru a fi foarte rigurosi, trebuie s3 spunem ci PRINT converteste valoarea
expresiei date din reprezentarea ei din interiorul calculatorului (acesta e un lucru complicat, la
care v3 sfatuiesc s& v ganditi dupd ce veti trece de Capitolul 15) intr-o form3 care s3 se afiseze
pe ecran, si apoi face aceastd afisare. Forma in care se afiseaz3 o valoare pe ecran poate s3 fie
destul de complicatd, dupd cum vom vedea studiind scrierea stiintificd a valorilor numerice, in
Capitolul 12. Deocamdat3 ne e suficient s3 stim c& PRINT scrie valoarea expresiei (expresiilor)
care i urmeazg (fiindu-i parametru), fie ea sir sau numar.

Celelalte semne care apar n sintaxa lui PRINT controleaz3 pozitia pe ecran la care se tip3resc
feluritele expresii.

Cele trei semne speciale * (apostrof) ; (punct si virguld) si , (virguld) mai sunt numite
si separatori pentru c3 ele permit inl&ntuirea mai multor valori in cadrul aceleiasi instructiuni

23

PRINT: fiecare doud valori consecutive trebue s3 fie separate prin cel putin unul dintre semnele
speciale. Ele diferd prin modul in care aranjeaz3d Tn pagina valorile succesive.

Pentru a putea s3 vedem cum se modificd paginarea, trebuie s3 vedem cum arat3 de fapt
pagina (ecranul).

Ecranul se imparte Tn doud mari portiuni:

e prima este o centurd pe margine care se numeste BORDER;

o restul este centrul dreptunghiular care formeaz3 ecranul grafic.

BORDER-ul este o zon3 putin interesantd. In interiorul sdu nu se poate scrie nimic. Singura
operatiune ce o putem face asupra ei este de a-i schimba culoarea Tn totalitate.

Ecranul grafic este format din mici punctulete care se numesc pixeli (din englezescul PICture
CELL = celuld de imagine). Orice imagine este compusd din astfel de punctulete diferit
colorate. Pixelii Tncap cate 256 pe orizontal3d si 192 pe verticald. Despre cum putem lucra cu
fiecare din ei vom discuta abia Tn Capitolul 12. Pixelii sunt Tns grupati cate 64, Tn patritele de
8 x 8. Avem 32 de astfel de patratele de-a lungul unei orizontale a ecranului si 24 de-a lungul
unei verticale. Aceste patritele formeaz asa numita grila de joasa rezolutie a ecranului.
(Rezolutia este o masurd a numarului de semne care se pot face pe ecran; cu cat e mai mare,
cu atdt num3rul de semne care se pot desena e mai mare). Deocamdat ne vom ocupa numai
de aceste patratele. Orice simbol poate fi scris (cu PRINT) numai intr-unul din ele.

Ecranul grafic, la randul sdu, este Tmp3&rtit Tn doud buciti, pe care le vom numi ,partea de
sus” si ,partea de jos". De obicei partea de jos are numai dou3 randuri, dar poate sa creasca.
Partea de jos este folositd pentru introducerea datelor (acolo se editeaz3 liniile BASIC). Care
este ratiunea unei atari Tmpartiri va fi explicat abia Tn ultimul capitol. Pand atunci s3 notam
cd, Tn mod normal, numai primele 22 din cele 24 de randuri sunt accesibile lui PRINT.

S3 vedem cum actioneazd separatorii. Apostroful trece pe rand nou. Dacd o instructiune
PRINT nu se termind cu un separator, atunci se considerd implicit c& se termin3 cu apostrof.
Asa cd urmatoarele linii vor avea efecte echivalente:

PRINT "un mesaj" ’ "al doilea" ’ "al treilea"

si

PRINT "un mesaj":PRINT "al doilea'":PRINT "al treilea"
si anume:
un mesaj

al doilea
al treilea

Punct si virgula se foloseste in scopul tiparirii compacte, fara nici un spatiu intre diferitele
valori:

PRINT "cincizeci=";50;"saizeci=";:PRINT "60"

cu efectul

24

cincizeci=b0saizeci=60

Virgula are un efect mai complicat. Valoarea tiparitd dupd o virguld va fi scrisd fie la
Tnceputul randului, fie exact la jum3tatea lui (Tn coloana 16), dupd cum urmeaz3:

PRINT 1,2,3,4,5,6,"acum ar trebui sa vina sapte",8

care da:

1 2

3 4

5 6

acum ar trebui sa vina sapte
8

Grila de joas3 rezolutie Tsi are patritelele numerotate dupd cum urmeaz3: liniile sunt nu-
merotate de la 0 la 23, iar coloanele de la 0 la 31. Pozitia unui p&trat este complet definit3
dac3 se dau coordonatele lui, adic3 linia si apoi coloana. P3tratul cu coordonatele 0, 0 se afla
n coltul din sténga sus al ecranului.

TAB se foloseste pentru a crea tabele. El este urmat de o valoare numericd (care poate fi
rezultatul evalurii unei expresii) ce indicd din ce coloand se va continua tiparirea. Specificatiile
TAB (si AT) trebuie separate si ele cu ajutorul separatorilor.

Experimentati:

PRINT TAB 2;"2";TAB 5;5;TAB 10;10;TAB 1;"doi"

care va da:
2 5 10
doi

Dup3d cum vedeti, TAB nu se Tntoarce Tnapoi; in cazul in care coloana la care s-a ajuns
cu tipdrirea este mai mare decat cea specificatd la TAB, atunci acesta sare pe rand nou. TAB
tip&reste spatii pana la coloana specificatd, ca si virgula, de altfel.

Dac3 valoarea numericd ce urmeazd dupd TAB nu este un intreg, atunci ea se rotunjeste.
Dacd nu este un numir pozitiv, atunci se ia in modul. Dac3 este mai mare ca 31, atunci se
considera restul Tmpartirii sale la 32.

AT este urmat de doi parametri numerici, care dau coordonatele la care se va scrie urm3torul
simbol, in grila de joas3 rezolutie. AT Vy,X trebuie s& aiba pe X intre 0 si 31 si pe Y intre 0 si
23. Valorile lor sunt rotunjite si luate in modul. Daca una dintre valori nu ,,picd” Tntre limitele
expuse, instructiunea PRINT AT va da eroarea B.

Dac3 valoarea lui y este intre 0 si 23, dar mai mare decit (23 minus numarul de linii din
.partea de jos a ecranului”), se obtine eroarea 5.

Experimentati felurite amestecuri:

PRINT AT 2,2;2; AT 5,5; 5; AT 21
,21; 21; TAB 10;4,98,5,"titi"

25

Acum putem explica complet scroll?. Acest mesaj se afiseazd cand tip3rirea atinge partea
de jos a ecranului.

In final, dup3 atatea detalii nu ne rAmane decat s3 v3 adresdm un Tndemn la noi experimente
si la rezolvarea exercitiilor care urmeaza:

1.4 Exercit ii

1. Se presupun cunoscute valorile variabilelor a, b, ¢, d, e. Scrieti un progrdmel care s3
afiseze valorile lor incepand exact din coltul stanga sus al ecranului, cu cate douad spatii
Tntre ele.

2. Indicati care dintre urm3atoarele suite de caractere nu poate fi numele unei variabile n

BASIC HC:

a

(a)
(b)
(c)
(d) xwz13
(e)
)
)

x2$

a:bc

(f
(g

Q$
1gh3
pl=p

26

Chapter 2

Mai multa dinamica

Acesta este un capitol tare scurt, dar bogat in Tnvataminte. lata:

e RUN pentru a porni executia unui program;
e semnele operatiilor aritmetice;
e LET pentru a da valori variabilelor;

e cate ceva despre operatii cu siruri.

2.1 RUN

ENGLEZA: to run = a alerga (calculatoarele nu merg, ci fug)

SINTAXA: RUN [etch]
CATEGORIE: comand3
DESCRIERE:

In caz c§ etch lipseste, valoarea sa (implicitd) este 0. Dac3 valoarea ei nu este un Tntreg,
se rotunjeste.

Principalul efect al execut3rii comenzii RUN este pornirea n executie a programului BASIC
din calculator, Tncepand cu prima linie ce are eticheta mai mare sau egald cu etch.

RUN are si o sumedenie de alte efecte importante, care nu trebuie trecute cu vederea (nu-i
musai s3 le pricepeti acum, numa’ s3 stiti de ele):

o sterge toate variabilele;

e sterge ecranul (vezi CLS, Capitolul 5)

27

o face RESTORE O (vezi Capitolul 14);

e sterge stiva subrutinelor (Capitolele 13, 15).

|
Semnele diverselor operatii aritmetice in BASIC sunt (folosite intre expresii de tip numeric
produc, din valorile expresiilor, noi valori dupd reguli — sper§m — evidente):

Semn Nume Ce face
+ plus adunare
- minus sc3dere
asterisc Tnmultire
slash Tmpartire
sageatd ridicare la putere

YN ¥

Daca vreti sa extrageti radical, folositi regula care spune c3 radical de ordinul y din x este
x~(1/y).

Ca si In matematicd, operatiunile nu se efectueazd simplu de la stdnga spre dreapta, ci
fiecare are o anumitd precedenta si asociativitate. Si anume, precedenta (o calitate care
arat3 care operatii se fac Tntdi) creste ca in matematica (de la + spre ridicare la putere). La
precedente egale operatiunile se fac de la stdnga spre dreapta (asociativitate la stidnga), cu
exceptia ridic3rii la putere, care este asociativ la dreapta. Experimentati diverse calcule:

PRINT 2, 2°(1/2), 2°(1/3), 2-(1/4), 2°(1/5)

pentru radicalii din 2.

N-am spus-o, dar cred c3 ati intuit c3, iardsi ca-n matematic3d, se pot folosi parantezele
pentru a modifica ordinea operatiilor. Se folosesc Thsj numai paranteze rotunde, oricite una-
ntr-alta. Exemplu:

PRINT 2~ (3%(5+(1-4)))

S-ar putea s3 fiti dezam3giti constatand c3 ridicarea la putere nu merge nicicum cu baze
negative, nici mdcar pentru exponenti intregi. O s¥ v3 consolez (poate), spunindu-vd c3
matematica nici nu defineste functia putere pentru baze negative, Tn general. Va trebui s3
implementati singuri aceast3 operatie (insd dup3 Capitolul 6, Tn care mai Tnv&tdm cateva functii
utile).

2.2 LET

ENGLEZA: to let = a I3sa

SINTAXA: LET var = expr
CATEGORIE: comand3
DESCRIERE:

var este numele unei variabile (numericd sau sir). expr este o expresie care in urma evalu3rii
genereaza un rezultat de acelasi tip cu var.

28

LET evalueaz3 expresia din partea dreaptd a semnului egal, apoi d3 variabilei din stan-
ga rezultatul drept valoare. Aceastd operatie se numeste atribuire. Dac3 variabila nu exista
anterior, ea este creatd; dac3d exista, vechea ei valoare este pierdut3.

Acesta este un lucru important: atdta vreme cat o variabild nu a fost creat3 (cu LET, INPUT
(Capitolul 3), FOR (Capitolul 8) sau cu DIM (Capitolul 7)), ea nu existd, si ca atare tentativele

de a folosi valoarea ei se vor solda cu eroarea 2. Incercati:
PRINT a

si veti avea eroarea:

2 Variable not found, 0:1

apoi
LET a=2: PRINT a

O expresie de genul LET b=b+1 nu este o absurditate, pentru cd nu este vorba de o egalitate,
ci de o operatiune de crestere a valorii cu o unitate (incrementare).

S3 vedem un mic exemplu:

5 LET b=23 : PRINT b

7 LET b=b+5 : PRINT b

9 LET a=5: LET b= a * b : PRINT b
RUN

cu rezultatul:

23
28
140

2.3 Concatenarea s irurilor

Una din operatiile care sunt definite pe tipul sirurilor de caractere este concatenarea (inl3n-
tuirea). Simbolul ei este acelasi cu al adundrii numerelor, semnul plus +. (Despre ,plus’ se
spune cj este supraincarcat, pentru c¥ face lucruri diferite cu tipuri diferite.) Remarcati c3
nu existd posibilitate de confuzie, deoarece tipul rezultatului este dat de tipul operanzilor. Nu

existd operatia de adunare intre un sir si un num3r (eroare de sintax3). Incercati!

Cum lucreazd + cu siruri veti Tntelege executand:

10 LET a$="gal"

20 LET b$="ben"

30 LET c$=a$ + b$

40 LET d$=b$ + a$

50 PRINT AT 0,0; "A$=" ; a$, "B$=" ; b$ * "A$+B$=" ; c$
55 PRINT "B$+A$="; d$

60 PRINT "A$+B$ este diferit de B$+A$!"

29

cu efectul

A$=gal B$=ben
A$+B$=galben

B$+A$=bengal

A$+B$ este diferit de B$+A$!

2.4 Exercit ii

1. Realizati un program care calculeaz3 si afiseaza primele 5 puteri (de la 0 la 4) ale num3rului
3. Tiparirea acestora se va face precizand pe coloana 0 puterea si pe coloana 16 valoarea.

2. Indicati greselile din urmatorul ,,program”

50 LET A$="5"
60 LET a=A$

70 PRINT A$ - 3
80 LET a=a+5*b
90 LET LET=46
100 LIST -LET

30

Chapter 3

Interact iunea cu calculatorul

Vom discuta despre:

tasta | BREAK | pentru Tntreruperea programelor;

STOP pentru oprirea programelor;

CONTINUE pentru reluarea lor;

INPUT pentru comunicarea interactivd cu utilizatorul.

|
BREAK | este o tastd compus3d din Caps Shift () si blanc D La apasarea acestora,

dacd programul se afla intre doud instructiuni, executia programului se opreste cu una din
erorile D sau L. Diferenta dintre cele doud mesaje este transatd odat3 cu explicatia instructiunii
CONTINUE, in chiar acest capitol.

3.1 STOP

ENGLEZA: to stop = a (se) opri
SINTAXA: STOP

CATEGORIE: comand3
DESCRIERE:

Asa cum arat3 si numele ei, executia acestei instructiuni se soldeazd cu oprirea executiei
programului cu mesajul de eroare 9.

31

3.2 CONTINUE

ENGLEZA: to continue = a continua
SINTAXA: CONTINUE

CATEGORIE: comand3

DESCRIERE:

CONTINUE nu prea are sens ca parte dintr-un program. Scopul ei este de a relua executarea
unui program dupd Tntalnirea unei erori.

Dac3 eroarea a fost 9 sau L, atunci executia programului se va continua de la instructiunea
exact urmitoare celei care a cauzat eroarea. Dac3 eroarea a fost alta (inclusiv D), atunci
CONTINUE va cauza reluarea instructiunii care a cauzat eroarea.

Daca intre producerea erorii, (moment in care programatorul de obicei se apuc s3 inspecteze
si s& modifice programul in scopul depistarii/depanirii greselilor) si cel al execut3rii instructiunii
CONTINUE se petrec anumite modificari majore (de exemplu este scoas3 linia Tn care s-a obtinut
eroarea), atunci CONTINUE ar putea s3 se soldeze cu eroarea N.

Atentie: dac3d eroarea s-a obtinut chiar in cursul executdrii unei instructiuni direct execu-
tabile (adicd nu a unei linii de prin program), atunci incercarea de a relua cu CONTINUE va fi
sortitd esecului, c3ci noua linie direct executabild va fi nu cea care a dat eroarea, ci chiar cea
cu instructiunea CONTINUE! Calculatorul va intra Tntr-o bucld infinitd, continudnd s3 execute

instructiunea CONTINUE! 1l puteti, bine-nteles, opri cu | BREAK]|

(Tastati PRINT 1/0 si dup3 obtinerea (in linia 0) a erorii 6 Number too big, 0:1 tastati
CONTINUE. Acum linia O este chiar cea cu CONTINUE, deci programul s-a blocat! Il puteti opri

cu |BREAK))

3.3 INPUT
ENGLEZA: input = intrare; ceea ce intr3
SINTAXA: INPUT [#calel [valoare]l [;]1 [°] [,] [LINE varsir] [var]

[AT y,x] [TAB x] [culori]
CATEGORIE: comand3
DESCRIERE:

La Tntalnirea acestei instructiuni, calculatorul va folosi partea de jos a ecranului pentru
a afisa feluritele valori si pentru a cere de la utilizator introducerea unor alte valori pentru

variabilele var. In caz c& numa3rul de linii din partea de jos a ecranului nu ajunge, ele se vor
Tnmulti mancand din liniile din partea de sus, sau ridicandu-le. Dup3d terminarea executarii
instructiunii INPUT partea de jos a ecranului este stears3 si readus3 la dou3 linii.

In sintaxa de mai sus:

e var este numele unei variabile, numeric3 sau sir;
e varsir este numele unei variabile sir;

o valoare este o expresie ce se evalueazg (de orice tip.)

Functionarea lui INPUT seamand foarte mult cu aceea a lui PRINT, asa c3 nu vom detalia
rolul separatorilor si al lui TAB, care lucreaz3 chiar la fel. Despre culori vom vorbi in capitolul

32

urm3tor si Tn Capitolul 10. SZ I8murim prin exemple ceea ce a mai rdmas.

e INPUT a cere o valoare numerica de atribuit lui a ;

o INPUT a$ cere o valoare sir de atribuit lui a$; utilizatorul va primi cursorul intre ghilimele
(pe care ins3 le poate sterge).

La aceste doud tipuri de INPUT utilizatorul poate s3 tasteze o expresie oricat de com-
plicatd, care va fi evaluatd pentru a calcula valoarea de atribuit. Introducdnd primul

caracter STOP (—I—EI) instructiunea INPUT se va opri cu eroarea H.

e INPUT LINE a$, spre deosebire de INPUT a$, nu mai oferd ghilimelele , la vedere” utiliza-
torului, asa c3 acesta nu le mai poate sterge spre a introduce o expresie de evaluat. Toate
caracterele pe care acesta le tasteaz3 vor deveni valoarea variabilei a$! Un INPUT LINE

se opreste apasand Tn timpul executiei sale + @

3.4 Exercit iu rezolvat

Scrieti un program care s3 poatd fi folosit pe post de calculator de buzunar, cel putin cu
operatiile + - * / =,
Rezolvare
5 INPUT "expresia de calculat :";a
8 PRINT A:INPUT "Daca ati citit tastati CR"; LINE a$
9 RUN

Programul se bazeaz3 pe faptul c3 la INPUT putem introduce o expresie care s3 fie eval-

uatd. Al doilea INPUT LINE asigurd continuarea programului numai dup3 ap&sarea tastei
(valoarea introdusd pentru a$ nu are nici o important¥), cici RUN sterge ecranul!

Ce trebuie s3 fac pentru a tipari la cu ajutorul lui INPUT valoarea unei variabile? De exemplu,
Tntreb pe cineva cum 7l cheam3:

INPUT "Cum va cheama ? ";n$
si apoi vreau s3-| intreb pe n$ cati ani are. Nu pot s3 fac asa:
INPUT "cati ani aveti, ";n$;" 7 ";ani

pentru c3 aceasta, Tn loc s3 scrie numele care este valoarea |ui n$, ar cere o noud valoare pentru
n$. Solutia este s transform variabila intr-o expresie, astfel:

INPUT "cati ani aveti, ";(n$);" ? ";ani
sau

INPUT "cati ani aveti, " + n$ + " ? ";ani

33

S3 ne uitdm putin cum lucreazd INPUT AT sau, echivalent, ce se Tntdmpl3 cand are nevoie
de mai multe randuri. Am spus deja c3 urc3 cele doud randuri care de obicei alc3tuiesc partea
de jos a ecranului, atdta ct e nevoie (dar aceastd parte nu se mareste niciodatd la mai mult de
22 de rénduri cu totul; Tncercarea de a trece acestd limit3 se va solda cu eroarea 5). Randurile
de jos tot urcd peste cele din partea de sus a ecranului, stergandu-le, pana cand intéalnesc
cursorul lui PRINT, dupd care incep s-o imping3 in sus. (Cursorul lui PRINT este locul unde
PRINT ar trebui s3 scrie urmatorul caracter pe ecran.) Vorba lungd, ameteala omului. Hai s
vedem diferenta:

1 PRINT "hai sa scriem ceva lunguiet pe ecran ca sa avem ce sterge'
2 PRINT "hai sa scriem ceva lunguiet pe ecran ca sa avem ce sterge"
3 PRINT "hai sa scriem ceva lunguiet pe ecran ca sa avem ce sterge"
4 PRINT "hai sa scriem ceva lunguiet pe ecran ca sa avem ce sterge"
10 PRINT AT 0,0;: INPUT ’’’’?2222222222

(Liniile 2, 3, 4 sunt linia 1 editat3 si cu eticheta schimbat3.) Acest programel va scrie ceva
pe ecran, dup3 care va urca partea de jos a ecranului, stergand-o pe cea de sus, pentru c3 am
mutat cursorul lui PRINT la 0,0.

Acum rulati din nou programul, punand in linia 10 PRINT AT 21,0;

3.5 Exercit ii

1. Scrieti un program care s3 ceard cu ajutorul lui INPUT o cifrd si s3 tip&reascd numele ei
n litere (nu-i usor!).

2. Descrieti ordinea parcurgerii urmatorului program:

25 LET A=4

35 LET a=A*20

40 RUN a

50 PRINT "mare greseala !"
70 STOP : RUN

80 PRINT 90

90 RUN a

100 STOP

34

Chapter 4

Culoare

Vom Tnvdta s3 parcurgem instructiunile nu neapdrat n ordinea fireasc3 si, de asemenea, vom
adduga un pic de culoare acestei vieti monocrome prin:

e GOTO pentru salturi;
e BORDER pentru colorarea marginii;
e PAPER pentru colorarea hartiei;

e INK pentru cerneald.

4.1 GOTO

ENGLEZA: go to = du-te la
SINTAXA: GOTO etch
CATEGORIE: comand3
DESCRIERE:

etch, Tn urma evalu3rii si rotunjirii la cel mai apropiat intreg, trebuie s3 fie un numa3r Tntre
0 si 9999, adicd o etichetd. Plasarea sa Tn afara acestor limite se soldeaz3d cu eroarea B.

Efectul instructiunii GOTO este trecerea la executarea liniei cu eticheta specificatd, sau la
urmatoarea linie mai mare ca etch, dacj linia etch nu existd. Cu alte cuvinte, este o instructiune
de salt. Linia la care se sare va fi executatd Tncepand de la prima ei instructiune.

Spre deosebire de RUN, GOTO nu are alte efecte laterale (consecinte mai putin importante
— cum era la RUN stergerea ecranului), deci este mai convenabil de folosit pentru a face salturi
prin program.

Exemplu:

35

1 GOTO 10
5 PRINT "Pe aici nu se trece"
10 PRINT "Se ajunge direct aici"

Instructiunea GOTO este adesea numit3 ,0aia neagrd a informaticii”, pentru ca folosirea ei
cu darnicie duce cu usurint3 la scrierea unor programe pe care nici creatorul lor nu le mai poate
pricepe. Tn BASIC HC din pacate folosirea instructiunii GOTO este inevitabild. Deocamdat3
BASIC avem, BASIC program3m.

4.2 BORDER
ENGLEZA: border = bordur3, margine
SINTAXA: BORDER culoare
CATEGORIE: comand3
DESCRIERE:

culoare este un numar care, odat3 rotunjit, trebuie s3 cadd Tntre 0 si 7. El reprezint3 codul
unei culori, dup3 lista din anexa D. O valoare in afara intervalului mentionat produce eroarea K.

Rezultatul instructiunii este schimbarea culorii ntregului BORDER. Culoarea BORDER-ului este
implicit si culoarea PAPER-ului pentru randurile din partea de jos a ecranului (vezi un pic mai
jos PAPER).

Exemplu:
BORDER 1

face bordura albastru Tnchis.
]

Dacd mai tineti minte din Capitolul 1, ecranul grafic este Tmpartit in 768 (32x24) de
patratele a cate 8 ori 8 pixeli. Reamintim c3 simbolurile afisabile se pot tip&ri numai Tn unul
din aceste p3tratele. Tn fiecare din acestea se pot afla la un moment dat puncte in doar doud
culori. Una din ele se numeste culoarea fondului (PAPER), cealalti a cernelii (INK). Cand
PRINT scrie un caracter pe ecran, conturul sdu este format din puncte INK, iar fondul sdu din

puncte PAPER.

4.3 PAPER
ENGLEZA: paper = hartie
SINTAXA: PAPER culoare
sau Tn cadrul lui PRINT sau INPUT sau o instructiune grafici (Capito-
lul 12)
CATEGORIE: comand3
DESCRIERE:

Schimb3 culoarea fondului in cea specificatd. Comportarea sa o vom detalia odat3 cu cea
a instructiunii INK, cu care este foarte asemanatoare.

36

4.4 1INK

ENGLEZA: ink = cerneal3
SINTAXA: INK culoare
sau Tn cadrul lui PRINT, INPUT sau o instructiune graficd (Capitolul 12)
CATEGORIE: comand3
DESCRIERE:

Schimb3 culoarea cernelii Tn cea specificata.

culoare, atit la PAPER cat si la INK, este un ntreg cuprins (dupd rotunjire) intre 0 si 9.
Altfel se produce eroarea K.

Valorile 0-7 sunt coduri de culori ca la BORDER. Valorile 8 si 9 au niste semnificatii speciale:

e 81nseamnd transparenta. Un caracter tiparit cu INK 8 va pastra pentru cerneala proprie
exact cerneala care se gasea in locul in care a fost tiparit pe ecran.

e 9 Tnseamn3d contrast. Calculatorul va alege pentru caractere in INK 9 o cerneald alb3
(7) sau neagrg (0) care s3 contrasteze cat mai puternic cu fondul pe care se tip3resc.

Folosite pe post de comenzi de sine stdt3toare, INK si PAPER schimb3 culoarea tuturor
caracterelor care se vor tipari dupd executarea lor.

Folosite Tn cadrul lui PRINT sau INPUT (sintaxa este asemenea lui TAB), ele au un efect
local, Tn sensul cd schimb3 numai culoarea caracterelor ce se tip3resc prin acea instructiune.
Un exemplu edificator:

5 PAPER 6: INK 9

10 PRINT '"hartia e galbena"

15 PRINT PAPER 5; "acum e albastra"
20 PRINT "si iar e galbena"

Executati de asemenea niste PRINT TAB cu diverse culori, pentru a vedea cum apar spatiile
pe care le tipdreste TAB.

4.5 Exercit ii

1. Scrieti un program care se deseneze o mir§ color.

Indicatie: trebuie s§ facem opt dungi verticale, fiecare a cite 32/8=4 pitrate. Pentru a
tip&ri exact 22 de dungi orizontale, trebuie s8 executdm un ciclu de 22 de ori. Vom folosi
o variabild care-si schimb3 valoarea la fiecare trecere prin ciclu. Ciclul se va ncheia prin
instructiunea GOTO variabila. Dup3 22 de treceri, ciclul trebuie s3 se spargd (Nota:
solutia e ingenioasd, dar e un exemplu tipic de folosire neortodox3 a lui GOTO. Din p3cate,
pand nu parcurgem si capitolul urm3tor, cu IF-THEN, nu putem rezolva altfel aceast3d
problema — decit poate scriind 22 de linii identice. . .).

2. Scrieti un program care cere coordonatele si culoarea unui patratel pe care apoi il colore-
aza.

37

Chapter 5

Curat enie s i variat ie

CLS pentru a sterge ecranul;

CLEAR pentru a elibera memoria;

NEW pentru a o lua de la Tnceput;

IF - THEN pentru alternative.

5.1 CLsS

ENGLEZA: ClLear Screen = curst} ecranul
SINTAXA: CLS

CATEGORIE: comand3

DESCRIERE:

Sterge ecranul, aducdnd toate punctele la culoarea PAPER curentd. INK-ul din toate
patratelele este cel fixat (desi toate contin spatii, acest lucru este important pentru eventuale
tipdriri cu INK 8). Stergerea ecranului implicd mutarea cursorului de tiparire — cel care
indicd unde se va tip&ri urm3torul caracter) si cursorului grafic (discutdm in Capitolul 12) la
coordonatele 0,0.

38

5.2 CLEAR

ENGLEZA: to clear = a cur3ta

SINTAXA: CLEAR [ramtop]
CATEGORIE: comand3
DESCRIERE:

Parametrul ramtop este o adresd de memorie (discutdm n Capitolul 15) si, ca atare, trebuie
s8 fie cuprins Tntre 0 si 65535. Dac3 lipseste, valoarea sa este consideratd a fi 0. Dac3 dupd
rotunjire nu se afld intre aceste limite, veti obtine eroarea B.

CLEAR are o sumedenie de efecte, care Tn general curdta tot felul de informatii de prin
memorie. Anume:

e face CLS;

e sterge toate variabilele (ca si RUN);
o face RESTORE O (vom vedea in Capitolul 14);
o sterge stiva GOSUB (vom vedea in Capitolul 15).

Cand parametrul lui CLEAR existd si este diferit de 0, CLEAR mai face ceva: stabileste
adresa maxim3 de memorie pan3 la care poate ajunge programul BASIC, la valoarea specificat3

(ramtop). Tn mod normal ea este aproape de valoarea maxim3 (65368). Utilitatea acestei
instructiuni se vede cand avem nevoie de memorie pentru scopuri diferite de ale BASIC-ului —
de exemplu pentru programe cod masind, care se pun Tn memorie deasupra acestei adrese.

CLEAR mai este folositZ Thainte de a salva programele pe band3 sau disc, pentru ¢& Tn mod
normal se salveaz3 si variabilele. Dac3 le stergem, programul poate ocupa substantial mai putin
loc.

Dac3 se incearcd coborarea ramtop sub limita maxim3 deja atinsd de BASIC, se obtine
eroarea M.

Dacd programul BASIC creste prea mult (prin lungimea sa, prin variabilele folosite, sau
datoritd coborarii RAMTOP-ului), veti putea ntélni urmatoarele erori:

e eroarea 4, cand actiunea Tn curs de executie nu se poate infaptui (de pilda crearea unei
variabile);

e eroarea G, cand linia tastatd nu mai are loc in program;

e prin neacceptarea unei linii corecte la ap3sarea tastei (la ap3sarea lui o linie

si mareste de obicei lungimea cu diferite caractere de control — vezi si anexa F).

Cu aceste ultime 3 erori s-ar putea s& nu va Tntalniti niciodatd, pentru c3 se produc numai
n conditii critice, pe care nu e probabil s3 le atingeti (sunt produse numai de programe lungi).

5.3 NEW

ENGLEZA: New = nou

SINTAXA: NEW
CATEGORIE: comand3
DESCRIERE:

39

NEW este o instructiune puternic distructivd, pe care o veti folosi numai cand veti dori s3
scrieti un nou program BASIC. Ea sterge toat§ memoria pana la RAMTOP — programul BASIC
si tot ce tine de el, plus ecranul. Culorile sunt aduse la starea initiald (PAPER 7, INK O,
BORDER 7). Calculatorul pare ca nou, dar atentie!, ceea ce se gdseste in memorie deasupra
RAMTOP-ului rdmane neschimbat!

5.4 1IF - THEN

ENGLEZA: if = dac#, then = atunci

SINTAXA: IF condifie THEN instructiuni
CATEGORIE: comand3
DESCRIERE:

Pan% acum am discutat doar despre operatii aritmetice. Cu aceast3 instructiune vom vedea
n ce mod putem folosi o altd categorie de operatiuni, pe care le putem numi logice. Logica
apare prin parametrul instructiunii IF - THEN pe care l-am numit condifie. Acesta este de fapt
o expresie care poate fi interpretatd ca fiind adevarata sau falsa. Tn alte limbaje existd chiar
un tip de date, cum Tn BASIC sunt Tntregii si sirurile de caractere, care se numeste boolean si
ale c&rui valori sunt doar dou¥: adevarat si fals. BASIC-ul nu are un astfel de tip, dar foloseste
tipul numeric pentru valori de adevdr. Corespondenta este urm3toarea:

Valorile de adevar
fals 0
adevarat orice numar diferit de 0 (Tn particular si 1)

Acum putem vedea cum lucreazd IF - THEN:

1. Tntai evalueazid expresia dintre IF si THEN care trebuie s3 genereze un rezultat numeric;

2. dac3 rezultatul este adevarat (diferit de 0), atunci se executd instructiunile de dupd THEN
(notate cu instructiuni in descrierea sintaxei);

3. dac3 rezultatul este fals, se trece la linia urm3atoare.

S3 vedem niste exemple:

5 INPUT a
10 IF a THEN PRINT "ati tastat ceva diferit de 0" : GOTO 5
15 PRINT "ati tastat 0"

Programul anterior se va opri la prima introducere a unui zero.

Conditiile logice pe care le foloseste IF-THEN se pot exprima foarte adesea prin comparatii
felurite. Exist3 niste semne care permit compararea a doud valori numerice. lat3-le:

40

Comparatii
= testeazd egalitatea dintre valorile Tntre care este plasat
raspunde adevarat (1) dacd numarul care il precede este mai mare decat cel care

1l urmeaza
< mai mic
>= mai mare sau egal
<= mai mic sau egal
<> diferit

S3 vedem un alt exemplu foarte instructiv:

5 LET max=8

10 LET i=1

20 PRINT i, i = 2

30 IF i <= max THEN LET i = i + 1: GOTO 20

Acesta este un program foarte simplu care afiseazd pitratele numerelor de la 1 la 9.
Modificand valoarea lui max se poate obtine o altd limitd superioard. Mecanismul este simplu
si fundamental: i creste Tntr-una pana cand conditia i<=max devine fals3, adic3d i1l dep3seste
pe max. Altfel este tiparitd o noud valoare.

Relatiile de inegalitate pe care le-am enumerat se pot extinde si la date de tip sir. Abia n
Capitolul 14 vom spune ce Tnseamn3 c3 un sir este ,mai mic” decat altul. Pan3 atunci putem
defini doud relatii al c3ror sens este evident, si anume:

= pentru egalitatea a dou3 siruri;
<> pentru ne-egalitatea a dou3 siruri.

Dou3 siruri sunt egale daca si numai daca au aceleasi caractere dispuse n aceeasi ordine.
Altfel sunt diferite. Exemplu (fragment de program):

1000 INPUT "o luam de la capat 7 (da/nu) "; a$
1010 IF a$ = "nu" THEN STOP

1020 IF a$ <> "da" THEN GOTO 1000

1030 RUN

S3 retinem: operatiile de comparare (= > < >= <= <>) dau ca rezultat un numar, care
este 1 pentru adeviarat si 0 pentru fals.

41

5.5 Exercit iu rezolvat

Desenati o spiral3.
Rezolvare

Intdi s3 vedem cum s-ar trasa o linie orizontald intre x1 si x2:

1000 LET y=10 : LET x1=3 : LET x2=20

1010 LET x=x1

1020 PRINT AT y,x;PAPER O;" "

1030 LET x=x+1 : IF x <= x2 THEN GOTO 1020

Dac3 ati inteles, probabil cd puteti trasa si linii verticale. Programul nostru de spiral3d va
avea patru bucle ca cea de mai sus, pentru a trasa cele patru brate ale spiralei. Dup3 o trecere
prin cele patru bucle se va relua totul de la prima dintre ele, cu limitele schimbate. lata (liniile
goale contin dup3 etichetd cate un blanc si sunt puse pentru a face programul mai usor de
citit):

1 PAPER 7 : CLS : PAPER 0

5 LET x1 = 0: LET y1 = 0 : LET x2 = 31 : LET y2 = 21
10 LET x = x1 : LET y = y1

12

15 PRINT AT y,x;" "
20 IF x < x2 THEN LET x = x + 1: GOTO 15
25 LET y1 = y1 + 2
27
30 PRINT AT y,x;" "
35 IF y < y2 THEN LET y = y + 1: GOTO 30
40 LET x2 = x2 - 2
42
45 PRINT AT y,x;" "
50 IF x > x1 THEN LET x = x - 1: GOTO 45
65 LET y2 = y2 - 2
57
60 PRINT AT y,x;" "
65 IF y > y1 THEN LET y
70 LET x1 = x1 + 2
72
80 IF y2 >= y1 + 2 THEN GOTO 15

1:GOTO 60

1}
-
|

5.6 Exercit ii

1. S3 se scrie un program folosind instructiunile cunoscute, care s3 facd suma a N (N se
cere prin program) numere cerute de la utilizator si s3 o afiseze.

2. Scrieti un program care pentru N numere (ca mai sus) cerute cu INPUT, afiseazd cate
din ele sunt nule, cate-s pozitive si cate negative.

42

Chapter 6

Matematici din plin

Un capitol bogat Tn instructiuni si exercitii, dar scurt in Tntindere. Multe functii.

e REM pentru comentarea programelor;
e PAUSE pentru a incetini ritmul;

e ABS pentru modul;

e INT ca parte intreagi;

e SQR ca radical;

e SGN pentru semn;

e EXP pentru exponentiale;

e LN pentru logaritmi.

6.1 REM

ENGLEZA: REMark = observatie
SINTAXA: REM absolut orice
CATEGORIE: comand3
DESCRIERE:

REM este o instructiune care ... nu face nimic! Aceasta n-o face mai putin util3! Ea are
un singur scop: pentru a face mai inteligibil listingul unui program, in interiorul sdu se pot
insera comentarii. Dupd REM poate urma orice suitd de simboluri, chiar si comenzi. Tot ceea
ce urmeaza pana la sfarsitul liniei este ignorat. Recomandam utilizarea ei intensd. Un exemplu:

5 IF b=a THEN GOTO 55 : REM la 55 testam semnele

43

6.2 PAUSE

ENGLEZA: pause = pauz

SINTAXA: PAUSE timp
CATEGORIE: comand3
DESCRIERE:

timp este un numar ntreg, intre 0 si 65535. Dac¥ dup3a rotunjire nu picd Tn acest interval,
va surveni eroarea B.

Asa cum aratd si numele ei, PAUSE timp va face o pauzi de timp/50 secunde Tn executia
programului. PAUSE 200 Tnseamn3 4 secunde. De retinut totusi ca, dac3d Tn timpul pauzei se
apasd o tastd, asteptarea este abandonat3 prin trecerea la instructiunea urmatoare. PAUSE 0

are un efect special: asteapt apdsarea unei taste (dar nu sau singure).

PAUSE de fapt numara intreruperile pe care le face un ceas intern. Ceasul este sincronizat
si cu circuitele care formeaz3 imaginea pe ecran. Din cauza aceasta, folosind secventa:

5 PAUSE 1: BORDER 1: BORDER 4: BORDER 6: GOTO 5

veti obtine pe BORDER niste dungi stationare. Pentru a intelege tot ce se Tntampl3 ar fi nevoie
de ceva mai multe cunostinte despre functionarea televizorului. Amanam o explicatie.

6.3 ABS

ENGLEZA: ABSolute value = valoare absolut3

SINTAXA: ABS expresie
CATEGORIE: functie
DESCRIERE:

ABS este o functie care intoarce valoarea absoluta (modulul) argumentului sdu expresie.
Prioritatea de evaluare este mai mare ca a expresiilor aritmetice:

5 - 32 = -27
37

ABS -5-8%4 =
ABS (-5-8%4)

ABS(-5)-8%4
= ABS (-37)

Aceastd observatie este valabild pentru toate functiile.

6.4 INT
ENGLEZA: INTeger = intreg
SINTAXA: INT expresie
CATEGORIE: functie
DESCRIERE:

INT este functia parte Tntreaga, adic¥ Tntoarce cel mai mare num3r intreg mai mic sau egal
cu argumentul sju, expresie.

INT 3.14 = 3 INT 56 = 5 INT -5 = -5 INT -3.14 = -4

Pentru a rotunji num3rul X se calculeazd INT (X + 0.5).

44

6.5 SQR

ENGLEZA: SQuare Root = radacin3 p3trata
SINTAXA: SQR expresie

CATEGORIE: functie

DESCRIERE:

Pentru expresie negativi urmeaz3 mesajul A. SQR calculeaz3 r&d3cina p3trat3 din argu-
mentul s3u, adicd expresie~(1/2).

6.6 SGN
ENGLEZA: SiGN = semn
SINTAXA: SGN expresie
CATEGORIE: functie
DESCRIERE:

SGN este functia semn. Ea intoarce:

—1 daca expresie < 0
SGN expresie = 0 daca expresie =0
1 daca expresie > 0

6.7 EXP

ENGLEZA: EXPonential = exponential¥

SINTAXA: EXP expresie
CATEGORIE: functie
DESCRIERE:

EXP expresie intoarce e~expresie, (adicd funfia exponentiala unde e este num3rul lui
Euler, nu o variabild. Valoarea lui aproximativd este €~1 = EXP 1 = 2.7182818. Aceasta
functie are numeroase aplicatii matematice. In acest manual n-o veti mai Tntalni niciodat3.

6.8 LN

ENGLEZA: Logarithm of Neper = logaritm neperian (natural)
SINTAXA: LN expresie

CATEGORIE: functie

DESCRIERE:

Pentru expresie negativd — eroare A. LN expresie intoarce logaritmul natural al valorii
expresie, adicd puterea la care trebuie ridicat € (= EXP 1) pentru a obtine expresie. Dac3
vreti logaritmi in baza oarecare Q, folositi regula :

| ~_Inz
A TYa)

45

Cu cele 6 functii de mai sus putem deja s& facem o multime de lucruri noi. Vom indica
doar cateva formule mai des folosite :

o catul imp3rtirii lui A la B este:
Q = INT (4 / B)

e restul impartirii lui A la B este:
R=A-B#*Q=4A-B* INT (A/ B)

n

e valoarea de adevar a propozitiei ,N se Tmparte exact la M":
(N =M * INT (N / M))

e r3dicina de ordin impar N dintr-un numar oarecare A:
SGN a * (ABS a)~(1 / N)

6.9 Exercit iu rezolvat

Calculati c.m.m.d.c. si cm.m.m.c. a dou numere.
Rezolvare
Dac3 v3 mai amintiti algoritmul lui Euclid, 7l veti recunoaste Th urm3torul program:

10 INPUT "numerele : '";nl,n2

20 IF n1 <> INT nl1 THEN GOTO 10: REM nl1 trebuie sa fie intreg
21 IF n2 <> INT n2 THEN GOTO 10

25 LET b=n2 : LET a=nl

27 REM *** incepe algoritmul ***

30 LET q = INT (a/b) : REM catul

40 LETr =a-b * q : REM restul

50 IF r=0 THEN GOTO 100 : REM s-a gasit c.m.m.d.c.!
60 LET a=">» : REM catul devine deampartit
70 LET b=r : REM restul devine cat

80 GOTO 30

100 PRINT "c.m.m.d.c. (" ; nl ; "," ; n2 ; ")="; b
110 PRINT "c.m.m.m.c. (" ; n1 ; "," ; n2 ; ")="; nl*n2 / b

6.10 Exercit ii

De data asta am scornit o gramada3, unele chiar interesante:
1. Indicati valoarea tiparitd de urm3atorul program :

5 CLEAR

10 LET a=14

20 LET g=INT (SQR ((a-12)*(a-6)))
30 LET a=a+q

46

40 REM se cere o noua valoare pentru a : INPUT a
50 IF a THEN LET ak = a - 3
60 IF ak > 0 THEN IF ak <> 2 THEN LET A = a + 2
70 PRINT ABS(INT (a-2%3))

. Scrieti un program care s& umple ecranul cu patratele colorate in ordinea 0, 1, 2, 3, 4, 5,
6,7,0, 1,2, ... dupd codul culorilor.

. Scrieti un program care s3 coloreze intr-o culoare toate patratelele cu ambele coordonate
pare si in altd culoare pe celelalte.

. Rescrieti programul de la Exercitiul 1, Capitolul 4, (mira color) folosind noile instructiuni.

. Scrieti un program care calculeaz3 primii N (care se cere prin program) termeni ai sirului
lui Fibonacci. (Slrul acesta se obtine astfel: primii doi termeni sunt 1 si 1, iar un termen
ulterior se obtine prin adunarea celor doi termeni care-i sunt anteriori. lat: 1, 1, 2,

3(=1+2), 5(=243), 8(=3+5), 13 etc.).
. Scrieti un program care determing dacd un numar dat N este prim.

Indicatie: testati resturile imp3&rtirii lui n la toate numerele intregi < /n.

. Scrieti un program care consider3 ecranul o mas3 de biliard pe care se misca o bil3 (Iitera
0). Programul va cere directia de lovire (ca in figurd) si apoi va misca incetinit bila pan3
la oprirea ei.

1
8 2
7 0] 3
6 4
5

Indicatie: se va folosi PAUSE cu o valoare care creste pe m3surd ce bila avanseaz3d. A
misca bila Tnseamn3 a o sterge si a o desena ‘intr-o altd pozitie.

47

Chapter 7

Mal multe dimensiuni

In acest capitol tratdm o singurd problem3, dar destul de spinoasa:

e matrici (variabile multidimensionale);

e DIM pentru a crea variabile multidimensionale.

Dac3d avem un sir de numere notat cu X, sa zicem, Tn general referim primul sdu element
drept X1, al doilea drept X3 s.a.m.d. Un astfel de sir, cu un numar finit de termeni, este numit
vector.

S3 presupunem c3 ecranul este umplut cu cifre. Atunci fiecare pereche de coordonate
identificd o cifr8 — cea care se afl3 in acel loc pe ecran. Un tablou de acest fel se numeste
matrice. Vom folosi termenul de ,,matrice” pentru toate valorile cu mai multe dimensiuni. lat3
doud exemple:

Un vector X

O matrice M
coloanal coloana 2 coloana3 coloana4 coloanad coloana 6
linia 1 0 1 2 3 4 5
linia 2 0 1 3 5 7 9
linia 3 0 1 4 8 12 16
linia 4 0 1 5 12 20 28
linia b 0 1 6 17 32 48

Tot asa cum putem vorbi despre elementele vectorului X, putem vorbi despre elementele

matricei M. Tn vorbirea curent le putem indica Tn multiple moduri: M1,1 sau M(1,1) sau M[1,1]
sau Mi 1 sau M[1][1] etc. BASIC alege a doua formd, cea cu paranteze rotunde.

48

Exemplele se pot extinde la mai multe dimensiuni. Cazul cu trei dimensiuni se poate
reprezenta printr-o imagine spatiala.

BASIC HC permite operarea cu astfel de obiecte numai sub form3 de variabile. Tipul lor este
dat de tipul elementelor lor; putem distinge matrici de numere sau de caractere (detalii imediat).
Indicii (valorile care exprim3 coordonatele unui element) unei matrici sunt Tntotdeauna numere
ntregi, Tncepdnd de la 1. Numd3rul de dimensiuni poate cuprins fi Tntre 1 si 255 (suficient de
mare ca s3 nu fie restrictiv).

7.1 DIM

ENGLEZA: DIMension = dimensiune
SINTAXA: DIM VI$1(dy, do, ..., dp)
CATEGORIE: comand3

DESCRIERE:

V este numele variabilei-matrice. El nu poate fi mai lung de o literd. Deci o variabild ca
ar2 nu poate fi matrice. $ specificd dac3 variabila este de tip sir sau numeric. dq,ds,...,d,
sunt numere pozitive, intregi. n este si dimensiunea matricii. Valorile lui dy, ..., d, specifica
marimea fiecdrei dimensiuni. Dacd un d; nu e pozitiv, intreg, sau depdseste 65536, ori dac3
n > 255, survine eroarea B.

DIM rezerva spatiu Tn memorie si creaz3 o variabild multidimensionald cu dimensiunile spec-
ificate. Pentru a crea variabile Tn care s memor&m cele doud tablouri din exemplul de mai sus
va trebui s§ executdam:

DIM x(7) : DIM m(6,5)

Actiunile lui DIM pentru variabile numerice si sir sunt destul de diferite ca s& merite o tratare
separat3.

7.1.1 DIM pentru variabile numerice

S3 discutdm pe un exemplu. DIM m(6,5) rezervd spatiu Tn memorie pentru o matrice cu

6x5 = 30 de elemente, numerotate m(1,1), m(1,2), ..., m(6,5). Variabila numericad
simpld m si variabila multidimensionald m(6,5) pot exista simultan!
Alte efecte:

e dac3 un tablou cu numele de m exista anterior, el este sters, oricare i-ar fi fost dimensiunile;

e toate elementele tabloului capatd automat valoarea 0.

Elementele matricei se referd, dupd cum am anticipat specificind numele matricei urmat
de coordonatele elementului intre paranteze. Atentie, m(1,2) nu e totuna cu m(2,1) (se vede
si pe figurd).

Veti obtine eroarea 3 daci:

e numarul de indici la invocarea unui element nu este exact cel de la dimensionare; de pild3
LET ¢ = m(3) sau LET m(1,1,2) =0

e valoarea unui indice nu se gaseste intre limitele indicate la dimensionare:
PRINT m(-1,2) sau INPUT m(8,8)

49

7.1.2 DIMpentru variabiledetip s ir

Pentru a rezerva spatiu pentru di x d2 X ... X d,, variabile sir (sau, cu alte cuvinte, o matrice
de siruri cu dimensiunile d1,ds, . .., d,), trebuie specificate n+ 1 dimensiuni! Ultima va indica
numarul maxim de caractere pe care 1l va avea fiecare sir.

Pentru a intelege de ce lucrurile stau asa, trebuie s3 ne lansam Tn niste explicatii mai ample,
dar care au o mare important3. S3 purcedem!

Tn primul rand trebuie s3 observdam c3 fiecare sir de caractere se comportd ca un vector de
caractere, dar care nu a fost anterior dimensionat. Aceasta Tnseamna ca avem acces la literele
care-l compun ca la elementele unui vector. Astfel, a$(1) este primul caracter din sirul a$
(dac3 existd). a$(n) este al n-lea caracter. (Dacd a$ nu are n caractere veti obtine eroarea 3.)
S3 vedem:

10 LET a$="abcdefghijk"

20 PRINT a$(1)
30 PRINT a$(10),a$

cu efectul pe ecran

J abcdefghijk

Mai mult decat atat: putem opera cu fiecare caracter din sir ca si cum ar fi o variabil3
independentd

3 LET a$="computer"
5 LET a$(1)="cC"

7 PRINT a$

8 LET a$(1)="masina"
9 PRINT a$

cu efectul

Computer
momputer

Programul anterior ne semnaleazd un fapt important: a$(1) este un sir format dintr-un
singur caracter, deci daca-i atribuim o valoare mai lung3, va prelua din ea numai o parte. S3
mai vedem un exemplu:

3 LET a$="verde"
5 LET a$=a$(1) : PRINT a$
7 LET a$=a$+a$(1) : PRINT a$

pe ecran:

vv

50

Revenind la DIM: DIM a$(3,4,10) creazd o matrice cu 3 x 4 = 12 siruri numerotate de la
a$(1,1), a$(1,2) la a$(3,4), fiecare cu cate 10 caractere. Pentru c3, asa cum am vazut,
chiar si variabila simpl3d a$ poate fi consideratd ca fiind un vector, dar cu lungime variabil3,
variabila multidimensionald a$(3,4, 10) si variabila simpl3 a$ nu pot exista simultan. De aceea
DIM cu parametru de tip sir va sterge orice alt sir cu acelasi nume (reamintim c3 situatia nu
este aceeasi Tn cazul variabilelor numerice). Tabloul creat are toate elementele initializate cu
" " (spatiu). Astfel se creazd 3 x 4 siruri de cate 10 spatii.

Cu sirurile create putem lucra normal — a$(2,2) este al doilea sir, avand 10 caractere —
sau cu caracterele lor individuale: a$(2,2,3) este al treilea caracter al sirului de mai-nainte.
Sirurile a$(x,y) vor avea intotdeauna 10 caractere. Atribuirile vor lucra procustean. (Procust
a fost un tip care avea un pat dup3 a c3rui dimensiune ajusta pe cei pe care-i invita s& doarm3a-n
el: dacd erau prea lungi, i scurta de cap, dac3 erau prea scurti, 1i mai lungea. Un pic sadic.)
Cea mai bund metod3 pentru a pricepe este experimentul:

10 DIM a$(3,2,4)

20 LET a$(1,1) = "eu" : LET a$(2,1) = "tu" : LET a$(3,1) = "el™

30 LET a$(1,2) = "noi": LET a$(2,2) = "voi": LET a$(3,2) = "ei,toti"
40 PRINT a$(1,1);a$(1,2);a$(3,2)

50 LET a$(3,1,2) = "acasa"

60 PRINT a$(3,1);a$(2,2)

pe ecran:

eu noi ei,t
ea voi

Folosirea unor indici incorecti duce la eroarea 3.

7.2 Exercit iu rezolvat
Scrieti un program care calculeazd maximul dintr-un sir de numere.

Rezolvare

Metoda este urm3toarea: presupunem cd maximul este chiar primul numar. I comparam
cu al doilea, al treilea, etc., pand d&m de unul mai mare. Atunci acesta va fi mai mare decat
toate de pand la el. Zicem c3 el e maximul si continudm s3-1 compardm cu cele ce-au rdmas,
dupd aceeasi procedur3.

5 INPUT "lungimea sirului ";n: IF n < 2 THEN STOP

10 DIM a(n)

15 REM #*** citim elementele

20 LET i = 1

25 INPUT "Dati elementul ";(i); a(i)
30 PRINT "a(" ; i ; ")=" ; a(i)

36 IF i <n THEN LET i =i + 1: GOTO 25
40 REM *#** incepem cautarea maximului

51

50 LET max = a(1) : REM presupunem ca e primul

55 LET i=2 : REM incepem compararea de la al doilea
60 IF a(i) > max THEN LET max = a(i)

70 IF i<n THEN LET i = i + 1: GOTO 60

100 PRINT "Maxim este ";max

7.3 Exercit iu

1. Scrieti un program care memoreazad N nume de persoane si ocupatiile lor. Folositi-I pentru
a afisa dupad dorint3 ori lista persoanelor, ori lista persoanelor ce au o anumitad ocupatie
(cerutd de program de la utilizator).

52

Chapter 8

Cicluri

Ca si capitolul anterior, cel de fat3 trateazd un singur concept, dar pe-ndelete. Vom putea trece
la programe mai naturale, evitand smecheriile pe care le-am facut pan3d acum ca s3 putem scrie
ceva ,mergator’ cu putinele instructiuni pe care stiam. Desi cele de pand acum nu au fost
modele de programare, totusi cred cd v-au pus la lucru intr-o oarecare masur3 imaginatia.

e FOR - TO - STEP pentru a face bucle;

e NEXT pentru reluarea executiei unei bucle.

8.1 FOR - TO - STEP

ENGLEZA: for = pentru, t0 = la, Step = pas

SINTAXA: FOR v = init TO fin [STEP pas]
CATEGORIE: comand3
DESCRIERE:
8.2 NEXT
ENGLEZA: next = urmatorul, urm3toarea

SINTAXA: NEXT Vv
CATEGORIE: comand3
DESCRIERE:

Aceste instructiuni se folosesc Tn mod normal numai Tmpreund, desi sunt distincte. Intre ele
se pot afla oricate alte instructiuni, sau linii. Instructiunea FOR trebuie Tns3 s3 fie executat3
fnaintea NEXT-ului corespunzitor. Scopul acestui cuplu este de a realiza o bucla (un ciclu).

53

Asta Tnseamn3 c3 instructiunile care se afl3 scrise Tntre FOR si NEXT se vor repeta de un anumit
numr de ori. Noi am mai scris pand acum bucle, dar cu oarece chinuial3, folosind o variabild
ce se incrementa si un IF pentru a decide atingerea limitei. Pentru cazul in care num3rul de
repetitii este cunoscut la intrarea Tn bucld, FOR - NEXT se dovedesc mai eficiente.

V este o variabild numita contor, care trebuie sa aiba numele format dintr-o singura liter3.
Valoarea ei se modific la fiecare trecere prin bucl3.

init este o expresie numerica, folositd pentru a genera valoarea initiald a variabilei v (valoarea
pe care o primeste V la executarea instructiunii FOR).

fin este valoarea limit3 pe care o poate lua V. La depdsirea acestei limite, bucla nu mai este
reluata.

pas este valoarea care se adauga la V la fiecare nou3 trecere prin bucld. Cand STEP lipseste,
valoarea lui pas este considerata 1.

S3 exemplificim:

10 DIM a(10)
20 FOR i=1 TO 10

30 INPUT "elem " ; (i) ; "™ " ; a(i)
40 PRINT i
50 NEXT i

In acest program i trece prin toate numerele intregi de la 1 la 10. In interiorul buclei se cere
elementul unui vector cu indicele i. Deci acest program initializeaza interactiv (adicad luand
datele de la utilizator, interactionand cu el) un vector cu 10 elemente.

Dacd Tnaintea executdrii unei instructiuni FOR exista o variabild numericd avand acelasi
nume cu V, atunci ea este distrusa.
Pasul poate fi subunitar:
FOR i=10 to 13 STEP 0.5 : PRINT i;" ";: NEXT i
rezultat:
10 10.5 11 11.5 12 12.5 13

sau negativ (Tns3 atunci trebuie ca init > fin).

FOR k=20 to 10 STEP -2 : PRINT k,: NEXT k

care da:

20 18
16 14
12 10

Mai avem de |8murit cateva detalii cu privire la buclele FOR - NEXT.

Intdi, care este valoarea variabilei de control la iesirea din bucld? Este prima valoare care
nu mai respectd conditia de parcurgere a buclei, si nu ultima care o mai respectd. lata:

54

5 FOR i=1 TO 5 : PRINT i; : NEXT i
6 PRINT ’i

care da

12345
6

Ce se intdmpl3 daca bucla nu se poate parcurge niciodatd? Asta se Tntampld numai Tn dou3
cazuri:

o it > fin si pas <0, sau
e nit < fin si pas > 0.

In aceste conditii bucla nu se parcurge niciodat3 si se sare la prima instructiune de dup3
NEXT-ul corespunz3tor.

lat3 erorile pe care le pot genera buclele FOR - NEXT:

e eroarea 2: cand se intalneste NEXT-ul fard a fi trecut prin FOR-ul respectiv si nici nu exist3d
vreo variabila normala cu acel nume;

e eroarea 1: cand s-a intdlnit NEXT, FOR-ul nu a existat, dar variabila cu acelasi nume exist3;

e eroarea |: cand se Tntélneste un FOR imposibil de executat (vezi paragraful anterior), iar
NEXT-ul respectiv nu poate fi gasit.

Pentru a pardsi o bucld Tnainte de sfarsitul ei firesc, putem imagina doud metode:

5 FOR i=1 TO 10

6 INPUT "continuam 7 ";a$
7 IF a$="da" THEN LET i=11
8

NEXT i
sau
5 FOR i=1 TO 10
6 INPUT "continuam 7 ";a$
7 IF a$="da" THEN GOTO 9
8 NEXT i

Prima metod3 1l aduce pe i in afara limitei finale de ciclare, deci la intalnirea instructiunii
NEXT bucla nu mai este reluatd. A doua metod3 iese pur si simplu din bucld, fard a o mai
parcurge pana la NEXT.

In mod normal fiecdrui FOR trebuie s&-i corespundd un NEXT si numai unul. Aceasta este o
recomandare, nu o obligatie. Dar, structuri ca urmatoarea:

55

10 FOR i=1 to 100

50 IF cond THEN GOTO 100
51 REM cond este falsa

90 NEXT i
95 GOTO 200
100 REM cond este adevarata

190 NEXT i

sunt mult prea Tmbarligate pentru a permite o ‘intelegere usorad. Plus ca alte limbaje nici nu
admit structuri de acest fel.

Tntr-un program se pot folosi, evident, mai multe bucle. Ele trebuie s3 fie ori complet
distincte (adicd FOR-ul uneia s3 nu se afle Tn interiorul celeilalte), in care caz pot folosi aceeasi
variabil3, ori complet una-ntr-alta (adicd atat FOR-ul cit si NEXT-ul uneia s3 se afle Tn interiorul
celeilalte). Cu alte cuvinte, avem:

Corect:

5 FOR i=1 TO 10

10 FOR j=2 TO 2.5 STEP 0.1
90 NEXT j
100 NEXT i

si:
5 FOR i=15 TO 10 STEP -1
éé‘ NEXT i
166‘ FOR j=0 TO 0.2 STEP 0.1
200 NEXT j
Gresit:

10 FOR i = 1 TO 10
20 FOR j = 2 TO 14 STEP 3

50 NEXT i
60 NEXT j

Ciud3tenia este c3 programe ca cel gresit de mai de sus functioneazd. Pentru a vedea si ce
fac ele, cititi nota explicativd de la sfarsitul acestui capitol.

S& vedem un exemplu cu doud bucle, una-ntr-alta:

10 FOR 1=1 TO 7
20 FOR k=1 TO 1

56

30 PRINT k;
40 NEXT k

50 PRINT

60 NEXT 1

cu efectul:

1

12

123
1234
12345
123456
1234567

Instructiunea PRINT din linia 50 trece pe rand nou dup3 fiecare sir de tiparit.

8.3 Exercit iu rezolvat
Ordonati crescitor un sir de numere (sortati-l).

Rezolvarea 1

Vom parcurge sirul. De fiecare datd cand vom intalni doud numere vecine care nu se afl3
n ordinea asteptat3, le vom schimba intre ele. Dac3 la o trecere nu am f&cut nici o schimbare
Tnseamnd cd sirul este ordonat. Altfel o ludm de la capdt. Aceasta metodd de sortare se
numeste metoda bulelor, pentru c3 la fiecare trecere numerele mari ,urcd” spre locurile lor.
Ad3ugand la programul de mai jos linia

45 FOR i=1 TO n:PRINT a(I);" ";:NEXT i
veti remarca acest efect

1 INPUT "Nr de elemente ";N : DIM a(N)

5 REM *** cerem elementele

10 FOR i=1 TO N

13 INPUT "Elementul ";(i);" este ";a(i)
20 NEXT i
25
27 k=0 : REM k=1 va indica daca s—au facut schimbari
30 FOR i=1 TO n-1
32 REM comparam elementul i cu elementul i+l
33 IF a(i) <= a(i+1) THEN GOTO 40
34 REM elementele nu sunt in ordine, trebuie schimbate.
35 LET a = a(i)
36 LET a(i) = a(i+1)
37 LET a(i+1)=a
38 LET k=1
40 NEXT i

57

50 IF k <> 0 THEN GOTO 27 : REM mai trecem odata
60 FOR i=1 TO n : PRINT a(i);" ";: NEXT i

Rezolvarea 2

Vom proceda Tn modul urmator: cdutdm maximul din sir si 7l mutdm pe ultimul loc. (Asta
stim s& facem.) Dupd aceea, considerdm sirul format numai din primii n — 1 termeni si facem
acelasi lucru. Aceasti metod3 de sortare se numeste prin selectie. lat3:

1 INPUT "Nr de elemente ";N : DIM a(N)

5 REM *%* cerem elementele

10 FOR i=1 TO N

13 INPUT "Elementul ";(i);" este ";a(i)
20 NEXT i
25
30 FOR i=0 TO n-2 : REM cautam de n-1 ori maximul
33 LET max=a(l) : LET pozitie = 1
35 FOR j=2 TO n - 1

40 IF a(j) <= max THEN GOTO 50

45 REM am gasit un nou maxim

48 LET max = a(j) : LET pozitie = j
50 NEXT j

556 REM mutam maximul la locul lui

58 LET a = a(pozitie) : LET a(pozitie) = a(n - i) : LET a(n - i) = a
60 NEXT i

65 FOR i=1 TO n : PRINT a(i);" ";: NEXI i

Pentru a vedea cum evolueaza sirul, copiati linia 65 in linia 59.
|

Pentru a intelege perfect comportarea instructiunilor FOR si NEXT vom descrie exact operatiunile
pe care le face calculatorul la Tntalnirea fiecdreia dintre ele.

8.3.1 FOR v=x TO y STEP z

1. Sterge din memorie orice alt3 variabild numeric care nu e matrice si are acelasi nume v.

2. Creaz3 o nou3 variabil3 speciald numericd de tip FOR - NEXT; informatiile continute n
aceast3 variabild cuprind (vezi si anexa F):

numele si tipul (numericd, FOR - NEXT) variabilei;
valoarea curentd — la inceput x;

valoarea final3 y;

)
)
)

(d) valoarea pasului z;
) linia Tn care se afl3 instructiunea FOR;
)

num3rul instructiunii FOR din linie.

Aceste Tnregistrdri se fac far3 nici o verificare. Apoi:

3. Se verificd dac3d bucla se poate parcurge. Avem doud cazuri favorabile:

58

(a) x <= ysiz >= 0 (da, se poate si STEP 0 — bucl3 infinitd);
(b) x > ysiz < 0.
4. Tn caz c¥ bucla se poate parcurge se trece la instructiunea urm3atoare.

5. Cand bucla nu se poate parcurge, se cautd Tn program fTncepand de la urm3toarea
instructiune, o comand3 NEXT cu aceeasi variabil3 v.

(a) dacd NEXT v este gisit, se sare |la prima instructiune de dup3 el;

(b) dac3 NEXT v nu existd pand la sfarsitul programului — eroare |.

8.3.2 NEXT v

1. Caut3 Tn spatiul variabilelor o variabild numeric care nu e matrice si are acelasi nume v.
2. Daca nu o gaseste da eroare 2.

3. Dac3 o gdseste, dar variabila nu e de tip FOR (cu Tnregistrarile indicate mai sus) —
eroare 1.

4. Adund valoarea pasului la valoarea curent3.

5. Verificd dacd bucla s-a Tncheiat. Doud cazuri favorabile:

(a) valoarea curenta > ysiz >= 0

(b) valoarea curenta < ysiz < 0.

6. Dacd bucla s-a incheiat, continu3 cu instructiunea urmatoare.

7. Dac3 bucla nu s-a incheiat, citeste cdmpurile (e), (f) care contin pozitia instructiunii FOR,
pentru a g3si Tnceputul buclei si sare acolo (imediat dupa FOR).

Tinand cont de acestea, vom vedea c3 programul urmator:

1 FOR i =1T0 2
2 NEXT i : PRINT i;" "; : GOTO 2

merge si afiseazd3 3 4 5 6 7 etc.

Incercati sa deduceti ce face programul:

5 FOR i = 10 TO 1 STEP -1
6 FOR j=5T0 i

7 PRINT i; " " ; J' ; " 1] ;
8 NEXT i
9 NEXT j

59

8.4 Exercit ii

1. Scrieti un program care s3 deseneze patrate concentrice de culori diferite, Tn centrul
ecranului. Dati mai multe solutii.

2. Care este valoarea tip3ritd de urm3torul program 7

10 INPUT a
20 FOR A = 5 TO 20 STEP 7
30 REM : LET A = A+ 5

40 NEXT A
50 LET W = SQR (A - 1)

60 FOR z = 12 TO 10 STEP a

70 LET w = w + 2

80 NEXT z

90 DIM w(3)

100 LET W = w + W(1) + W(2) * W(3)

110 INPUT r : LET r = - (ABS (SGN (ASB r)))

IFr=0THEN LET r =r - 1
120 LET W=w / T
130 PRINT "W=";W

3. Scrieti un programel care s3 permit3 ridicarea la puteri intregi a numerelor de orice semn.

60

Chapter 9

Intdmplare s i interact iune

Dupd atatea lucruri serioase, acest capitol prezint3 instructiuni care se pot folosi cu succes
pentru a scrie jocuri (nu numai, desigur). Aplicatiile pe care le propunem caut3 s3 fie cat mai
distractive.

e RND pentru a introduce Tntamplarea n calculator;
e RANDOMIZE pentru a o ajuta;

e INKEY$ pentru a citi tastatura.

9.1 RND

ENGLEZA: RaNDom = la intamplare
SINTAXA: RND

CATEGORIE: functie

DESCRIERE:

De fiecare datd cand este chematd, RND genereazd un numir aleator (aleator vine din
latinescul ,alea”, adic zaruri), cuprins ntre 0 si 1. Rezultatul poate fi 0, dar niciodatd 1.
Priviti-1 la lucru:

5 PRINT RND, : GOTO 5

RND este de fapt o functie pseudo-aleatoare. Ea genereaza numerele dup3 o reguld foarte
complicat3 si de aceea par aleatoare. Nu numai c3 functia nu este aleatoare — este chiar
periodica! Fiecare numar se calculeazd numai in functie de cel generat anterior. Aceasta
Tnseamnd cd dacd un num3r se repetd, atunci si toti succesorii lui se vor repeta. Perioada cu
care se repeta numerele este 65536. Problema generdrii de numere aleatoare este mult mai

61

spinoasa decat va imaginati. Incercati s3 descrieti ,algoritmul” dupd care spuneti un numiar la
Tntamplare!

La ce ne folosesc numerele aleatoare? La o grdmad3 de lucruri. De fiecare datd cand vrem
s8 simuldm un fenomen care are o aparentd intdmplatoare, ele ne pot ajuta. S& vedem un
exemplu — aruncarea unui zar:

5 LET zar = INT (RND #* 6) + 1
10 PRINT "s-a aruncat "; zar : PAUSE 0 : GOTO 5

RND # 6 este un numar intre 0 si 6, niciodatd 6. INT (RND * 6) este un numar Tntreg ntre
0 si b. Dacd addugdm 1 obtinem un numar intreg ntre 1 si 6 — exact ca un zar!

Tn general, dacd vrem s3 obtinem numere aleatoare in intervalul [a,b), f&rd b, scriem
(RND * (b - a)) + a. Pentru numere intregi aplicam apoi INT.

9.2 RANDOMIZE

ENGLEZA: to randomize = a introduce hazard, intamplare
SINTAXA: RANDOMIZE [num]

CATEGORIE: comand3

DESCRIERE:

num este — dup3 rotunjire — un ‘intreg intre 0 si 65535, altfel se obtine eroare B. Daca
lipseste, este considerat a fi 0.

RANDOMIZE creazi o samanta (seed in englez&) pornind de la care se va calcula urm3torul
numdr aleator. Dup3 RANDOMIZE urmat de o valoare nenul3, primul num3r aleator obtinut de
la RND va fi Tntotdeauna acelasi!

RANDOMIZE urmat de valoarea 0 (sau echivalent, de nici o valoare) are un efect special:
foloseste pentru SEED valoarea curentd a timpului! Folosind RANDOMIZE O nu veti obtine la
doud ruldri ale aceluiasi program aceleasi efecte, pentru c3 timpul este altul! (Timpul folosit
ca valoare pentru SEED este timpul de la ultima pornire a calculatorului.)

Verificati diferenta ruland de mai multe ori urm3toarele exemple:
5 RANDOMIZE O : PRINT RND : GOTO 5

5 RANDOMIZE O
10 PRINT RND : GOTO 10

5 RANDOMIZE 1
10 PRINT RND : GOTO 10

5 RANDOMIZE 1 : PRINT RND : GOTO 5

9.3 Exercit iu rezolvat

Scrieti un program care distribuie intr-o ordine aleatoare caracterele unui sir.

62

Rezolvare

Vom proceda dupd cum urmeaza:

1. generam un numar aleator intre 1 si lungimea sirului;
2. schimbd@m caracterul respectiv cu cel de pe ultima pozitie;

3. considerdm sirul ca fiind mai scurt (ca s& nu rearanjdm ultimul caracter) si reludm pro-
cedura.

1 RANDOMIZE

5 LET n=26 : DIM a$(n) : LET a$ = "abcdefghijklmnopqrstuvwxyz"
10 FOR i = 1 TO n-1
20 LET q = INT (RND * (n-i)) + 1
25 REM #*#** schimbam elementele
30 LET b$ = a$(q)
35 LET a$(n - 1 + 1) = b$
40 LET a$(q) = b$
50 NEXT i

Asa putem amesteca literele la un joc de SCRABBLE, sau c3rtile la un joc de c3rti; puteti
imagina si alte aplicatii.

9.4 INKEY$
ENGLEZA: in = Tnauntru, key = tast3
SINTAXA: INKEY$ [# cale]
CATEGORIE: functie
DESCRIERE:

Despre folosirea cu parametrul #cale vom discuta abia in Capitolul 18.

INKEY$ este o functie f3rd argumente, care d3 ca rezultat un sir (prima de acest fel pe care
o Tnvdtdm). Ea este foarte folositd Tn cadrul jocurilor, care sunt aproape de neconceput fir3
ea (cele scrise Tn BASIC, bine-nteles). Efectul s§u: INKEY$ citeste si returneaz3 tasta apdsatd
tocmai Tn momentul executdrii instructiunii. Dacd nici o tastd nu este apdsat3, Tntoarce sirul
nul "". Deducem c3 INKEY$ poate returna un sir cu lungimea de cel mult un caracter. Dacd
mai mult de o tast3 a fost apasatd, iar combinatia nu este una normal3 (+ ceva sau
+ ceva) atunci INKEY$ returneazd tot sirul nul.

Pentru INKEY$ conteazi cursorul de la editare (desi in timpul executiei programului el nu
este vizibil), pentru c3 dacd am ramas n CAPS LOCK (modul C), atunci si INKEY$ va Tntoarce
majuscule! (Cursorul de editare este cel care aratd in momentul in care scrieti programul, cum
se va interpreta urm3toarea tastd apasat. El este o literd clipitoare — L, C, G, EsauK.)

Experimentati:
5 PRINT INKEY$; : GOTO 5

sau

63

5 PRINT AT 0,0;INKEY$, : GOTO 5

Atat INKEY$ cat si INPUT sunt instructiuni care permit programului s3 tind cont de in-
terventia din exterior a utilizatorului Tn timpul executiei. Pe |anga ele mai existd o singurd
instructiune de acest tip, IN, pe care o vom discuta Tn Capitolul 16. (Tntr—o oarecare masura si
PAUSE este o astfel de instructiune.) S3 vedem care sunt diferentele dintre INPUT si INKEY$:

INPUT INKEY$

e comanda e functie

asteaptd introducerea informatiilor; pro- | nu asteaptd ap3sarea unei taste, ci trece
gramul nu continud pan3a ce aceasta nu s-a | mai departe

facut

pentru a valida rezultatul trebuie ap3sat

R

poate citi oricate caractere poate citi cel mult un caracter
poate evalua expresiile introduse (fard | Tntoarce exact tasta apdsat3
LINE)

latd o secventd de instructiuni care permite continuarea executiei numai la ap3sarea tastei

(majusculd), lucru care nu poate fi realizat nici cu INPUT, nici cu PAUSE:

100 IF INKEY$ = "N'" THEN GOTO 111
110 GOTO 100

sau

100 PAUSE 0 : IF INKEY$ <> "N" THEN GOTO 100

9.5 Exercit iu rezolvat

Scrieti un program care s3 miste un patratel pe ecran cu ajutorul a patru taste:

stanga
dreapta
sus

jos

S~ 00 O

(am ales chiar tastele cu cursorul)

Rezolvare
Dou3d lucruri mai subtile se gdsesc in acest program:

64

. nu trebuie s3 permitem deplasarea p3tratelului dincolo de margine (asta fac liniile 20, 25,

30, 35);

. odat3 deplasat patratelul, va trebui s3-| stergem din vechea sa pozitie. La asta folosesc

variabilele XA, YA, care tin minte unde se afla el mai-nainte.

5 LET x=0 : LET y=0 : REM coordonatele initiale
6 LET xa = x : LET ya = y : REM coordonatele anterioare

7

10 PRINT AT y,x; PAPER O; " " ; AT ya,xa ; PAPER 7 ; " "
12 FOR i=1 TO 5: NEXT i : REM bucla de intarziere
15 LET xa = x : LET ya =y

16

20 IF x = 31 THEN GOTO 26

22 IF INKEY$ = "8" THEN LET x = x + 1: GOTO 10
23

25 IF x = 0 THEN GOTO 30

27 IF INKEY$ = "5" THEN LET x = x - 1: GOTO 10
29

30 IF y = 21 THEN GOTO 36

32 IF INKEY$ = "6" THEN LET y = y + 1 : GOTO 10
33

35 IF y = 0 THEN GOTO 40

37 IF INKEY$ = "7" THEN LET y =y - 1 : GOTO 10
40 GOTO 20

Programul cicleazd in mod normal ntre liniile 20—40. Numai dacd s-a apasat o tast3 si

coordonatele s-au modificat se trece prin linia 10 si p3tritelul se deplaseaz3d. Rulati-l si far3
linia 12.

9.6 Exercit ii

. Scrieti un program care misca aleator un ,,monstru” pe ecran. Atentie la iesirea din ecran.

. Folosind programul anterior si exercitiul rezolvat, scrieti un joculet care s3 se desfasoare

astfel: monstrul se misc3 aleator iar eu Tncerc s3 m3 suprapun peste el, utilizand patru
taste. Tineti si un fel de scor (de exemplu numarul de mutari).

65

Chapter 10

Din nou culori s 1 s iruri

De mult eram datori cu instructiunile de culoare. Am prezentat, ce-i drept, PAPER si INK, dar
abia acum le Tnfatisdm pe toate. Apoi vom Tnvata si alte lucruri interesante.

e INVERSE pentru a inversa culorile;

e BRIGHT pentru putind stralucire;

e FLASH pentru a clipi;

e OVER pentru suprapuneri de efect;

e TO pentru lucrul cu subsiruri;

e VAL pentru a transforma sirurile de caractere Tn expresii;

e despre formatul exponential de scriere a numerelor.

10.1 INVERSE

ENGLEZA: inverse = invers
SINTAXA: INVERSE mod
sau Tntr-o instructiune PRINT sau INPUT sau graficd (Capitolul 12).
CATEGORIE: comand3
DESCRIERE:

mod se rotunjeste la cel mai apropiat intreg. Trebuie apoi s3 fie 0 sau 1, altfel se obtine
eroarea K.

Modul de folosire al lui INVERSE este acelasi cu al lui INK si PAPER: fie drept comand3 cu
efect global, fie Tntr-o instructiune PRINT sau INPUT cu efect local.

66

INVERSE O este starea normal3d de tipadrire. INVERSE 1 este starea inversatd. Efectul lui
INVERSE 1 este de a tipari pixelii care trebuie tipariti in INK ca pixeli in culoarea PAPER si
invers. Atentie: nu culoarea se schimba, ci caracterul tipdrit. Dac3 litera A Tn INVERSE 0
aratd asa:

atunci A Tn INVERSE 1 aratd asa: (Am Tncadrat litera Tntr-un chenar ca s se vad3 cele 8 x 8
patratele pe care le ocupi.)

Testati:

LET a$ = "TEST" : PRINT INVERSE O ; a$, INVERSE 1 ; a$,

10.2 BRIGHT

ENGLEZA: bright = strlucitor

SINTAXA: BRIGHT nr
sau Tn cadrul lui PRINT sau INPUT sau o instructiune grafici (Capito-
lul 12)

CATEGORIE: comand3

DESCRIERE:

Tn urma rotunjirii Nr trebuie s3 fie 0, 1 sau 8 — altfel se genereazd eroarea K. BRIGHT 0 este
starea normald. Caracterele tipdrite cu BRIGHT 1 vor fi mai strilucitoare (atdt PAPER cit si
INK-ul lor). BRIGHT 8, ca si PAPER 8 Tnseamn3 transparent. un caracter tipdrit cu BRIGHT 8
va pastra strdlucirea patratelului de pe ecran Tn care este scris.

Vedeti diferenta:

Nota: unele HC-uri mai vechi nu pot afisa str3luciri diferite.

LET a$ = "TEST" : PRINT BRIGHT O ; a$, BRIGHT 1 ; a$,

67

10.3 FLASH

ENGLEZA: flashing = clipitor
SINTAXA: FLASH nr
sau Tn cadrul lui PRINT sau INPUT sau o instructiune grafici (Capito-

lul 12)
CATEGORIE: comand3
DESCRIERE:
Tn urma rotunjirii, Nr trebuie s& fie 0, 1 sau 8 — sau se genereazi eroare K. FLASH 0

este starea normal3; caracterele tip&rite cu FLASH 1 vor alterna cam de doud ori pe secund3
culoarea PAPER-ului si a INK-ului, schimbandu-le Tntre ele.

FLASH 8 Tnseamn3 transparentd: p&strarea FLASH-ului patratelului Tn care se face tiparirea.
FLASH 1:CLS

va face un ecran clipitor.

10.4 OVER

ENGLEZA: over = deasupra

SINTAXA. OVER mod
sau Tn cadrul lui PRINT sau INPUT sau o instructiune grafici (Capito-
lul 12)

CATEGORIE: comand3

DESCRIERE:

Aceasta este singura instructiune care permite s3 se tipdreascd ceva pe ecran far3 a sterge
ceea ce era 1n acel loc mai Tnainte. Mod trebuie odatd rotunjit s& fie 0 sau 1, altfel survine
eroarea K. OVER O este starea normal3d de tip3rire. Tip&rirea in OVER 1 actioneazd dup3 cum
urmeaz3: fiecare din punctele caracterului care se tipareste se suprapune cu punctul care se afla
pe ecran Tn acel loc, ca in tabel (notdm cu 0 punctele in PAPER si cu 1 punctele in INK):

Punctul initial Punctul tiparit Rezultat
0 0 0

1 0 1
0 1 1
1 1 0

In limbajul logicii o astfel de ,,suprapunere” se numeste sau exclusiv. S3 vedem si un desen
marit, de doud litere suprapuse n OVER 1:

68

Un scurt studiu asupra particularitdtilor lui OVER 1 ne va arata ca, tiparind de dou3 ori n
acelasi loc un caracter oarecare, vom obtine ceea ce se afla acolo Tnainte neschimbat!

Incercati:

PRINT AT 0,0;"A": OVER 1
PRINT AT 0,0 ;"a" : PAUSE 0O
PRINT AT 0,0;"a"

10.5 TO

Aceasta nu este o instructiune Tn sensul dat in capitolul 0. Seam3n3 oarecum cu o functie sau
cu un operator. Ea se foloseste pentru a extrage un subsir dintr-o valoare de tip sir. Forma ei
de folosire este:

sir([n] TO [m])
Aceastd expresie Tnseamn3:

e un sir format din caracterele celui initial luate Tntre cel cu numarul n si cel cu numarul m;
e dacd n lipseste: sirul de la primul pana la caracterul m;

e dacd m lipseste: sirul de la caracterul n pana la sfarsit;

e dac lipsesc amandou: sirul Tn Tntregime (vom vedea prin ce diferd a$ de a$(TO));
e dacd n > m: " (sirul nul);

e dacBn=m: a$(n TO m) este a$(n).

Eroarea 3 se obtine pentru limite negative sau superioare lungimii sirului (dar m < n).

S3 ilustrdm:
LET a$="abcdef"

avem urmatoarele egalitdti (care nu constituie un program BASIC):

69

a$(TO 3) = a$(1 TO 3)

"abe"

a$(2 TO) = a$(2 TO 6) = "bcdef"

a$(TO) = a$(1 TO 6) = a$(1 TO) = a$(TO 6) = a$ = "abcdef"
a$(3 TO 3) = a$(3) = "¢"

ag(s TO 7) = ""

a$(7 TO 8) - eroare 3

a$(0 TO 3) - eroare 3

Putem folosi TO si pentru a extrage un subsir al unei variabile dimensionate (matrice); exist3
doud moduri de a scrie un subsir:

DIM a$(5,5,10)
a$(2,2, 4 TO 6) = a$(2,2) (4 TO 6)

10.6 Exercit iu rezolvat

Scrieti un program care s3 roteascd un lant de caractere (cele care ies prin stdnga s3 intre Tn
dreapta).

Rezolvare

Foarte simplu, folosind TO:

5 LET a$="-+- —+- —+- —-+- —+4— —+- - "
7 REM a$ are 32 de caractere

10 PRINT AT 0,0;a$

15 LET a$ = a$(32) + a$(TO 31)

20 PAUSE 5: GOTO 10

Vom scrie acum un program (care nu-i bun la nimic altceva decat la ilustrarea lui TO) care
va misca pe ecran un semn n toate cele opt directii, cu ajutorul a opt taste diferite. Dac3 va
iesi din ecran, va apdrea Tn partea opusd. Vom plasa semnul intr-un sir care ocupa tot ecranul,
pe care-l vom tipari mereu. Vom modifica doar locul caracterului Tn cadrul sirului. latd pentru
Tnceput un tabel, care aratd cu cat variazd pozitia semnului pentru fiecare directie de miscare:

Directia Tasta Variatia

sus 1 -32
sus-dreapta 2 =31
dreapta 3 +1
dreapta-jos 4 +33
Jos 5 +32
stanga-jos 6 +31
stanga 7 -1
stanga-sus 8 -33

70

5 DIM a$(32 * 22): REM 704 = 32 * 22

6 LET a$(1) = "#"

10 IF INKEY$="1" THEN LET a$ = a$(33 TO) + a$(TO 32)
20 IF INKEY$="2" THEN LET a$ = a$(32 TO) + a$(TO 31)
30 IF INKEY$="3" THEN LET a$ = a$(704) + a$(TO 703)
40 IF INKEY$="4" THEN LET a$ = a$(672 TO) + a$(TO 671)
50 IF INKEY$="5" THEN LET a$ = a$(673 TO) + a$(TO 672)
60 IF INKEY$="6" THEN LET a$ = a$(674 TO) + a$(TO 673)
70 IF INKEY$="7" THEN LET a$ = a$(2 TO) + a$(1)

80 IF INKEY$="8" THEN LET a$ = a$(34 TO) + a$(TO 33)
90 PRINT AT 0,0;a$
100 GOTO 10

Dac3 doriti s sesizati procesul de tiparire al acestui sir enorm, transformati linia 90 in:
90 PRINT PAPER RND*8; INK 9 ; AT 0,0; a$

|
S3 mai spunem cate ceva despre TO:

Tot asa cum putem considera b$(3) ca variabild de sine-stat3toare (cand existd variabila
sir b$), careia putem s3-i atribuim diverse valori, tot asa putem opera cu p3rti de variabild
sir extrase cu TO. Atribuirea se face tot ,procustean”, Tn sensul c3 atunci cand unui subsir
dintr-o variabild sir i se atribuie o valoare sir, aceasta este adus3 la lungimea subsirului, fie prin
trunchiere, fie prin umplere cu spatii. Un exemplu:

5 LET a$ = "Calculator personal"

10 LET a$(11 TO) = "ul HC 85 este bun"
20 PRINT a$

30 LET a$(TO) = "!": PRINT a$+"!"

cu efectul pe ecran

Calculatorul HC 85
1 1

Aceasta ne arat3 cd din sirul "ul HC 85 este bun" s-a pastrat numai atat cat incdpea n
a$ de la 11 la sfarsit. De asemenea, LET a$(TO) = ceva pastreazd lungimea lui a$, spre
deosebire de LET a$ = ceva, care 1i d3 lui a$ lungimea lui ceva.

10.7 VAL

ENGLEZA: VALue = valoare
SINTAXA: VAL Sir
CATEGORIE: functie
DESCRIERE:

VAL este una dintre cele mai puternice instructiuni BASIC. Putine limbaje au o functie atat
de interesantd, dar nu ne vom bate capul aici discutand de ce. Ea primeste ca argument un sir
de caractere si returneazd un numar.

71

VAL Tsi calculeazd rezultatul considerand sirul primit ca pe un sir de caractere ce descrie o
expresie cu rezultat numar, pe care o evalueazd! Dac3 sirul nu are forma unei expresii, vom
obtine eroarea C.

Exemple:
Comanda Efect
PRINT VAL "234" 234
PRINT VAL "2+45+7" 14
LET a=23:PRINT VAL "INT a-2.4" 20.6
PRINT VAL "SGN (2) + VAL ""-1""" 0
PRINT VAL "a$" eroare C

LET a$ = "VAL a$":PRINT VAL a$ blocheazd calculatorul Tntr-o bucla in-
finitd, care se va termina odat3 cu memo-
ria, afisand o eroare

Atentie: mai sus, intre ghilimele, avem caracterele: INT, VAL, SGN si nu sirurile formate
din aceste litere!

10.8 Formatul s tiint ific (exponent ial)

Pentru numerele foarte mari sau foarte mici, calculatorul adoptd o metod3 speciald de afisare
a valorii. Aceasta foloseste doar 8 cifre semnificative. Num3rul este scris sub forma:

[—]valoare; .valoares E[—][+]valoares

valoare; sunt numere ntregi.

Primul semn este al numa3rului, al doilea al exponentului. (Exponentul este num3rul
valoares, cel scris dupd E.) Valoarea tip3rit3 in forma de mai sus are urm3atoarea semnificatie:

[—]valoare; .valoare, x 10[-1vatoares

Cu alte cuvinte, exponentul este puterea lui 10 cu care trebuie s§ Tnmultim numarul zecimal
cu partea ntreagd valoare; si partea zecimal3d valoares pentru a obtine valoarea corecta.

Numerele pot fi introduse (sub form3 de constante) in format stiintific. Se poate folosi si e
(literd micd) pentru exponent.

S3 vedem niste exemple:

instructiune rezultat
PRINT 1.234e+3 1234

PRINT 1.2345e+3 1234.5
PRINT 1234e-3 1.234

PRINT 3993967295 3.9939673E+9
PRINT 0.0000000001 1E-10

72

Intern se memoreaz3 fir3 nici o pierdere numere pan3 la 4 294 967 295. Acesta este 232 —1.
Nu pot tipari niciodatd mai mult de 8 cifre semnificative (14 semne cu tot cu exponent). C3

intern se memoreaz3d mai mult, se vede Tncercand:
PRINT 4294967295, 4294967295 - 4.29496729E10

care scrie 5.

Num3rul maxim ce se poate reprezenta in calculator (cu o oarecare lipsad de precizie) este
aproximativ 4E+38. Dac3 n cursul calculelor se dep3seste aceastd valoare, se obtine mesajul

de eroare 6.

10.9 Exercit ii

1. Ce va tip3ri programul urmator ?

5 PRINT 1ell - 1ell + 1, 1lell + 1 - 1lell

Ce e bizar in asta ?

2. Cum va ardta ecranul dup3 executia urmatorului program 7

5 CLS
6 LIST
7 OVER 1 : PRINT AT 0,0;
10 FOR I=1 TO 200: PRINT i;: NEXT I
20 PRINT AT 0,0;
50 LIST: OVER 1: PRINT AT 0,0;
70 FLASH 1
80 DIM a$(64)
100 FOR i=1 TO 11: PRINT a$:NEXT i

3. Scrieti un program care si miste pe linia 21 un tun stdnga—dreapta, cu tastele ,

respectiv E[si sd tragd Tn sus la ap3sarea tastei blanc D

73

Chapter 11

Logica, printre altele

Vom extinde gama operatiunilor logice pe care le putem efectua, prin niste instructiuni bizare,
vom Tnvata despre ordinea de evaluare si vom mai Tnv&ta niste functii care lucreaz3d cu siruri.

e functii infixate;

e NOT pentru a calcula inversa unei valori de adevar;

e OR pentru a gasi cel putin o valoare adevarata;

e AND pentru a vedea dacd toate valorile sunt adevarate;
e prioritatea operatorilor si functiilor BASIC;

e LEN pentru a calcula lungimea sirurilor;

e VAL$ — sora lui VAL pentru evaluarea sirurilor.

Pana acum am folosit pe larg tot felul de operatiuni pentru a alcdtui expresii. Am folosit
pentru aceasta semne cum ar fi +, —, *, la un moment dat chiar =, <, <>. Am mai folosit
si functii. Semnele din primele dou3 categorii le-am mai numit si operatori. De fapt ele sunt
tot functii, dar sunt deghizate prin modul lor de folosire: ele nu se scriu Tnaintea argumentelor
lor, ci intre acestea! De aceea ele se mai numesc si functii infixate, pentru a le deosebi de
functiile prefixate, care se scriu Tnaintea argumentelor lor. Mai sunt ,ciudate” si pentru c3 au
cate doud argumente. Functii prefixate de cate doud argumente nu am vazut pand acum, dar
le vom Tntalni putin mai Tncolo. Acum c3 am eliminat deosebirile care aruncau in categorii atat
de deosebite functiile si operatorii, putem s3 trecem mai departe.

74

11.1 NOT

ENGLEZA: not = nu
SINTAXA: NOT expr
CATEGORIE: functie
DESCRIERE:

NOT este o functie prefixatd tipicd. Din punct de vedere logic, ea opereaz cu o conditie
(expr) cBreia 1i inverseazd valoarea de adevdr. Ea calculeaz3 ceva de genul:

expr NOT expr
adevarat fals
fals adevarat

Ne vom aminti cd BASIC-ul foloseste tipul de date numeric pentru a reprezenta valori de
adev3r. Dac3 va amintiti, corespondenta era:

0 fals
0 adevdrat

Se pune problema ce face NOT cu num3rul c3ruia i se aplicd (c3ci numar este)? Functionarea
.generalizatd” la numere a lui NOT este:

expr NOT expr
0 1
£0 0

Instructiunea
IF NOT (a = 0) THEN GOTO 50
este totuna cu
IF a <> 0 THEN GOTO 50
sau cu
IF a THEN GOTO 50
si, Intampl3tor, cu

IF (NOT a) = O THEN GOTO 50

75

11.2 OR

ENGLEZA: or = sau

SINTAXA: expry; OR exprsy
CATEGORIE: functie infixat3
DESCRIERE:

La nivel logic OR lucreazd dupa cum arat3 si tabelul:

exrpry expra expry OR exprs
fals fals fals
adevarat fals adevarat
fals adevarat adevarat
adevarat adeviarat adevarat

adic3 rezultatul este adevarat dac3 cel putin una dintre expresii este adevarat3 si este fals dac3
amindou3 sunt false.

10 IF (a=1) OR (a=3) THEN STOP

Linia de mai sus va opri programul dacd a=1 sau a=3.

Revenind la expresii aritmetice, comportarea lui OR este mai bizard; vom vedea c3 poate
Tntoarce nu numai 1 sau 0. Aplicata la valori care sunt doar 0 si 1, se comporta Tnsd dupd cum
ne asteptdam.

1 daca expra # 0

expry OR expry = { expry daca exprs =0

11.3 AND

ENGLEZA: and = si

SINTAXA: expry, AND exprs
CATEGORIE: functie infixata
DESCRIERE:

La nivel logic, AND lucreaz3d dupd cum arat3 si tabelul:

exrpry exrprs expr; OR exprso
fals fals fals
adevarat fals fals
fals adevarat fals
adevarat adevarat adevarat

adica rezultatul este fals dacd cel putin una dintre expresii este falsd si este adevirat dac3
amindoud sunt adevarate.

Folosita cu expresii aritmetice, AND se comportd Tn doud feluri; Tn ambele cazuri expr, este
Tntotdeauna un numar:

76

1. dac3d expr; este tot un numar ;

0 daca exprs = 0

expry AND expry = { expry daca expry £ 0

2. dacd expry este un sir (sic!):

”7 daca exprs = 0

expry AND exprs = { expry daca expry £ 0

Rezultatul este deci un sir!

latd doar un exemplu de folosire a lui AND cu un argument sir (desi probabil c3 ar trebui
rescris cu dolari in loc de lei):

40 INPUT "un numar intreg pozitiv nenul ";a
50 PRINT "mai aveti " ; a ; "le"+("u" AND a=1)+("i" AND a>1)

Dintre expresiile a=1 si a>1, doar una va fi adevdrat3, deci una din expresiile cu AND va da
rezultatul ", iar cealaltd sirul respectiv. Dup3 caz va aparea cuvantul leu sau lei .

S3 mai vedem niste exemple cu operatori logici:
10 IF a=b AND b=c AND NOT c=0 THEN PAUSE O: NEW
acest scurt program se va autodistruge numai dacd a=b, b=c, ¢<>0. Sau:
5 IF (a=0 OR a=1) AND (b=0 OR b=1) AND (NOT a=b) THEN CLS
Analizand aceast3 linie, deducem c3 ecranul se va sterge in doar doud cazuri: a=1 si b=0, sau
a=0 si b=1.
Faptul c3 a este cuprins Tntre b si ¢ se poate testa Tn felurite moduri:
10 IF a > b AND a < ¢ THEN
sau

10 IF NOT (a <= b OR a >= c¢) THEN

O ultim3 observatie Tn legdturd cu AND: desi cele doud linii care urmeaz3 par identice ca
efect, ele au o semnificatie diferita:

IF condl AND cond2 THEN instr
IF condl THEN IF cond2 THEN instr

cu toate c3 instr se va executa dacd si numai dacd condl si cond2 sunt ambele adevarate
(nenule). Ca s3 intelegeti diferenta, s& considerdm urm3torul caz:

77

condl este ¢c=0
cond?2 este a/c = 2

Pentru ¢=0 prima form3 va da eroarea 6, pentru ca AND evalueazd ambele argumente, deci
face si impartirea la 0, pe cand a doua form3 va functiona corect — prima conditie fiind fals3,
a doua nu se mai evalueaza.

Pentru cd am Tnvatat deja o grdmad3 de functii si operatori, este cazul s3 vedem in ce
ordine se efectueazd sau, cu alte cuvinte care este precedenta (numit3 si prioritatea) fiec3reia,
pentru a scrie programe corecte. Precedenta, cu cat este mai mare, cu atat functia respectiva
se va aplica mai repede. lat3 lista precedentelor:

Operator, functie Prioritate
OR 2
AND 3
NOT 4
= > < >= <= <O 5
-+ (cu num3r sau sir) 6
* / 8
- (pentru negare, unar) 9
- 10
toate celelalte functii 11
calcul indici de tabel 12

Astfel, linia urmatoare:

10 LET a$ a$ + "le"+"u" AND a=1 + "i" AND a>1

Tnseamna
10 LET a$ = (a$+"le"+"u") AND (a = (1 + "i")) AND (a > 1)

ceea ce este evident incorect, c3ci se adund un numar cu un sir. Pentru a schimba ordinea
operatiilor se folosesc parantezele, dupd cum am Tnvatat.

|

Vom vedea acum o utilizare a unui fapt pe care 1l cunoastem de mai multd vreme. Dup3
cum am spus, toate operatiunile ,logice”, — comparatii (=, <, <>), sau functii logice de
alte valori (NOT, AND) — genereaz3 un rezultat numeric. Vom vedea cum putem folosi acest

rezultat pentru a scrie expresii mai concise. Ne vom folosi Tn special de faptul cd o comparatie
d3 1 pentru adevarat si 0 pentru fals.

5 INPUT a : PRINT a=1 : GOTO 5

va tipari ,valoarea de adevdr’ (0 sau 1) a propozitiei a=1.

S3 vedem cum rezolvdm urm3toarea problem3: Tn functie de valoarea num3rului a, care
poate fi 1, 2, 3 sau 4, trebuie s&-i atribuim lui b una din valorile 3, 5, 7, respectiv 11. Solutia
este:

78

LET b=3 * (a=1) + 5 * (a=2) + 7 * (a=3) + 8 * (a=4)

Cum ,merge” linia de mai sus? Simplu, una singurd din egalitdtile a=1, a=2, a=3, a=4
va fi adevaratd. Paranteza respectivd va avea ca rezultat 1, celelalte 0. Atunci, dintre numerele
3,5, 7, 11, numai unul va fi iTnmultit cu valoarea nenuld 1, si acesta va deveni valoarea lui b.
S& observdm c3, dacd a nu este 1, 2, 3 sau 4, b capits valoarea 0, cici toate parantezele sunt
nule.

Testele de genul a=1 se pun Tntotdeauna intre paranteze, din cauza prioritatii foarte mici a
operatiunii =. De exemplu:

PRINT a=5 + a=6
e totuna cu
PRINT (a = (5 + a)) = 6

care e intotdeauna 0. (De ce ?)

De asemenea, sa remarcam ca
IF a=b=c THEN ...
Tnseamn3 de fapt
IF (a=b) = ¢ THEN ...
care este cu totul altceva decat
IF (a=b) AND (b=c) THEN

Prima form3 este adevaratd dac3 c este chiar valoarea de adevar a propozitiei a=b.

Vom vedea o altd aplicare a acestei tehnici in urm3atorul

11.4 Exercif iu rezolvat

Scrieti un program care miscd un patratel pe ecran, prin intermediul a patru taste.

Rezolvare

Enuntul este acelasi ca la exercitiul rezolvat din Capitolul 9 si o parte din metodele de acolo
le vom pastra. M3 refer Tn special la folosirea variabilelor xa, ya.

5 LET x=0 : LET y=0: LET xa=x: LET ya=y
10 PRINT AT yi,xi; " "
12 LET xi=x : LET yi=y
15 PRINT AT y,x; PAPER O;" "
17 FOR i=1 TO 5: NEXT i
20 LET x=x + (INKEY$="8" AND x < 31) - (INKEY$="5" AND x > 0)
30 LET y=y + (INKEY$="6" AND y < 21) - (INKEY$="7" AND y > 0)
40 GOTO 10

79

Comentarii

Spre deosebire de solutia datd atunci, se trece prin instructiunile de scriere din liniile 10-15
chiar dac3 nu s-a apdsat vreo tasta. Acest lucru va cauza clipirea patratelului, datorata stergerii
sale in linia 10 si redesendrii sale in linia 15.

S3 vedem cum functioneazd acele paranteze bizare. Pentru cd seaman3 foarte mult Tntre
ele, vom discuta doar despre una dintre ele. De pildd: (INKEY$="5" AND x>0). Avem aici

dou3 teste: INKEY$="5" care d3 0 dac3 nu s-a ap3sat tasta sau 1 dac3 ea a fost ap3sat3
si x>0, care di 1 dac3 p3trdtelul nu a atins marginea din stanga sau 0 altfel. Ficand AND intre

ele, vom obtine 1 doar dac3 cineva Tncearcd s& mute patratelul la stinga (apdsand) si acest

lucru mai este posibil. Intreaga parantezd d3 1, care este sc3zut din valoarea curentd a lui x,
cauzand astfel miscarea c3tre stanga.

Ciclul din linia 17 este o bucla de intarziere. Ea nu se putea realiza cu PAUSE, c3ci ap¥sarea
unei taste intrerupe pauza. Dacad nu doriti ca patratelul s3 clipeascd, 1angad bucla de intarziere
puteti adauga un PAUSE 0.

Daca vreti ca patratelul s3 lase urme, scoateti liniile 10 si 12.

11.5 LEN

ENGLEZA. LENgth = lungime

SINTAXA: LEN sir
CATEGORIE: functie
DESCRIERE:

LEN este o functie foarte utild. Argumentul ei este un sir, iar rdspunsul — un numar, care
reprezintd chiar lungimea, socotit3 n caractere, a sirului. Datoritd ciud3teniei acestui BASIC,
un sir poate avea doar 10 caractere chiar dac3, scris pe ecran, nu Tncape intr-un singur rand
(pentru c3 un caracter poate s3 fie format din mai multe simboluri tip3ribile).

PRINT LEN "variabila sir" va tipari 13.
PRINT LEN "A>=B" va tipari fie 3, dacd >= este un singur caracter, fie 4, dac¥ este format
din dou3 caractere, > si =

PRINT LEN "" va tipari 0

11.6 Exercit iu rezolvat
NumZrati de cate ori apare intr-un sir un anume caracter.

Rezolvare

Cred c3 programul este suficient de simplu pentru a nu avea nevoie de comentarii:

5 INPUT "sirul :"; LINE a$: IF LEN a$=0 THEN GOTO 5

7 INPUT "caracterul :"; LINE b$: IF LEN b$=0 THEN GOTO 7
9 LET b$=b$(1) : LET k=0 : REM k este rezultatul

10 FOR i=1 TO LEN a$

80

15 IF a$(i) = b$ THEN LET k = k + 1: FLASH 1

20 PRINT a$(i); : FLASH O

25 NEXT i

30 PRINT ’"caracterul """ ; b$; """ figureaza de " ; k ;" ori"

11.7 VAL$

ENGLEZA. VALue = valoare, String = sir

SINTAXA: VAL$ sir
CATEGORIE: functie
DESCRIERE:

VAL$ este sora lui VAL. Ca si VAL, primeste un sir ca argument dar, asa cum ne arat3 si
dolarul din coad3, d3 ca rezultat tot un sir. VAL$ face acelasi lucru ca VAL: presupune c3 sirul
argument este o expresie BASIC, pe care o evalueaz (mai exact, caracterele sirului formeaz3
o expresie BASIC). Diferenta fatd de VAL este c§ VAL$ se asteaptd ca rezultatul expresiei s3
fie un sir, si nu un num3r. Dac3 sirul nu este o expresie corectd, se obtine eroarea C.

Un exemplu:

3 LET cu=2

5 LET a$="cu"

7 LET b$="a$+a$"

8 PRINT b$;" - ";VAL$ b$

care are ca efect
a$+a$ - cucu

O linie 10 PRINT VAL$ a$ ar da eroarea C, pentru c3 putem interpreta continutul lui a$
ca nume al unei variabile numerice (cu), care nu d3 un rezultat de tip sir.

Atentie: VAL si VAL$ evalueazd expresii si nu comenzi BASIC. O instructiune de tipul

LET a$="PAPER 5" : PRINT VAL$ a$

nu va face hartia albastr3, ci va genera eroare C.

11.8 Exercit ii

1. Se defineste operatorul logic sau exclusiv — notat Xor cu urm3torul tabel de adevar:

condy conds cond; XOR conds
fals fals fals
adevarat fals adevarat
fals adevarat adevarat
adevarat adevarat fals

81

82

Creati aceastd functie combinand operatori cunoscuti. Incercati s3 v3 ganditi care ar fi
forma ei generalizatd (asa cum reiese din programul vostru).

. Scrieti un program care num3r3 de cate ori un sir se gaseste in alt sir.

. Folosind instructiunea POKE 23692, 255 Tnainte de fiecare tiparire intrebarea scroll?

nu mai survine si alunecarea este continug. (Despre POKE in Capitolul 15.)

Scrieti un joc de ,raliu” astfel:

e .masina” (litera V Tn desen) se afld pe linia 21;

o jucdtorul o poate misca stanga-dreapta cu dou3 taste alese de el;
e soseaua ,urca’ pe ecran, generatd pe linia 21 Tn mod sinuos;

e jocul se opreste cand masina iese din sosea;

e scorul e proportional cu timpul de joc;

e urma masinii nu trebuie neap3rat s3 fie stearsd (desi nu e greu).

latd cum ar putea s3 arate ecranul la un moment dat:

V # scor 223

I I
| # vV # |
| # vV # |
| # Vv # |
| # vV # |
| # 0V # |
| # Vo# |
| # vV o# |
| # Vo# |
| # Vo# |
| # vV o# |
| # Vo# |
| # v CRASH ! |

Chapter 12

Grafica

Vom Tnviata s& facem desene mai finute si, totodatd cateva lucruri noi despre setul de caractere.

e grila de Tnalt3 rezolutie;

e PLOT pentru a face puncte;

e DRAW pentru a trasa linii si arce de cerc;
e CIRCLE pentru desenat cercuri;

e actiunea culorilor la instructiunile grafice;
e POINT pentru a inspecta ecranul;

e CHR$ pentru caractere;

e caractere ,de control”;

e CODE pentru decodificarea caracterelor.

Tnc# din capitolul 1 am spus c3 ecranul este format din pixeli, Tn numar de 256 x 192. Am
mai v3zut c3 acestia erau grupati cate 8 x 8 formand o retea de patrate pe care am numit-o
.grila de joas3 rezolutie”. Tn fiecare din aceste patrate am v&zut cd putem scrie un caracter.
Dar putem face mai mult decat atat: putem controla individual fiecare din cei 256 x 192 de
pixeli. O restrictie existd totusi; o vom deslusi in Capitolele 14 (ATTR) si 15: ntr-unul din
patratele grilei de joasa rezolutie nu pot exista simultan mai mult de doud culori distincte.
Odat3 fixate aceste dou3 culori pentru un p3tratel, putem vorbi despre punctele din interiorul
sdu ca fiind de dou3 tipuri:

e aprinse sau n culoarea INK;

e stinse sau Tn culoarea PAPER.

83

Grila de Tnaltd rezolutie are anumite ciudatenii. Intai, cele dou3 randuri, care de obicei
formeaza ,partea de jos” a ecranului nu fac parte din grila de Tnalta rezolutie. De aceea grila
are pe verticald numai 192 — 16 = 176 de puncte.

Dupd cum ne asteptdm, coordonatele punctelor variaza:

e pe orizontal3 intre 0 si 255;

e pe verticald intre 0 si 175.

Existd Tn definirea grilei de Tnaltd rezolutie doud asimetrii (comparativ cu cea de joas3
rezolutie):

e originea sistemului de coordonate nu este in coltul din stanga-sus, ciin cel din stanga-jos,
chiar deasupra celor doud linii ,interzise”. Coordonatele sale sunt 0, 0;

e coordonatele punctelor in grila de Tnalt3 rezolutie se specificad n ordine inversa: Tntotdea-
una ntdi coordonata X — pe orizontald — si apoi coordonata Y — pe verticalad. Astfel
colturile grilei au coordonatele:

(0,0) stanga-jos
(0,175) stanga-sus
(255,175) dreapta-sus
(255, 0) dreapta-jos

12.1 PLOT

ENGLEZA: to plot = a desena; a trasa

SINTAXA: PLOT [culoril x, vy
CATEGORIE: comand3
DESCRIERE:

Despre folosirea culorilor Tn instructiunile grafice vom vorbi dup3 ce le vom prezenta pe
toate. X si Y trebuie s3 fie doud expresii care genereazd ntregi intre limitele 0-255 pentru X
si 0-175 pentru y. De fapt, valorile lor sunt rotunjite si luate Tn modul. Daca nu se respecta
aceste conditii, survine eroarea B.

Desi depinde destul de mult de valorile lui OVER si INVERSE, cum vom vedea Tn partea care
descrie folosirea culorilor, putem spune c& PLOT ,face” punctul cu coordonatele specificate X,

y.

Incercati:

5 PLOT RND #* 255, RND * 175 : GOTO 5

12.2 DRAW

ENGLEZA: to draw = a trasa

SINTAXA: DRAW [culoril x,y [,ul
CATEGORIE: comand3
DESCRIERE:

84

Discutdm separat DRAW cu 2 si cu 3 parametri.

12.2.1 DRAW X,y

deseneaz3 un segment cu lungimea orizontal3 (proiectia pe orizontald) X si cu lungimea proiectiei
verticale y. Segmentul se traseazd incepand de la ultimul punct facut anterior pe ecran (cu
un PLOT, ultimul capdt de la un DRAW sau ultimul punct al unui CIRCLE). Dacd nici o alt3
instructiune graficd nu s-a mai executat de la ultimul CLS, trasarea incepe din origine. Din
aceastd cauzd spunem c3 DRAW lucreazg in coordonate relative (adicd face un segment pan3
la coordonatele X, Yy, dar considerand c3 originea este in ultimul punct trasat). Dac3 unul din
punctele segmentului iese din ecran, se obtine eroarea B.

latd un program care traseaza un patrat:
PLOT 5,5 : DRAW 100,0 : DRAW 0,100 : DRAW -100,0 : DRAW 0,-100

Sesizati rolul parametrilor negativi la DRAW: apropie capatul respectiv de origine.

12.2.2 DRAW X, VY, U

deseneazd un arc de cerc cu capetele chiar Tn capetele segmentului pe care |-ar fi trasat acelasi
DRAW f&r3 ultimul parametru. Valoarea U specificd lungimea arcului de cerc, in radiani. (Un
radian are un arc de lungime egald cu raza cercului. Din formula circumferintei rezultd ca
3.141592.. ., adicd 7 radiani, inseamn3 un arc de 180 de grade — un semicerc.) Semnul lui u
precizeaza care din cele doud arce posibile se traseaza: 4 Tnseamn3 cel in sens trigonometric,
— cel n sens orar.

Dacd un punct al arcului iese din ecran, se obtine eroarea B.

latd cum trasdm 100 de arce aleatoare ntre doud puncte (un fel de glob):

5 FOR i = 1 TO 100

6 LET u = RND * 3.1415 * 2 - 3.1415
7 PLOT 128,50 : DRAW 0,100, u

8 NEXT i

Avantajul tras3rii in coordonate relative este acela c3, schimband doar pozitia primului
punct, mutdm Tntreaga figurd, cum ilustreazg si urmatorul exemplu:

5 PLOT 0,87

7 FOR i = 1 TO 16

8 DRAW 8,8 : DRAW 8,-8 : DRAW -8,-8 : DRAW -8,8 : DRAW 15,0
9 NEXT i

Algoritmul care traseaz3 arce de cerc le aproximeaz3 de fapt cu segmente mititele. Pentru
a trasa un arc, el este Tmpartit in multe arce mici care se traseazd ca segmente. Dac3 arcul
de trasat este foarte mare (ceea ce ar trebui s& corespundd de fapt la o multime de cercuri
suprapuse), Tmpartind arcul Tn subarce mai mici se obtin totusi arce de dimensiuni suficient
de mari ca aproximarea lor cu segmente s3 fie grosoland. (Numarul de segmente nu creste
nelimitat.) De aceea, trasarea unor arce cu lungime mare n radiani d3 nastere de fapt la niste
foarte frumoase arabescuri. Experimentati:

85

PLOT 30,30 : DRAW 10,10,12000

sau

PLOT 120,20 : DRAW 10,10,9890

12.3 CIRCLE

ENGLEZA: circle = cerc

SINTAXA: CIRCLE [culori]l X, vy, r
CATEGORIE: comand3

DESCRIERE:

CIRCLE X, VY, I traseazd un cerc cu coordonatele absolute ale centrului X, Yy si cu raza r

(pixeli). Pentru r < 1 face doar PLOT X, Y. Dac# unul din punctele cercului iese din ecran
avemn eroare B. Trasarea cercului Tncepe si se termina Tntr-un punct de coordonate aproximativ
x + 7, y, deci CIRCLE schimb3 pozitia ultimului punct, fatd de care DRAW lucreaz3!

12.4 Act iunea culorilor

86

1. Dac3a nu sunt inserate directive de culoare Tn cadrul instructiunii:

Instructiunile grafice (PLOT, DRAW, CIRCLE) traseazd punctele Tn culoarea INK globald
curentd. Toate punctele INK aflate in p3trdtelul 8 x 8 din care face parte punctul Tsi
schimbd culoarea Tn noua culoare INK (nu pot exista doud culori INK in acelasi pdtratel
8 x 8). latd un exemplu:

PRINT AT 0,0; INK 1;"A": PAUSE O: INK 3: PLOT 0,175

Instructiunile NU schimbd PAPER-ul, BRIGHT-ul si FLASH-ul in p3tratele din care fac
puncte (ele sunt implicit PAPER 8, BRIGHT 8, FLASH 8).

OVER si INVERSE au efecte foarte ciudate asupra punctelor trasate de instructiunile grafice,
dupd cum urmeazi:

e OVER 0, INVERSE O Tnseamn3 trasarea punctelor Tn culoarea INK;
e OVER O, INVERSE 1 duce la stergerea punctelor trasate (sunt aduse la culoarea
PAPER);

e OVER 1, INVERSE O produce inversarea punctelor trasate (din INK n PAPER si
viceversa);

e OVER 1, INVERSE 1 lasd punctele neschimbate, Tnsd modificd pozitia ultimului
PLOT si culorile din p3tratelul respectiv (INK-ul).

Instructiunile de culoare (INK, PAPER, BRIGHT, FLASH, INVERSE, OVER) pot fi in-
serate Tn cadrul celor grafice, separdndu-le cu ; sau cu , (nusi cu ’). Atunci ele vor avea
doar un efect local (valabil doar pentru instructiunea respectivg).

Tn plus, inserarea |ui PAPER, FLASH sau BRIGHT face ca punctele trasate sd schimbe acesti
parametri pentru ntreg patratelul din care fac parte. INVERSE si OVER actioneazd Tn acelasi

fel. Putem rezuma actiunea lor:

INVERSE OVER actiune

0 0 punct = 1

0 1 punct = punct vechi XOR 1
1 0 punct = 0

1 1 punct = punct vechi

Am notat:

e cu 1 un punct care este in INK;
e cu 0 un punct care este Tn PAPER;

e cu XOR operatia de SAU EXCLUSIV (definitd in Capitolul 11, Exercitiul 1).

Daca intr-un patr3tel avem aceleasi valori pentru INK si PAPER, nu Tnseamnad c3 in calculator
nu se stie care puncte sunt INK si care PAPER. Ne putem convinge, schimband ulterior culorile
cu un PLOT:

PRINT PAPER 5; INK 5; AT 21,0;"a": PAUSE 0: PLOT PAPER 6, INK O; 0,0

12.5 POINT

ENGLEZA: point = punct

SINTAXA: POINT (X,Y)
CATEGORIE: functie
DESCRIERE:

X este intre 0 si 255, y intre 0 si 175; altfel obtinem eroare B. POINT este prima functie
prefixatd cu doud argumente, care trebuie puse Tntre paranteze. POINT este Tntr-un anume sens
functia opusd comenzii PLOT. Ea Tntoarce un numir, 0 sau 1, astfel:

e 0 dacd punctul (X,y) este in culoarea INK a patratelului lui;

e 1 dacd punctul (X,y) este in culoarea PAPER din acel patratel.

Puteti folosi POINT pentru a testa, de pild3, trecerea unui desen mobil printr-un punct.

Trebuie s3 atragem atentia c3 trasarea segmentelor e aproximativa:
DRAW 70,40 : DRAW INVERSE 1, -70, -40
nu sterge segmentul cu totul! Pentru asta trebuie scris:

DRAW 70, 40: DRAW OVER 1, INVERSE 1, -70, -40: DRAW INVERSE 1, 70, 40

87

12.6 CHR$

ENGLEZA: CHaRacter = caracter

SINTAXA: CHR$ cod
CATEGORIE: functie
DESCRIERE:

cod trebuie s3 fie cuprins, dup3 rotunjire, intre 0 si 25b5; Tn caz contrar se obtine eroarea B.
CHR$ intoarce caracterul cu codul cod.

HC85 foloseste un set de caractere format din 256 de elemente. O clasificare a lor este
datd in Capitolul 0. in plus, fiecare caracter are un cod numeric (forma in care este de altfel
si memorat, cici memoria unui calculator contine de fapt doar numere). Pentru multe din
caracterele sale HC foloseste un cod standardizat, numit ASCIl. ASCIl Tnseamn& ,, American
Standard Code for Information Interchange”, adicad ,,Codul American Standard pentru schimb
de informatii”. HC Tns3 foloseste si coduri care nu sunt ASCII pentru unele din caracterele sale
(de altfel codul ASCII descrie numai 128 de caractere).

Dupd cum este de imaginat, codurile sunt cuprinse intre 0 si 265. Anexa B pezintd pe
coloana 1 codul in baza 10, pe coloana 2 codul in baza 16 si pe coloana 3 caracterul core-
spunzitor. Celelalte coloane nu ne intereseazd pentru moment; (ele aratd codurile numerice
ale instructiunilor limbajului de asamblare Z80).

Astfel PRINT CHR$ 100 va tip3ri litera d (mic). Pan3 aici nimic deosebit. Mai interesante
sunt Tns3 caracterele pe care in Capitolul 0 le-am numit ,,caractere de control”. Ele au codurile

de la 0 la 31. Inainte de a le discuta, s ,rugdm” calculatorul s ne afiseze celelalte caractere:

5 FOR i = 32 TO 255
7 PRINT i;" ";CHR$ i,
9 NEXT i

Caracterele de control se mai numesc si neprintabile, pentru c3, folosite in instructiunea
PRINT, nu au un efect obisnuit.

Dup3d cum vedeti (in Anexa B), cea mai mare parte poartd mentiunea ,nefolosit”. Ele sunt
practic echivalente cu caracterul cu codul 0 si tiparirea lor produce un semn de intrebare. Nici
o tastd nu poate genera (la INKEY$) un asemenea caracter. S3 le discutdm pe celelalte, luate
separat:

caracterul cu codul 6 numit ,,PRINT virguld”. Tiparirea acestui caracter are exact efectul pe
care l-ar fi avut Tntalnirea Tn acest punct a unei virgule in instructiunea PRINT. Incercati:

PRINT "a'"; CHR$ 6; "b"

caracterul cu codul 7 numit si ,EDIT". Tiparit nu are nici un efect. Poate fi ins3 returnat

de INKEY$, cand se apas3 (+);

caracterul codificat 8 — ,cursor stanga”. Tiparirea sa mutd pe ecran cursorul de la PRINT
cu o patratica spre stanga. El este de asemenea generat de tasta ,sdgeata stanga” (

+ ,). Tncerca;i:

PRINT "1234";CHR$ 8;"5"

88

caracterul cu cod 9 - ,cursor dreapta”. Tip&rirea lui mut3 cursorul spre dreapta. Scrierea
lui este echivalentd cu instructiunea

PRINT PAPER 8;INK 8;FLASH 8;BRIGHT 8;INVERSE O;0OVER 1;" "

De asemenea, este generat de tasta ,,s3geatd dreapta” (+);

caracterul codat 10 — , cursor jos” este generat de tasta , sigeat3 jos” (+ @ Tiparit,

nu are efect;

caracterul codat 11 — ,cursor sus” este generat de tasta ,sdgeat3 sus” (+) Tiparit,
nu are efect;

caracterul cu codul 12 | DELETE" este generat de tasta cu acelasi nume (+ @

Tiparit, nu are efect;

caracterul cu codul 13 ,[ENTER"” este generat de tasta . Tiparit, se comportd ca un

apostrof: trece pe rand nou;

caracterul cu codul 14 ,,urmeaz num3r’ nu este generat de nimic. Tip3rit face ca urm3toarele
cinci caractere care sunt scrise s3 nu apard! In anexa F se desluseste utilitatea lui.

caracterele 16 - 21 au o utilizare inrudit3, de aceea le tratdm laolalt3.
Ele se numesc ,control INK", , control PAPER", ,control FLASH", ,.control BRIGHT",

,control INVERSE" si ,,control OVER" . Tip&rirea unuia face ca urmatorul caracter tip3rit
s& fie considerat drept ,,parametru” al caracterului de control. Cele dou3 caractere (cel de
control si parametrul sdu) au ca efect cumulat acelasi efect pe care il au instructiunile de
culoare inserate in PRINT-ul respectiv: schimba culorile locale. Un exemplu este |amuritor:

PRINT CHR$ 17;CHR$ 2;"albastru"
care e totuna cu
PRINT PAPER 2;"albastru"
Utilitatea unor asemenea caractere este ¢ pot face parte dintr-un sir (chiar din valoarea

unei variabile sir) sau pot fi inserate Tn listingul programului prin felurite combinatii de
taste

CS|+ insereazE CHR$ 20 + CHR$ 1
CS|+ insereazé CHR$ 20 + CHR$ O

In modul extins apdsarea tastelor numerice (cu si fir3) introduce alte combinatii
de caractere de control cu parametrii lor Tn text. Incercati. In acest mod, puteti face
listingul mai inteligibil, marcand felurite parti din el.

caracterul cu codul 22 ,.control AT", lucreazd asemenea celor 6 caractere de mai sus, numai
cd interpreteazad urmatoarele 2 caractere drept parametri. Primul este y-ul, al doilea X-ul.

Astfel:

89

PRINT CHR$ 22 + CHR$ 3 + CHR$ 5 + "text"
e echivalent cu
PRINT AT 3, 5; "text"

“in fine, caracterul codat 23 sau ,.control TAB", lucreazd asemanator lui ,,control AT". Ciu-
dat este c3 foloseste tot doi parametri, desi TAB are nevoie de unul singur. Al doilea este
ignorat. De fapt,

PRINT CHR$ 23 + CHR$ a + CHR$ b
este totuna cu

PRINT TAB a + 266 * b
care este totuna cu

PRINT TAB a

pentru cd argumentul lui TAB se ia modulo 32 (adic3 restul impartirii sale la 32).

Daca unul din caracterele 16-21 nu are ca ,,parametru” un caracter Tntre limitele cerute
de valorile posibile ale culorii, se obtine eroarea K. CHR$~22 poate da aceleasi erori ca
PRINT AT cu valori incorecte.

Astfel,

PRINT CHR$ 16 + CHR$ 16
eroare K, fiind echivalent cu
PRINT INK 16

Dup3 cum spuneam, aceste caractere Tsi dovedesc utilitatea la folosirea lor in variabile sir.
latd niste exemple:

LET a$ = CHR$ 22 + CHR$ 5 + CHR$ 5 + "text fixat pe ecran': PRINT a$

sau:
5 LET a$=""
10 FOR 1 =1 TO 7
12 LET a$ = a$ + CHR$ 17 + CHR$ i + " ": REM 17 e codul "control PAPER"
13 NEXT i

15 LET a$ = a$ + a$ + a$ + a$: REM 32 de spatii

20 OVER 1 : PRINT AT 0,0;"* EFECTE DE ROTATIE A CULORILOR."
25 FOR i=1 TO 100

30 PRINT AT 0,0 ; a$

35 LET a$ = a$(4 TO)+ a$(TO 3)

40 NEXT i

Tehnica de mai sus e simpld: am un sir de spatii, fiecare Tn altd culoare. Mut mereu la

coad3 primul spatiu si caracterele ce-i definesc culoarea. Folosesc tiparirea de spatii Tn OVER 1,
care lasa ecranul neschimbat, dar schimba culorile.

90

12.7 CODE

ENGLEZA: code = cod
SINTAXA: CODE sir
CATEGORIE: functie
DESCRIERE:

CODE este functia opus3 lui CHRS$. Tntoarce codul primului caracter din sirul argument.
CODE "" este 0.

Putem folosi CODE pentru a vedea dacd un caracter se afld Tntre anumite limite, dupad cum
aratd si urm3torul

12.8 Exercit iu rezolvat

Scrieti o secventd de program care citeste un num3r intreg de maximum 4 cifre, far3d a folosi
INPUT.

Rezolvare

1 OVER O : INK 9

5 LET a$ = "" : REM sirul rezultat

10 PRINT AT 5,5; "dati numarul :";

15 LET b$ = INKEY$

17 IF (CODE b$ < CODE "0") OR (CODE b$ > CODE "9") THEN GOTO 30
18 REM daca s—a ajuns aici, s-a tastat o cifra
20 IF LEN a$ < 4 THEN LET a$ = a$ + b$: PRINT b$;

FOR i=1 TO 5: NEXT i

25
30 IF b$ = CHR$ 13 THEN IF LEN a$ <> O THEN GOTO 50 : REM 13=CR
35 IF b$ = CHR$ 12 THEN IF LEN a$ > O THEN

LET a$=a$(TO LEN a$ - 1): PRINT CHR$ 8;" ";CHR$ 8;
40 GOTO 15
50 LET a = VAL a$: REM a este numarul

Comentarii

o Linia 17 testeazd dacd s-a apdsat vreo cifrd (se bazeaz pe faptul c3 cele 10 cifre au
codurile al3turate si dispuse Tn aceeasi ordine cu cifrele).

o Linia 20 adaugd la numar noua cifrd, dacd acesta nu are deja 4 cifre.

e Linia 30 vede dac3 nu s-a apasat | CR| DacZ da si numarul are cel putin o cifr3, iese din
bucla de citire formata de liniile 15 - 40.

o Linia 35 vede dac3 nu s-a apdsat | DELETE | pentru a sterge ultimul caracter. Dac3 s-a

apasat, atunci Tn caz ca sirul are cel putin un caracter, il extrage pe ultimul. Il sterge si
de pe ecran, mutand cursorul la stdnga (CHR$ 8), scriind un spatiu si din nou sténga.

e Linia b0 extrage valoarea numarului, in variabila a.

91

12.9 Exercit ii

92

. Scrieti un program care s3 miste aleator pe ecran un pdianjen, care s3 ,teasd” o panz3

Tn urma sa.

. Scrieti un program pentru conversie grade <> radiani (m = 3.141592).

. Scrieti un program care miscd pe ecran un desen, compus din maximum b segmente

(g3siti o metodd pentru a-| ajuta pe utilizator s introducd desenul) cu ajutorul a patru
taste.

. Scrieti un program pentru ficut desene — un punct miscat cu opt taste las3 urme.

Chapter 13

Subrutine s I trigonometrie

Vom Tnvata cite ceva despre functiile trigonometrice si despre proceduri (subrutine).

e PI, pentru num3rul omonim;
e GOSUB, pentru a executa o subruting;

e RETURN, pentru a incheia o subruting;

functii trigonometrice:

— SIN, pentru sinus;

— COS, pentru cosinus;

— TAN, pentru tangent3;

— ASN, pentru arcsinus;

— ACS, pentru arccosinus;
— ATN, pentru arctangenté.

13.1 PI

ENGLEZA: vine din litera greceasc3 ce poartd acelasi nume — 7
SINTAXA. PI

CATEGORIE: functie

DESCRIERE:

PI este o functie fird argumente; de fiecare datd cand ea este invocatd, intoarce val-
oarea aproximativd a numarului omonim celebru cu care matematicienii noteaza raportul dintre
lungimea unui cerc si cea a diametrului s3u. Tn BASIC, PI se foloseste frecvent, pentru c3
unghiurile sunt exprimate in radiani si nu in grade si dupa cum stim, la 7 radiani corespund

180 de grade. 1 grad = PI / 180 radiani.

93

DRAW 100,0,-PI

va face un semicerc cat mai aproape de ideal.

13.2 GOSUB

ENGLEZA: GOto SUBroutine = du-te la subrutin3

SINTAXA: GOSUB etch
CATEGORIE: comand3
DESCRIERE:

etch este valoarea unei etichete, altfel survine eroare B. Vom descrie aici ideea care se g&seste
Tn spatele acestei instructiuni; modul ei de functionare 1l vom expune abia dup3 prezentarea
instructiunii urmatoare (RETURN), cu care se foloseste Tntotdeauna Tmpreun3.

Foarte adesea, in programe se iveste necesitatea folosirii unei aceleiasi secvente de instructiuni.
De pild3, un program care scrie, scrie, scrie pe ecran pagini intregi, va apela adesea la o secvent3
de linii precum urm3toarea:

50 PRINT AT 21,0;"Daca ati terminat, tastati ceva .."
60 IF INKEY$ = "" THEN GOTO 60
70 IF INKEY$ <> "' THEN GOTO 70

Aceastd secventd asteapti ap@sarea unei taste si apoi eliberarea ei. Pentru a simplifica
lucrurile, ar fi mult mai convenabil s3 putem scrie aceste linii o singurd dat3 si, printr-un
procedeu oarecare, s3 le invocdm de cate ori avem nevoie. O astfel de secvent3 de instructiuni
se numeste subrutind sau procedura. Cum functioneaz3 o s3 vedem imediat.

13.3 RETURN

ENGLEZA: return = Tntoarcere

SINTAXA: RETURN
CATEGORIE: comand3
DESCRIERE:

RETURN este intotdeauna ultima instructiune a unei subrutine, indicand sfarsitul executiei
ei. Si acum s3 vedem cum se construieste o subrutind si cum se invoca:

Secventa de linii cu utilizare frecventd se scrie o singurd dat3, de preferintd spre sfarsitul
programului. Ultima instructiune a secventei este RETURN. Cand se iveste necesitatea executarii
subrutinei, Tn textul programului se insereaz3 instructiunea GOSUB etch, unde etch este prima
etichetd din subrutind. Totul functioneaz3 astfel:

Cand se intalneste instructiunea GOSUB etch, se memoreaz§ undeva (pe asa numita stiva
GOSUB) locul unde a fost Tntéalnitd instructiunea (linia si num3rul instructiunii). Apoi se face
un GOTO etch. Instructiunile subrutinei se executd ca o secventd normal3 de linii. La executarea
instructiunii RETURN se citeste de pe stiva GOSUB locul de unde s-a executat instructiunea GOSUB
si se revine la instructiunea imediat urmatoare.

Aceastd schem3 este foarte flexibild tocmai pentru cd RETURN este un fel de GOTO automat:
procedura revine la locul din care a fost chemat3 si nu Tntotdeauna Tn acelasi loc.

94

Pentru c3 o subrutind poate chema la randul ei o alta, Tntoarcerea din cea din urm3 trebuie
sa se facd Tn prima, si din prima in program. Deci locurile de unde s-au chemat procedurile se
extrag din stivd Tn ordine inversd chemarii: ultima apelatd — prima iesitd (in englezd last in
first out, adica prescurtat LIFO). Acest mod de ,,pastrare” a informatiei este caracteristic unui
obiect informatic care se numeste stivd. Tot asa e si o stivd de c3rti (asezate orizontal, una

peste alta): poti lua numai cartea de deasupra, ultima pus3.

S3 vedem niste exemple:

5

10
15
20
30
40
45
50
999
1000
1010
1020
1999
2000
2010
2020
2025

PRINT
GOSUB
PRINT
GOSUB
PRINT
GOSUB
PRINT
STOP

"Chemam prima oara procedura 1"
1000

"Chemam a doua oara procedura 1"
1000

"Chemam procedura 2"

2000

"suntem in programul principal"”

PRINT "#** suntem in procedura 1 **"
PAUSE 100
RETURN

PRINT "*#*%* suntem in procedura 2 #***'
PRINT "procedura 2 cheama procedura 1"
GOSUB 1000

PRINT "#**** am revenit in 2 ****'"

2030 RETURN

efectul:

Chemam prima oara procedura 1
** suntem in procedura 1 **
Chemam a doua oara procedura 1
** suntem in procedura 1 **
Chemam procedura 2

kk suntem in procedura 2 ***x*
procedura 2 cheama procedura 1
** suntem in procedura 1 **
*kk*k am revenit in 2 x¥kk
suntem in programul principal

Despre erori:

e se obtine eroarea 7 dac3 se intalneste un RETURN si nici un GOSUB corespunzdtor nu a
fost executat (nu mai e nici o inregistrare pe stiva).

e dac¥ stiva se umple (intreaga memorie in care s-ar putea extinde este folositd) puteti
obtine eroarea 4. Stiva GOSUB ,creste” de la sfarsitul memoriei spre inceput, programul
BASIC (si variabilele sale) de la Tnceput spre sfarsit. Deci programul si stiva au Tmpreun3
o anumit3 cantitate de memorie pe care o folosesc. Dac3 cele dou3 se ntalnesc, atunci
se obtine eroarea 4.

95

O procedurd se poate apela pe ea Tnsdsi. Atunci ea se numeste recursiva. Prin felurite
mecanisme de programare, trebuie s3 se asigure c3 aceastd auto-apelare nu se va petrece la
infinit. latd un exemplu:

5 LET apeluri = 10: GOSUB 1000
10 STOP
1000 PRINT apeluri;" ";
1010 LET apeluri = apeluri - 1
1020 IF apeluri <> 0 THEN GOSUB 1000
1030 RETURN

cu efectul:
10987654321

Tncerca;i sa ntelegeti cum merge procedura anterioard. Desi procedurile recursive pot
parea la prima vedere o ciud3tenie inutil3, ele sunt un obiect informatic foarte util. Din p3cate,
limbajul BASIC, datorit3 sl&biciunii cu care foloseste acest concept (nu are ,variabile locale” si
nici ,parametri” pentru proceduri) nu poate beneficia din plin de forta acestui mecanism.

Recomand3dm atribuirea unui nume fiec3rei proceduri si folosirea sa in locul etichetei de
Tnceput. Aceasta face programul mai usor de scris si de depanat (si dupd cum se deduce citind
Anexa F, chiar mai scurt!). Exemplu:

1 LET tasta = 1000
50 GOSUB tasta
999 STOP
1000 REM procedura citeste tasta

1100 RETURN

Urm3atorul grup de instructiuni face parte din grupul functiilor trigonometrice. Aceste functii
au drept argumente masuri de unghiuri si dau ca rezultate numere remarcabile, caracteristice
unghiului argument. In BASIC unghiurile se dau intotdeauna in radiani (vezi Capitolul 12). Cele
mai importante functii trigonometrice sunt: sinus, cosinus, tangenta si cotangenta. Existd mai
multe moduri de defini sinusul (si celelalte functii trigonometrice) unui unghi (toate echivalente);
vom da aici una care ni se pare mai simpld. S construim un triunghi dreptunghic ABC, cu
unghiul B = 90° = PI/2 rad (rad e prescurtarea de la radiani). Prin definitie, avem:

C
B A
sinus sin A = BC/AC cateta opus supra ipotenuz3;
cosinus cos A= ABJ/AC cateta al3turatd supra ipotenuz;

tangentd tan A= BC/AB cateta opus3 supra cateta al3turat3.

96

(Romanii noteaz3 tangenta cu TG, englezii cu TAN.)
Cotangenta nu existd Th BASIC HC, asa c¢& nu am definit-o. Ca s3 nu se zic despre noi c3
nu stim, addugdm c¥ ea este definitd ca COT A = 1/TAN A.

Tntre aceste functii avem tot felul de relatii interesante, dar care deocamdatd nu ne folosesc.
S3 observdm c3 functiile trigonometrice sunt definite si pentru unghiuri de peste 90 de grade,
ceea ce un triunghi dreptunghic nu poate avea.

Nu intrdm Tn alte subtilitdti trigonometrice, le |3s8m pe seama unui curs de matematica
(desi pe unele le vom folosi. . .).

13.4 SIN

ENGLEZA: SINus = sinus

SINTAXA: SIN U
CATEGORIE: functie
DESCRIERE:

Tntoarce sinusul unghiului u, dat n radiani.

13.5 CO0S

ENGLEZA: COSinus = cosinus

SINTAXA: cos u
CATEGORIE: functie
DESCRIERE:

Tntoarce cosinusul unghiului U, dat Tn radiani.

13.6 TAN

ENGLEZA. TANgent = tangent3

SINTAXA: TAN U
CATEGORIE: functie
DESCRIERE:

Tntoarce tangenta unghiului u, dat in radiani. TAN u=SIN u/COS u. Cand COS u=0,
tangenta tinde spre infinit. TAN (PI/2) Tnseamn3 deci eroare 6.

13.7 ASN

ENGLEZA: ArcSiNus = arcsinus

SINTAXA: ASN n
CATEGORIE: functie
DESCRIERE:

97

Intoarce arcsinusul num3rului n, adicd unghiul care are sinusul n. ASN 1 = PI/2 =
1.5707963. Pentru ca toate unghiurile care difera prin 2*PI au acelasi sinus, arcsinus tre-

buie s3 aleagad pe unul din ele. 1l alege Tntotdeauna pe cel intre —P1/2 si P1/2.

Pentru cd —1 < sinu < 1 pentru orice unghi, deducem c3 n trebuie s& fie intre -1 si 1.
Altfel survine eroarea A.

13.8 ACS

ENGLEZA: ArcCoSinus = arccosinus

SINTAXA: ACS n
CATEGORIE: functie
DESCRIERE:

Intoarce arccosinusul num3rului N, adic3d unghiul care are cosinusul N. ACS 1 = 0. Pentru
cd —1 < cosu < 1 pentru orice unghi u, deducem c3 n trebuie s3 fie Tntre =1 si 1. Altfel
survine eroarea A.

13.9 ATN

ENGLEZA. ArcTaNgent = arctangenta

SINTAXA: ATN n
CATEGORIE: functie
DESCRIERE:

Tntoarce unghiul cu tangenta n.

13.10 Exercit iu rezolvat

Scrieti un program care s3 functioneze ca un ceas cu limbi.
Rezolvare

Folosim intens functii trigonometrice. Ceasul nu este prea exact, dar arat bine. Mai Tncolo
o s3 Tnvatdm si cum s3-| facem precis.

REM ceas cu limbi

PAPER 7 : INK 9 : CLS
REM definim etichetele a 6 subrutine:

LET secunda = 100 : LET minut = 200 : LET ora = 300

LET unghi sec = 1000 : LET unghi min = 2000 : LET unghi ora = 3000
LET sec = 0

LET x centru = 117: LET y centru = 82 : REM centrul ceasului
LET 1g sec = 55 : LET 1g min = 50 :

LET 1g ora = 40 : REM lungimi limbi

9 LET alfa = 20 # PI / 180 :

LET beta = 40 * PI / 180 : REM forma limbii

10 FOR i=1 TO 12 : REM cadran
11 PRINT AT 11 - 8 * COS (i*PI/6) ,

0 ~NOoO O WN -

98

14 + 8 * SIN (i*PI/6) - (i>9) ; i

12 NEXT i
13 CIRCLE x centru, y centru, 2
20 INPUT "ORA curenta ";ora, "MINUTUL ";Min
22 LET ora = INT ABS ora : LET ora = ora - 12 * INT (ora/12)
23 LET min = INT ABS min : LET min = min - 60 * INT (min/60)
30 GOSUB unghi sec : GOSUB unghi min : GOSUB unghi ora
35 REM am calculat unghiurile limbilor la inceput
45 INPUT "Apasati ENTER pentru a porni "; LINE a$
49
50 PRINT AT 0,0; ("0" AND ora < 10); ora; ":";

("0" AND min < 10); min; ":";

("0" AND sec < 10); sec
60 GOSUB secunda : REM avansam o secunda
65 IF sec <> 0 THEN PAUSE 25: GOTO 50
67
69 REM ** se schimba minutul
70 GOSUB minut : REM avansam un minut
75 IF min <> 0 THEN GOTO 50
77
79 REM #* se schimba ora (min = 0)
80 GOSUB ora
90 GOTO 50
99
100 REM *#*#*** subrutina care bate secunda
103 REM in us avem vechiul unghi al limbii secundelor!
110 INVERSE 1 : REM STERG limba la vechea pozitie!
120 PLOT xcentru, ycentru: DRAW lgsec * SIN us, lgsec * COS us
1256 LET sec = sec + 1 : IF sec = 60 THEN sec = 0
130 GOSUB unghi sec : REM calculez noua pozitie
135 INVERSE O : REM desenez limba la noua pozitie
150 PLOT xcentru, ycentru: DRAW lgsec * SIN us, lgsec * COS us
160 RETURN
190
200 REM *****x** subrutina care bate minutul
205 LET lungime = 1g min : LET unghi = um : REM um = unghiul anterior
207 INVERSE 1 : REM sterg
210 GOSUB 5000 : REM desenez limba ciudata
220 LET min = min + 1 : IF min = 60 THEN min = O
230 GOSUB unghi min : LET unghi = um
235 1INVERSE O : REM desenez
240 GOSUB 5000
250 RETURN
290
300 REM **#***** subrutina care bate ora
305 LET lungime = 1lg ora : LET unghi = uh : REM uh = unghiul anterior
307 INVERSE 1 : REM sterg
310 GOSUB 5000 : REM desenez limba ciudata
320 LET ora = ora + 1 : IF ora = 12 THEN ora = 0
330 GOSUB unghi ora : LET unghi = uh
335 INVERSE O : REM desenez

340 GOSUB 5000

350 RETURN

999

1000 REM calculul unghiului secundei in radiani

1004 REM din variabila sec -> in variabila us

1005 LET us = sec * 360 / 60 : REM 360 grade la 60 sec

1010 LET us = us * PI / 180 : REM 180 grade la radian

1020 RETURN

1999

2000 REM calculul unghiului minutelor

2010 REM min -> um

2020 LET um = min * 360 / 60

2030 LET um = um * PI / 180

2040 RETURN

2999

3000 REM calculul unghiului orelor ora -> uh

3010 LET uh = ora * 360 / 12

3020 LET uh = uh * PI / 180

3030 RETURN

4999

5000 REM procedura care deseneaza o limba ciudata

5010 REM forma limbii este descrisa de alfa, beta si lungime
5020 REM orientarea este data de unghi

5030 PLOT x centru, y centru

5040 LET temp = lungime * (1 / TAN alfa + 1 / TAN beta)

5050 LET segml = temp / SIN alfa

5060 LET segm2 = temp / SIN beta

5100 DRAW segml * SIN (unghi - alfa), segml * COS (unghi - alfa)
5200 DRAW segm2 * SIN (unghi + beta), segm2 * COS (unghi + beta)
5300 DRAW segm2 * SIN (unghi + PI - beta), segm2 # COS (unghi + PI - beta)
5400 DRAW segml * SIN (unghi + PI + alfa), segml * COS (unghi + PI + alfa)
5500 RETURN

*
*
*
*

Pentru c3 stergem limbile cu INVERSE 1 si pentru c3 adesea ele se suprapun, mutarea unora
va |3sa niste urme nepl3cute peste celelalte. Programul poate fi rescris cu putina grij3 ca s3
foloseascd OVER 1 pentru a desena. Reamintiti-v3 c3 un obiect desenat de dou3 ori in OVER
1 dispare cu totul. Din p3cate nici acea variantd nu este cu totul scutitd de deficiente, pentru
cTntersec;iiIe de limbi vor disparea. O altj posibilitate ar fi ca la fiecare mutare a secundarului
s& redesendam (f&rd a sterge) si celelalte limbi. Atunci totul ar merge frumos, Tns& nu foarte
repede.

Inainte de a Tntelege cum lucreaza programul, trebuie s3 facem niste mici pregatiri cu iz de
geometrie analitica.

Intai: dac3 se cunoaste un cap3t al unui segment (21, y1), lungimea si unghiul cu verticala
(u), care este cel3lalt capdt (22,y2)? Folosind definitiile functiilor trigonometrice, avem

xs = x1+lungime X sinu

Y2 y1 + lungime X cosu

100

Aceasta este formula de baza a acestui program!

Apoi: ecuatia parametricd a unui cerc. Un cerc este al doilea cap3t al unui segment ce se
roteste Tn jurul primului cap3t fix. Lungimea segmentului e raza. ,Se roteste” Tnseamn3d c3
unghiul lui cu verticala variazd intre 0 si 2 x 7. Cercul de centru (zo,yo) si razd r este dat de

r = xo+rxsint
= Yo+ 7r Xcost
t e [0...2m)

Incercati:

2000 FOR t = 0 TO 2*PI STEP .05
2010 PLOT 128 + 50%COS t, 87 + 50*SIN t
2020 NEXT t

Comparati cu CIRCLE 128,87,50.

Doar de amuzament, s3 observdm ca pentru a obtine o elipsd ajunge sa ludm una din raze
diferitd de cealalt3d, de pilda:

2010 PLOT 128 + 80%*SIN t, 87 + 30%COS ¢

Folosind aceastd ecuatie parametricd am trasat cadranul ceasului (liniile 10-12). Aceasta
este si formula care miscd limba secundarului: cénd stiu unghiul ei cu verticala (variabila us)
pot sd o trasez pentru c3 7i stiu un capat si lungimea. Desenarea se face in subrutina de la linia
100 (secunda). Trasarea se face de doud ori, pentru c3 Tntéi sterg limba (liniile 110-120),
apoi calculez noul unghi (125-130) si o desenez in noua pozitie (135-150).

Aceeasi metod3, din trei pasi (sterg, calculez, desenez) este folosit3 si pentru celelalte doud
limbi. Acestea sunt trasate numai cand se mut3 de la un loc la altul. (Asa cum arat3, programul
mut3 limba orelor numai din ord in ord. Ce ar trebui ficut ca s§ o mute mai des?) Diferenta
este c3 limbile orelor si minutelor au o forma mult mai complicat, dar asemanatoare. De aceea
am scris subrutina de la linia 5000, care primeste Tn variabilele lungime si unghi descrierea
limbii de trasat si o deseneazd. Observati ca subrutina este de asemenea chemat3 de cate dou3
ori, pentru a sterge si desena, de fiecare din procedurile pentru minute si secunde.

Procedurile pentru calculul unghiurilor nu sunt prea complicate. Ele se bazeaza pe regula de
trei simpla pentru a calcula Tnt&i cate grade , si apoi cati radiani corespund unui numar dat de
secunde, respectiv minute si ore. Formula face dealtfel si obiectul unui exercitiu, printr-un alt
capitol. Variabilele us, um si uh sunt folosite pentru a memora valorile unghiurilor secundarului,
minutarului, respectiv orarului. Unghiul se exprim3 n radiani si se calculeazi relativ la axa
verticala.

Cel mai interesant este Tnsd modul de trasare al unei limbi, realizat de procedura Tncepand
la linia 5000. Pentru a intelege mai bine, trebuie s3 facem un desen. Pentru simplificare vom
considera limba Tn pozitie vertical3.

101

Limbile sunt trasate de procedura de |a linia 5000 7n ordinea de pe desen (1 — linia 5100, 2
- 5200, 3 - 5300, 4 — 5400). Limbile 1 si 4 au lungimile (in pixeli) reprezentate de variabilela
segml. Limbile 2 si 3 au lungimea segm2. Vom vedea imediat cum am ajuns la formulele
pentru ele. S3 vedem Tntai cum se traseaz3.

Presupunem 1nt&i c3 unghiul lor cu axa verticald este 0, pentru simplificare (putem folosi
atunci desenul de mai sus). Segmentul num3rul (1) are lungimea segmi si unghiul fat3 de
verticald —a (minus pentru c3 se afl3 |la stdnga axei verticale). Dar stim s3 trasdm un astfel
de segment!

Segmentul (2) are un unghi de 3 cu axa vertical3, de data asta luat cu plus. Pentru c3
DRAW lucreaz3 Tn coordonate relative, el este foarte usor de trasat. Cap3tul lui porneste de unde
s-a oprit segmentul (1). |i cunoastem lungimea si unghiul. Totul este deci foarte simplu.

Segmentul (3) are unghiul fat3 de linia verticald care merge n sus 180° — 3 (dupd cum se
vede si pe desen) sau m — 3 in radiani. Lungimea o stim, deci. ..

Tn fine, segmentul (4) are un unghi de ™ + « n radiani fatd de vertical3.

Daca limba este rotitd cu un unghi oarecare unghi fatd de verticala, la toate unghiurile
descrise mai sus trebuie sa adaugam chiar aceastd valoare. De aceea 1n program apare peste
tot COS(... + unghi).

A mai ramas de vazut cum am calculat lungimile segml si segm2. Pentru aceasta am

folosit ca valori: «, 3 si lungimea pana la varf a unei limbi, lungime. Tn triunghiul ABC ludm
Tn3ltimea BH. Cu notatiile din program avem relatiile:

AC = 1lungime
LBAC = «a=alfa
LBCA = [=beta

BH = temp

102

Am scris pentru temp relatiile in triunghiurile dreptunghice ABH:
temp/AH = tan«

si BCH:
temp/CH = tan 3

Am observat apoi ca AH + C'H = lungime, sau
temp/ tan @ + temp/ tan 3 = lungime
Din aceastd relatie rezultd valoarea lui temp, calculatd n linia 5040:

temp = lungime x (1/tana + 1/tanf)

Mai departe, valorile segm1 = AB si segm2 = BC rezultd imediat din sinusurile unghiurilor
alfa si respectiv beta, dupd cum se vede si in liniile 5050-5060.

Modificand alfa si beta puteti obtine forme noi pentru limbi.

Programul poate fi grabit putin scotand din bucl3 calculul tangentelor, care de fapt nu se
schimb3 niciodatd. Optimizati-I!

13.11 Exercit ii

1. Scrieti un program care ,umple” un contur inchis cu puncte de aceeasi culoare (fill pe
englez3).

2. Desenati un glob pamantesc, presupus sferic.

3. Luati un segment. Miscati capetele sale independent pe ecran, ca pe niste bile de biliard.
Trasati-I.

103

Chapter 14

Manipulari de date s i sunet

Printre altele, o s3 Tnv&tdm s3 cantam.

e READ pentru a initializa variabile;

e DATA pentru liste de valori;

e RESTORE pentru alegerea listelor;

o relatii de ordine pentru siruri de caractere;
e BEEP pentru cantat;

e ATTR pentru a inspecta culorile ecranului.

14.1 READ
ENGLEZA: to read = a citi
SINTAXA: READ vary,....,vary
CATEGORIE: comand3
DESCRIERE:

Dup3 READ se gaseste intotdeauna o listd de variabile, separate prin virgula. Variabilele pot
fi de tip numar sau sir. Instructiunea READ mentine un indicator ce arat3 care a fost ultima
expresie cititd din lista DATA (explicatia vine un pic mai jos). READ citeste valori din lista de
dup3d instructiunea DATA si le atribuie Tn ordine variabilelor din lista sa.

104

14.2 DATA

ENGLEZA: data = date

SINTAXA: DATA expry,...,exprm
CATEGORIE: comand3
DESCRIERE:

DATA este o instructiune pasiva, care nu face nimic. Ea se poate afla oriunde in program
(doar dup3 un REM nu), atét Tnaintea lui READ cat si dupd. Scopul ei este de a mentine o list3
de expresii, care vor fi citite eventual de READ, evaluate si atribuite variabilelor din lista READ.
Expresiile pot avea ca rezultat orice tip.

14.3 RESTORE

ENGLEZA: to restore = a pune la loc

SINTAXA: RESTORE [etch]
CATEGORIE: comand3
DESCRIERE:

Dac3 etch lipseste este considerat 0. etch este o etichet3 si, ca atare, trebuie s3 fie intre 0
si 9999 pentru a nu obtine eroarea B. Tot ceea ce face RESTORE este s§ mute indicatorul care
i aratd lui READ care a fost ultima expresie cititd, la linia cu eticheta specificata.

Tnainte de a da si alte detalii Tn legdturd cu aceste instructiuni, s3 vedem la ce ar putea fi
utile. Ele se folosesc cu mult succes Tn doud cazuri: cand sunt de ficut atribuiri masive sau in
decizii multiple. De exemplu: un program care n functie de un numar introdus de utilizator —
sa zicem ntre 1 si 2b — s§ atribuie variabilei a$ o valoare dintr-o listd de nume. Far3 DATA
am putea face cam asa:

5 INPUT "numarul ";nr
10 GOSUB nr+19

15 GOTO 100

20 LET a$="Dan" : RETURN
21 LET a$="Ion" : RETURN

sau, mai putin economic:

5 DIM b$(25, 10)
10 LET b$(1) = "Dan"
11 LET b$(2) = "Ion"

50 INPUT nr : LET a$=b$(nr)
Cu READ - DATA - RESTORE putem rezolva mai elegant:
5 INPUT nr
10 RESTORE nr+19 : READ a$

20 DATA "Dan"
21 DATA "Ion"

105

sau, dac3 preferati:

5 INPUT nr
10 RESTORE : FOR i=1 TO nr: READ a$: NEXT i
20 DATA "Dan", "Ion",

Dup3d cum vedeti, listele DATA sunt parcurse in ordinea aparitiei (in caz cd nu se Tntalneste
RESTORE). Cénd una din liste se termin3, se foloseste cea care i succede Tn program.

Dac3 se Tncearcd citirea unei valori cu READ si toate listele DATA au fost epuizate, survine
eroarea E.

Daca n lista DATA urmeaz3 un sir si se Tncearcd citirea unui num3r sau invers, survine
eroarea C.

14.4 Relat ii de ordine pentru s iruri

Stim deja c& putem compara dou3 siruri cu = sau cu <>. Am anticipat c3 putem s3 o facem si
cu<, <=, >=, > Un sir este mai mic decat altul dac# 1l precede intr-o ordonare lexicografica
sau, mai simplu spus, dac3 Tntr-un dictionar se afld scris Tnaintea lui. Oricine a cdutat macar
odatd Tntr-un dictionar stie c3, pentru a c3uta, te bazezi pe ordinea alfabeticd. Pe post de
ordine alfabetici Tn BASIC st3 ordinea caracterelor dup3d codul lor. Si acum: sirul a este mai
mic decat sirul b dac3 primele lor n (poate n = 0) caractere coincid, iar caracterul n + 1 Tn
sirul a este ,,mai mic" (adicg are codul mai mic) decat caracterul n + 1 n sirul b.

Exemple:

nat < "p"

e "A" < "a" cici CODE "A"=65, CODE "a"=97

o CHR$ 6 < "+"

o "AAM > "A

e "aa" > "aA"

e "aa" > "A"

e "casa" < '"masa"

e "sus" > " sus"

e " TO " > " TO " unde primul sir este CHR$ 204, iar al doilea e format din patru semne.

e "Zoologie" < "animal" datoritd codului majusculelor!

Un exemplu: dacd LEN a$ = 1 atunci
IF CODE (a$ >= CODE "0'") AND (CODE a$ <= CODE "9'") THEN
se scrie mai scurt

IF (a$ >= "0") AND (a$ <= "9") THEN

106

14.5 BEEP

ENGLEZA: beep = bip! (onomatopee)
SINTAXA: BEEP timp, nota
CATEGORIE: comand3
DESCRIERE:
BEEP genereaz3 prin difuzorul calculatorului un sunet descris de cele doud numere timp si
nota.
timp este durata sunetului, Tn secunde. Limitele admisibile sunt 0 (sunet nul, f3r3 durat3)
si 10. Poate fi un numar fractionar.
nota descrie Tnaltimea sunetului. Tn mod normal este un Tntreg, dar nimic nu-| Tmpiedic3
s3 fie fractionar. Limitele sunt —60 si 69.8. Valorile intregi corespund notelor dodecafonice din
gama muzical3d astfel:

Valoare Nota~ | Valoare Nota~
-12 do de jos 1 do#
-11 do# 2 re
-10 re 3 reft
-9 reft 4 mi
-8 mi 5 fa
-7 fa 6 faft
-6 faft 7 sol
) sol 8 sol#

-4 sol# 9 la

-3 la 10 la#
-2 la#t 11 si

-1 si 12 do de sus
0 do central

latd un program care interpreteaz un preludiu de J.S. Bach. Am folosit o metod3 intere-
santa de codificare a notelor: n loc de numere, caractere. Pentru ,do central” este convenabil
caracterul "I" (i mare). Re devine "K", mi devine "M", etc.

(nota = CODE c$ - CODE "I" = CODE c$ - 73, unde c$ este codul caracter al notei).

Atentie sa nu gresiti cand introduceti lista DATA, pentru ca veti obtine disonante!

9000 REM subrutina muzicala

9010 REM BACH Preludio

9015 REM Clavecinul bine temperat,

9016 REM vol 1, preludiul 1,

9017 REM BWV 846, do major

9020 LET b$ = "" : RESTORE 9100

9030 FOR i=1 TO 33 : REM 33 de masuri

9040 READ a$: LET b$=b$+a$+a$: REM fiecare fraza se repeta
9043 NEXT i

9045 READ a$: LET b$=b$ + a$: REM ultima masura
9046

107

9050 FOR j=1 TO LEN b$

9060 BEEP .12 + .01*(j > 520) + .01*(J > 525), CODE b$(j) - 73
9070 NEXT j

9080 BEEP .5, 0 : REM ultima nota prelungita
9099

9100 DATA "IMPUYPUY","IKRWZRWZ"

9110 DATA "HKPWZPWZ","IMPUYPUY"

9120 DATA "IMRY"RY"","IKORWORW"

9130 DATA "HKP\WP\W","HIMPUMPU"

9140 DATA "FIMPUMPU","?FKOUKOU"

9150 DATA "DHKPTKPT",'"DGMPVMPV"

9160 DATA "BFKRWKRW",'"BEKNTKNT"

9170 DATA "ADIPUIPU","ABFINFIN"

9180 DATA "7BFINFIN",'"87DHNDHN"

9190 DATA "=ADIMDIM",";DGIMGIM"

9200 DATA "GBFIMFIM","7=FILFIL"

9210 DATA '"9BHIKHIK",'8BDHKDHK"

9220 DATA "8ADIMDIM","8<DINDIN"

9230 DATA '"8<DHNDHN","87DINDIN"

9240 DATA "8QFIOFIO","8ADIPDIP"

9250 DATA "87DINDIN",'"87DHNDHN"

9260 DATA "1=DGMDGM"

9270 DATA "1=BFINIFIFBFB7B1<PTWZWTWTPTKNMK"

In linia 9060 se produce o r&rire a tempo-ului, spre final.

Fireste, puteam scrie continutul lui b$ dintr-o datd. latd doud motive pentru care n-am
facut-o: Tn primul rand pentru c3 este format din siruri care se repetd, deci am fi scris mai mult.
(De fapt tot mai poate fi scurtat, cici primele 33 de m3suri repetd notele 3, 4, 5 in notele 6, 7,

8.) In al doilea rénd, s3 fi scris un sir atit de lung dintr-o dat3 ar fi ficut o eventuald greseal3
greu de corectat.

Atunci se pune intrebarea: de ce sa nu citim a$ si s&-1 cantdm direct? De ce-l mai adundm
la b$? REspunsul e simplu: s-ar simti dup3 fiecare 16 note pauza necesard instructiunii READ,
ce-i drept scurtd, dar supdratoare. Asa cum stau lucrurile, executia este uniform3.

Ad3ugand linia
9055 PLOT j/2.2 , (CODE b$(j) - 53) * 4

veti obtine un fel de , grafic” al melodiei!

14.6 ATTR

ENGLEZA: ATTRibutes = atribute

SINTAXA: ATTR (Y,X)
CATEGORIE: functie
DESCRIERE:

Yy, X sunt linia, respectiv coloana unui patratel din grila de joas3 rezolutie. X este cuprins Tntre
05si 31, iar y intre 0 si 23, altfel executarea se soldeaz3 cu eroare B. ATTR (Y, X) Tntoarce un numar

108

Tntreg Tntre 0 si 255 reprezintand atributele coloristice ale patratelului respectiv. Num3rul acesta
codificd Tntr-un mod ingenios, cele patru informatii de culoare care caracterizeazd patratelul
respectiv. INK, PAPER, BRIGHT si FLASH. (OVER si INVERSE nu sunt niste caracteristici ale
patratelelor, ci doar niste moduri de trasate a punctelor si caracterelor.) Modul de codificare este
astfel ales Tncat orice combinatie s3 fie reprezentatd unic. (Atentie: valorile 8 si 9 pentru una
din comenzile de tiparire Tnseamn3d de fapt tot un mod de tip&rire, nu un atribut al patratelului.
Meditati la acest lucru!)

Valoarea atributelor se calculeaza astfel:
INK + 8*PAPER + 64*%BRIGHT + 128*FLASH

Exemplu:

1 PRINT AT 2,1;INK 6;PAPER 2;BRIGHT O;FLASH 1;" "
2 PRINT ATTR (2,1)

va tipdri intdi un p3atratel clipitor care alterneazd rosu cu galben si apoi num3rul 150 (=
6+8x2+64x0+128 x1).

Se pune problema inversi: de a determina culorile stiind atributele. Dac3 n este valoarea
atributelor, atunci avem:

Atribut Valoare

INK n - 8*INT (n/8)
PAPER INT (n/8) - 8*INT (n/64)
BRIGHT INT (n/64) - 2*INT (n/128)
FLASH INT (n/128)

De ce acest mod de codificare si de unde provin bizarele formule, explicdim imediat. Dac3
lucrdm Tn baza 2 (vezi si Anexa E) cerneala si hartia au 8 valori posibile, deci se pot exprima
cu céte 3 cifre binare (biti). BRIGHT si FLASH pot avea doar dou3d valori, deci un bit ajunge.

Tn total 34+3+1+1=8 biti pentru un patratel 8 x 8. Acesti 8 biti formeazd un numar n baza 2
astfel:

Bitii Atributul

0,12 INK

345 PAPER
6 BRIGHT
7 FLASH

(Am numerotat bitii de la 0 la 7, cu bitul 0 fiind cel mai putin semnificativ = LSB — less
significant bit.)

Se remarc faptul c3 ATTR poate testa si cele doud randuri din parte de jos a ecranului (ele
au de obicei PAPER-ul in culoarea BORDER-ului, care se poate astfel determina).

109

14.7 Exercit iu rezolvat

Scrieti un program care s3 traseze graficul oric3rei functii.

Rezolvare

Comentariile le puteti g&si la RezolvErile exercitiilor Tn Anexa G, pentru exercitiul 1 de la
acest capitol. Instructiunea cheie a programului este VAL g$ din linia 210, care calculeaz3
valoarea expresiei introduse de utilizator ca un sir de caractere.

1 REM Graphix
10 INPUT "Introduceti f(x)=";LINE q$
15 IF qg$="" THEN STOP
20 INPUT "Domeniu de reprezentare [" ; 1s ; "," ; 1d ;"]1"
22 IF 1s >= 1d THEN GOTO 20
25 PRINT AT 0,0;"f: [" ; 1s ; "," ; 1d; "] -> R" ’ "f(x)=" ; q$
30 LET rap = 255 / (1d - 1ls) : REM raport pixeli / interval
40 LET orig = -1s * rap : REM coordonata pe ecran a originii
50 BEEP .5,0: BEEP .5,4 : BEEP .8,0 : CLS
60 REM *** trasam axele *x*x
70 PLOT 0,87 : DRAW 255,0 : DRAW —4,2 : DRAW O, -4 : DRAW 4,2
80 PRINT AT 10,0;1s; AT 10,25;1d
90 IF 1s > 0 OR 1d < O THEN GOTO 120
95 REM axa verticala e pe ecran
100 PLOT orig, O: DRAW 0,175
101 IF orig >= 2 AND orig <= 253 THEN DRAW 2, -4: DRAW -4,0 : DRAW 2,4
102 IF orig < 2 THEN DRAW 2,-4 : DRAW -2,0
103 IF orig > 263 THEN DRAW -2,-4 : DRAW 2,0
110
120 INPUT "La cite puncte trasam 7 ";fin : LET fin = ABS fin
126 IF fin > 10 OR fin < le-1 THEN GOTO 120
130 INPUT "Raportul unitatii de lungime pe axe ";cv
1356 1IF cv < le-5 OR cv > le4 THEN GOTO 130
140 LET ymax = 87/rap/cv : LET ymax = INT (ymax * 100) / 100
150 PRINT AT 0,0; ymax; AT 21,0; -ymax

199 REM *** trasam graficul ***

200 FOR x=1s TO 1d STEP fin/rap

205 LET xr = x * rap + orig : REM coordonata reala, pe ecran
210 LET y = VAL q$ * rap * cv + 87

220 IF y < 0 OR y > 175 THEN GOTO 240

230 PLOT xr,y

240 NEXT x

250 PAUSE 0: GOTO 10

14.8 Exercit ii

1. Adaptati programul de mai sus ca sa cear3 si intervalul pe axa Oy.

2. Scrieti un program care s3 scrie cu litere Tn relief (construite ca din cubulete transparente).

110

Chapter 15

Memoria

Vom discuta despre organizarea memoriei si vom Tnvita cateva instructiuni BASIC care ne
permit s& o explordm si modificdm. Este un capitol urias, dar pentru o bund manipulare a
BASIC-ului nu este necesard cunoasterea tuturor detaliilor.

e structura unui calculator;

¢ limbaje masind;

e interpretoare si compilatoare;

e organizarea memoriei (ROM, RAM);

e POKE, pentru a modifica continutul memoriei;
e PEEK, pentru a inspecta continutul memoriei;

— memoria video;
— variabilele sistemului BASIC;

e USR, care invocd programe in cod masina si calculeaza adrese.

Prin anii '40 ap3reau primele calculatoare electronice. (Pe vremea aceea erau in mare
masurd electromecanice.) Nimeni nu citise undeva o retetd: ,un calculator trebuie s arate
asa si asa” . Un tip foarte inteligent, pe nume John von Neumann, a studiat in mod deosebit
aceastd problem3. El a avut numeroase idei, extrem de importante pentru evolutia acestei
discipline. Printre altele, a sugerat abordarea constructiei calculatoarelor prin Tmpartirea n
probleme mai mici si mai simple. Sugestia cea mai cunoscutd pe care a ficut-o este de a
construi calculatoarele din trei parti distincte, care interactioneaza. Aceste parti sunt:

e unitatea centrald (UC);

® memoria;

111

e dispozitivele periferice.

Aceastd arhitecturd pe care o respectd majoritatea covarsitoare a calculatoarelor moderne
se numeste arhitectura Von Neumann. Ceasul electronic, calculatorul de buzunar, HC-ul si
o grdmad3 de alte calculatoare, programabile sau nu, sunt bazate pe aceastd arhitecturd. S3
vedem la ce e bun3 fiecare parte a sa.

Unitatea centraIzT(UC) este singura care face efectiv operatiuni. Este ,creierul” calculatoru-
lui. Unitatea centrald ,intelege” un limbaj foarte rudimentar care se numeste limbaj
masina sau cod masina.

Memoria este o parte pasivd (care nu poate schimba nimic din informatii) a calculatorului,
folositd de UC pentru p3strarea datelor, programelor, rezultatelor.

Dispozitivele periferice permit UC s& comunice cu exteriorul. Dispozitivele de intrare fi
permit s3 achizitioneze informatii din afard, pentru a percepe starea lumii exterioare
calculatorului, iar dispozitivele de iesire Ti permit s comunice exteriorului rezultatele
operatiunilor sale.

La HC:

e Unitatea centrald este microprocesorul Z80. (,,Micro” pentru ca e mic, ,procesor”
pentru cd proceseazi.)

o Despre memorie vom discuta pe larg mai tarziu.

o Periferice

— de intrare:; tastatura;

— de iesire: ecranul;
Perifericele pot fi extinse cu, casetofon, imprimant3, disc etc.

Dup3 cum am spus, UC pricepe doar limbajul masin3. Acesta este o succesiune de numere
care reprezintd pentru el, codificate, instructiunile pe care le executd. Primele calculatoare
se programau direct Tn cod-masind, dar era destul de greu. Oamenii s-au gandit atunci s3
scrie niste programe care s3-i permitd calculatorului s3 fie programat Tntr-o form3 ceva mai
prieteneascd; misiunea acestor programe fiind de a face accesibil un limbaje mai expresiv UC
(vom vedea imediat cum). Astfel a apdrut limbajul de asamblare, care rezulti dand fiecirei
instructiuni cod-masind cite un nume care s3 sugereze ceva. De pild3, in loc de 1100 1001 (in
baza 2) se scrie RET, ceea ce Tnseamn3 la nivel de cod masina (pentru UC-ul HC-ului) un fel
de RETURN.

Corespondenta pentru UC Z80 intre codul masind si mnemonica din asamblare corespun-
z3toare (asa se mai numesc instructiunile din limbajul de asamblare) este dat3 in Anexa B, in
coloanele 4, 5, 6. Pentru mai multe detalii recomand&m Tnvatarea limbajului de asamblare 780.

Exista deci un program numit asamblor, care lua textul scris in asamblare si 1l traducea
Tn cod masind, pentru a putea fi executat de UC. Bine-nteles, asamblorul era un program
cod-masing, executat de CPU Tnsusi. Situatia se prezint§ cam asa:

112

Programatorul scrie un text de program n limbaj de asamblare, care este furnizat ca date
de intrare asamblorului. Asamblorul genereaza un sir de numere, care este codul masina core-
spunzator.

Programarea n limbaj de asamblare nu este nici ea prea comoda, pentru c3 instructiunile
sunt prea simple. Pentru a scrie un program mai de doamne-ajutd, Tnsiri mii de linii. Acesta
nu este singurul dezavantaj, dar ajunge pentru a stimula informaticienii s3 inventeze limbaje
mai complexe, cu instructiuni a ciror semnificatie este mai apropiatd de necesitdti. Este mult
mai normal s3 ai o instructiune care scrie 10 litere pe ecran decat un program de 200 de linii
care face acelasi lucru. Plus c& limbajele evoluate introduc si alte concepte, cum ar fi variabile,
proceduri s.a.m.d. Pentru a putea excuta programe ntr-un limbaj evoluat (sau limbaj de nivel
Tnalt) — BASIC-ul Tnsusi este un astfel de limbaj, desi spre limita de jos — trebuie s3 existe Tn
memorie un alt program, care s3 permit3 acest lucru, asa cum asamblorul traducea programul
din limbajul de asamblare Tn cod (prescurtare pentru cod-masind). Existd doud metode pentru
asta:

e Prin traducerea fiecdrei instructiuni din programul in limbajul sursa (limbajul evoluat)
intr-o secventa de instructiuni Tn cod masind. (Lucrurile sunt putin mai complicate,
dar esenta fenomenului asta e.) Procedeul se numeste compilare. Asamblarea este un
exemplu de compilare. Compilatorul este un program care efectueaz3 aceast3 traducere.
Ceea ce rezultd Tn urma traducerii este un program pe care 1l putem executa.

o Al doilea procedeu constd in folosirea unui program (cod masind) care s3 inspecteze tex-
tul programului scris in limbajul de nivel Tnalt si, in functie de instructiunea Tntalnit3, s3
invoce felurite proceduri, care fac toata treaba. Acest tip de executare se numeste inter-
pretare, iar programul care ,inspecteazd” instructiunile si executd in functie de aceasta
propriile sale proceduri se numeste interpretor. BASIC-ul este un limbaj interpretat (ex-
ista si variante de BASIC compilate, dar sunt niste hibrizi).

Un fel de interpretor am scris si noi: programul din capitolul precedent care interpreteaza
(nu degeaba se foloseste acelasi cuvant!) un preludiu de Bach. De ce? Pentru c3 priveste
textul unui ,,program muzical” (variabila b$) si, in functie de continutul ei, invocd o anumit3
instructiune BEEP. Este un interpretor sar3cut, dar face intocmai ceea ce am spus.

Cum ar lucra un ,compilator” muzical? P3i ar trebui s3 genereze un nou program care ar
fi o succesiune de BEEP-uri, fiecare cu valoarea proprie, adicad ceva de genul:

5 BEEP .12,0 : BEEP .12,4 : BEEP .12,4 : BEEP .12,12 : BEEP .12,16
BEEP .12,4 : BEEP .12,12 : BEEP .12,16

si asa mai departe. (Ar fi un compilator care traduce din limbajul muzical — Tn care un program
este un sir de litere — Tn BASIC))

S3 privim mai Tndeaproape organizarea memoriei HC-ului. Pentru Tnceput, observdm c3
memoria poate fi Tmp3rtitd Tn doud buciti mari, care au proprietati diferite.

Prima bucatd e un ROM (Read Only Memory = memorie numai pentru citire), adic3 o
memorie al cdrei continut nu se schimba niciodata. Aici este scris din fabricd programul care
interpreteazd BASIC-ul.

A doua bucatd e un RAM (Random Access Memory = memorie cu acces aleator). Nu-
mele de RAM nu e prea fericit ales, dar este deja Tncetdtenit. Continutul acestei memorii poate
fi schimbat de UC. De asemenea, la intreruperea aliment3rii cu curent electric, informatia de

113

aici se pierde. Cum este ea folosit de interpretorul BASIC (si nu numai), constituie principalul
subiect al acestui capitol.

Tnainte de a trece mai departe, ar trebui s3 vedem ce este de fapt memoria si cum putem
m3sura o cantitate de memorie. O imagine destul de potrivit3 este a unui dulap cu o sumedenie
de sertarase. Tn fiecare din aceste sert3rase se afl§ un num3r. UC poate privi in oricare din ele si,
pentru sert3rasele RAM, poate schimba numarul dinduntru. Numerele din sertdrase sunt scrise
in baza 2 (vezi Anexa E). Pentru fiecare sunt disponibili 8 biti. Asta fnseamn3d c& num3rul de
dinduntru are o valoare intre 0 si 255. Sertarele se numesc locatii de memorie. (Comparatia
cu un sertar nu tine prea bine, pentru cd o locatie de memorie contine Tntotdeauna un numar,
pe cind un sertar poate s fie gol.) O cantitate de 8 biti se mai numeste si octet sau in englezad

byte.

Sertarele sunt asezate intr-o ordine fixd (imaginati-v& un dulap lung de tot) si fiecare poate
fi caracterizat de numarul s3u de ordine. Acest numar de ordine se numeste adresa locatiei
respective de memorie. Prima locatie are adresa 0, celelalte 1, 2 si tot asa pan3d la 65535
(in baza 10). Numerele din intervalul 0-65535 se bucurd de proprietatea c3 pot fi exprimate
folosind numai 16 biti, adicd 2 octeti. Asta pentru c3 2'6 = 65536.

Tn informatic¥ se foloseste valoarea de kilooctet pentru a masura cantitatea de informatie
dintr-o memorie. Dar, atentie, un kilooctet nu are 1000 de octeti, ci 1024, adici 2'°. Asta
pentru a putea exprima adresele unei memorii de un kilooctet pe exact 10 biti. Folosind aceast3
unitate putem spune c& HC are 65536/1024 = 64 kiloocteti, sau pe scurt 64K.

Ca s3 putem s3 pricepem mai usor cum e organizatd memoria vom Tnv3ta Tntai care sunt
instructiunile care opereaza direct la nivel de locatie.

15.1 POKE

ENGLEZA. to poke = a infige
SINTAXA: POKE adresa, byte
CATEGORIE: comand3
DESCRIERE:
adresa este un numar intre 0 si 65535, byte unul intre =256 si 255. Dac3 byte este nega-
tiv, i se adaugd 256. Cele doud numere se rotunjesc. Tn cazul c% nu respectd limitele indicate
survine eroarea B.

POKE scrie n octetul cu adresa specificatd num3rul indicat. Scrierea in ROM nu are efect.

15.2 PEEK

ENGLEZA: to peek = a privi pe furis
SINTAXA: PEEK adresa
CATEGORIE: functie
DESCRIERE:
adresa trebuie s3 fie intre 0 si 65535 pentru a nu obtine eroarea B.

PEEK este functia opusd lui POKE. Ea Tntoarce num3rul care este continutul locatiei cu adresa
specificat3.

114

15.3 Harta memoriei

O schem3 graficd a organizdrii memoriei se gaseste in Anexa C.

Primii 16K sunt ocupati de ROM, avand adresele Tntre 0 si 16383. Pentru a descoperi
cum lucreazd BASIC-ul trebuie doar s& descifrati programele (cod-masind) care sunt scrise
aici. Pentru acest scop recomand cu c3ldurd excelenta carte ,, The Complete Spectrum ROM
Disassembly” citat3 si in introducere.

Restul memoriei este RAM.

De la 16384 la 22527 se afld o zond numitd memoria video. Aici calculatorul mentine
informatii despre fiecare punct de pe ecran, dac un pixel este ,,aprins” (0n) sau ,stins” (Off).
Fiecare pixel corespunde unui bit, care este 0 pentru Off si 1 pentru on. Valoarea 0 Thseamn3 c3
punctul va avea culoarea PAPER. Folosindu-se de continutul acestei memorii, anumite circuite
electronice formeaza imaginea pentru televizor, pe care o vedeti pe ecran. Pentru c3 o locatie
are 8 biti, punctele sunt memorate cite 8 intr-un cuvdnt de memorie (folosim si termenul
cuvant pentru continutul unei locatii). Ordinea in care sunt asezate in memorie locatiile
corespunzatoare punctelor consecutive nu este cea naturald si merit3 o privire mai apropiata.

Primele opt puncte de pe ecran (din coltul stinga-sus) sunt memorate Tn primul octet al
memoriei ecran (sau video) — 16384. Primului punct 7i corespunde bitul cel mai semnificativ,
celui de-al doilea urmatorul etc:

H H: < primele opt puncte de pe ecran;
T B u continutul octetului 16384 este: 01001001

Si ca s& nu se iveascd discutii, hai s3 verificam:

5 PLOT 1,175: PLOT 4,175: PLOT 7,175
10 PRINT AT 1,0; PEEK 16384
RUN

Ar trebui s# obtineti 26 +23 +2° = 73 (bitii 6, 3 si 0 sunt 1). Presupun c¥ ati obtinut acest
rezultat si trec mai departe. S3 aprindem punctul din colt, dar nu cu PLQOT, ci direct, scriind n
memorie. NEW.

Trebuie s3 facem ca bitul 7 al octetului 16384 s3 fie 1 (s&-1 setdam). Octetul are valoarea
0, cdci dupd NEW toate punctele sunt PAPER — deci bitii sunt toti 0; atunci, cu bitul 7 setat,
octetul va cip¥ta valoarea 27 = 128.

POKE 16384,128
A mers, nu? S3 rotim acum punctul printre cele 8:

10 FOR i=7 TO O STEP -1 : POKE 16384, 2°i : NEXT i
20 GOTO 10
RUN

115

Ajunge, acum tastati | BREAK |

Bun! S3 vedem mai departe, Tn ce ordine vin celelalte pachetele de cate 8 puncte. Cu
punctele aflate pe aceeasi orizontald nu-i mare problem3, pentru c& formeazd 256 puncte/8 =
32 de pachetele, care in memorie sunt consecutive.

Ca s3 ne chinuim mai putin vom b3ga de seam3 c3 ecranul e Tmp3rtit Tn trei felii orizontale
suprapuse, care se comportd la fel din punct de vedere al memor&rii. Primele 8 randuri de
caractere fac parte din prima treime, randurile 8-15 din a doua si ultimele 8 din a treia. O s3
privim n detaliu prima treime si vom sti cum st3 treaba si cu celelalte.

Dupd cum ne asteptdm, primul memorat este primul rdnd de pixeli de pe ecran (cel cu
y=175). Urmeaz3 ins3 al noudlea sir de puncte sau, dac3 preferati, primul sir de puncte din al
doilea rand de caractere (y=163). Urmeaz3 al 948 = 17-lea sir (primul din al treilea rénd de
caractere) si tot asa, pand la primul sir de pixeli din al optulea rand de caractere, ultimul din
prima treime. Abia dup3 aceea vine al doilea sir de pe ecran, urmat de al zecelea, optsprezecelea
s.a.m.d.

S3 urm3rim chiar pe ecran ordinea pentru cei

8 (randuri de caractere) x 8 (felii de pixeli pe caracter) x 32 (caractere pe rand) = 2048
de octeti ai primei treimi:

10 FOR i=0 TO 2047 : PAUSE 50
20 POKE 16384+i,255 : PRINT AT 10,0; i
30 NEXT i

Ap3sand o tast3 veti grabi putin programul.

Cele 8 feliute din care este alcatuit un caracter pe ecran au si ele o reguld interesantd de
dispunere. Distanta dintre doud felii consecutive este de 256 de octeti, oricare ar fi caracterul
de pe ecran.

latd adresele randurilor de pixeli ai primului caracter de pe ecran:

256 + 16384
256 + 16384
256 + 16384
256 + 16384
256 + 16384
256 + 16384
256 + 16384
256 + 16384

TTTTTTTT

~NOoOOITRWNR—,O
XX X X X X X X

Se remarcd faptul c3 cele doud randuri din josul ecranul nu au o form3 privilegiatd de
memorare.

Urmatoarea zon3d a memoriei se Tntinde de la 22528 la 23295 si ocupa 768 de octeti, adic3
32 24. Fiecare locatie corespunde unui patratel din grila de joas rezolutie (in ordinea fireasc¥)
si contine chiar atributele acelui patratel.

116

Pentru a memora intreaga imagine de pe ecran sunt deci necesari
3(treimi) x 2048(octeti pe treime) + 768(culori) octeti, adicd 6.75K.

Un alt mod de memorare a imaginii, care s permit3 fiecdrui pixel s3 aib3 o culoare inde-
pendentd de a vecinilor s3i, ar fi avut nevoie de 256 (puncte pe orizontald) x 192 (puncte pe
verticald) x 1/2 (octet pe punct) = 24576 octeti = 24K!

(Am considerat c3 fiecare pixel poate avea 16 culori, adicg se folosesc pentru el 4 biti — 1/2
de octet.) latd deci c3 restrictia impus3, de a nu avea mai mult de doud culori diferite Tntr-un
patratel 8x8 duce la importante economii de memorie!

|
S3 continudm explorarea memoriei.

Urmeaz3 bufferul imprimantei, Tntre 23296 si 23551. Aici se memoreaz3 caracterele de
transmis spre imprimant3 (detalii in Capitolul 18).

De la 23552 la 23733 se gaseste zona variabilelor de sistem. Aici interpretorul BASIC
Tsi memoreaz3 tot felul de date care i sunt necesare. Fiecare variabild are asociat Th mod
conventional un nume, dar nu este vorba despre numele unei variabile BASIC, ci un nume pe
care i-| d3m spre a putea vorbi mai usor despre ea. (Acestea sunt numele variabilelor folosite
de programul in limbaj de asamblare care a fost pus in ROM — dup¥ compilare — si care este
interpretorul de BASIC). Lista tuturor variabilelor de sistem se g&seste Th Anexa H.

Urmatoarele zone de memorie nu au adrese fixe. Limitele lor sunt ardtate chiar de valorile
unor variabile sistem. Facem urm3toarea conventie de notare: dacd PROG desemneaz3 variabila
de sistem cu acest nume (adicd perechea de locatii 23635, 23636), atunci valoarea variabilei
PROG (adicd PEEK 23635 + 256 * PEEK 23636) o vom nota punand Tntre paranteze numele
variabilei, astfel: (PROG).

Cand valoarea unei variabile sistem este o adres3, atunci octetul cu adresa mai mic3 din
variabild (nu uitati c3 o adresd se memoreaz3 pe 2 octeti) va contine intotdeauna octetul mai
putin semnificativ al adresei. De aceea, adresa memorat3 la locatia a este PEEK a + 256 *
PEEK (a+1) si nu 256 * PEEK a + PEEK (a+1).

Dup3 variabilele sistem, de la 23734 pan3 la (CHANS)-1 se afl§ zona de informatii a discului.
Dac3d un asemenea periferic nu e conectat, zona aceasta are lungimea 0.

De la (CHANS) la (PROG)-2 se gdsesc informatiile despre canale si cdile asociate. Detalii
n Capitolul 18.

Tntre (PROG) si (VARS)-1 este zona de memorie a programului BASIC.

La (VARS) incepe zona variabilelor programului BASIC.

Pentru forma de memorare a programului si variabilelor consultati si Anexa F.

La (E_LLINE) se afld zona Tn care se tine comanda sau linia in curs de editare.

Zonele care urmeazd sunt de mai mic interes. S3 mai remarcdm pozitia stivei GOSUB
imediat sub (RAMTOP). (UDG) arat3 Tnceputul unei zone interesante, Tn care se memoreaz3

forma graficd a celor 21 de caractere definibile de c3tre utilizator. Tn setul de caractere ele au
coduri intre 144 si 164. Initial formele lor sunt cele ale unor litere, dar pot fi schimbate scriind
informatii Tn acesti octeti. Cum — vom vedea in capitolul urmator.

Se poate ca memoria s3 nu fie Tn Tntregime functionald. Instructiunea NEW testeazd memoria
(scriind ceva si verificind dac3 rezultatul este intocmai) si plaseaz3 valoarea lui P_.RAMT chiar
sub primul octet care nu merge cum trebuie. Aceasta variabild indica deci sfarsitul RAM-ului
functional, care poate s3 fie diferit de 65535! (Acesta ar fi un semn de defectiune.)

117

15.4 USR

ENGLEZA: User SubRoutine = subruting a utilizatorului
SINTAXA: USR adresa sau USR Sir

CATEGORIE: functie

DESCRIERE:

USR functioneazd complet diferit in functie de tipul argumentului s8u. S3 vedem deci
separat:

15.4.1 USR adresa

adresa trebuie s3 fie cuprinsa intre 0 si 65535. USR adresa porneste n executie programul cod-

masind de la adresa specificatd. In caz cd programul se Tntoarce dup3 terminarea executiei la
interpretorul BASIC, aceastd functie returneaz3 continutul registrului BC al microprocesorului.
Ca s3 puteti folosi aceastd functie, trebuie s3 invatati asamblare (sau cod-masin).

lat3 niste exemple care invoc3 programe cod-masin3 din componenta interpretorului BASIC
(din ROM).

LET a = USR 3190 face scroll (valoarea Iui a nu ne intereseaz3).

PRINT 65536 - USR 7962 tipireste catd memorie mai este disponibild pentru BASIC.

15.4.2 USRsSIr

Sir trebuie s3 fie o literd majusculd sau minuscul3 situat3 Tntre "a" si "u", sau unul din carac-
terele definibile. Functia USR Tntoarce adresa primului octet care memoreaz3 forma caracterului
definibil. Dac3 argumentul nu este Tntre limitele indicate, survine eroarea A.

Pentru exemple de folosire vedeti functia BIN, Tn capitolul urm3ator.

Tn mod normal PRINT USR "a" scrie 65368 (= (UDG))

15.5 Exercif iu rezolvat

Afisati un caracter pe ecran fard a folosi PRINT.

Rezolvare

Un caracter este memorat folosind 8 octeti, care descriu exact forma pe care o are el la
tip&rire. Acesti octeti se afld in mod normal Th ROM, la adresa indicatd de variabila sistem
CHARS (23606). (Nimeni nu ne impiedicd s3 mutdm CHARS astfel Tncat s§ puncteze pe
undeva prin RAM si s3 definim propriul nostru set de caractere. Cititi si Anexa H, partea
referitoare la ,jonglerii cu variabile sistem”.) Dac3 transferdm acesti 8 octeti din ROM di-
rect Tn memoria ecran, putem obtine imaginea caracterului. (Asa face dealtfel interpretorul
BASIC din ROM, pentru a tip3ri un caracter.) Pentru alte precizdri cititi si partea consacra-
t§ program3rii caracterelor definibile din capitolul urm3tor, c3ci acestea se memoreaz3 ca si
caracterele normale tipdribile (cele cu coduri Tntre 32 si 127).

10 LET x=0 : REM coordonata orizontala

118

20 IF x>31 THEN STOP

30 LET adset = PEEK 23606 + 256%PEEK 23607

35 REM adset este adresa unde se afla imaginea setului de caractere
40 INPUT "caracterul ";LINE b$

45 LET b = CODE b$: IF b < 32 OR b > 127 THEN GOTO 40
50 LET adchar = adset + 8%b : REM un caracter = 8 octeti
60 FOR i=0 TO 7 : REM cele 8 randuri ale caracterului

70 POKE 16384 + x + i*256 , PEEK (adchar + i)

80 NEXT I

90 LET x = x + 1

100 GOTO 40

15.6 Exercit ii

1. Scrieti un scurt program care indic3 pozitia, lungimea si spatiul variabilelor unui program.

2. Folosind variabila de sistem CHARS, mimati un contor de casetofon cu trei cifre. (Folositi
indicatiile de la descrierea acestei variabile Tn Anexa H, la sectiunea ,jonglerii")

119

Chapter 16

Prin maruntaiele HC-ului

Un capitol ceva mai scurt. Inv3t&m s3 definim noi caractere, s8 convertim numerele in siruri si
sd interactiondm cu perifericele.

e BIN pentru a introduce constante binare;
e programarea caracterelor definibile;

e STR$, care transform3 numere Tn siruri de cifre;

IN pentru a citi porturi;

OUT pentru a scrie la porturi;

porturile folosite de HC.

16.1 BIN

ENGLEZA: BINary = in baza doi; cu dou3 valori
SINTAXA: BIN [0][1]

CATEGORIE: functie

DESCRIERE:

BIN este o functie foarte speciald, din doud motive. Tntéi, ea poate s3 nu aib3 argument;
atunci argumentul ei este considerat 0 (toate celelalte functii au un numar fix de argumente).
Apoi, argumentul lui BIN trebuie s3 fie o constantd binar; BIN nu poate avea drept argument
o expresie!

NumZrul de dupd BIN trebuie s3 fie o Tnsiruire de 0 pan3 la 16 cifre binare, f3rd punct
zecimal. BIN returneaz3 valoarea acelui numar.

120

BIN este adesea folositd pentru a ,programa’ noi caractere (cele definibile).

Fiecare caracter definibil (prescurtat UDG=User Defined Graphics) isi are imaginea mem-
orat3 undeva in RAM, in mod normal imediat deasupra RAMTOP-ului. Imaginea se memoreaz3
pe 8 octeti asezati Tn locatii succesive, contindnd cate un rand de pixeli ai caracterului. Fiecare
rand este memorat in octetul corespunzdtor, astfel: un punct aprins pe ecran corespunde unui
bit 1 Tn octet, iar fiecare punct stins, unui bit 0. lat3 corespondenta dintre randuri si locatiile

de memorie pentru un semn ce nfatiseaz3 litera greceascad m:

Programul care transform3 caracterul UDG P in 7 este:

5FOR1=0T07

10 READ a
20 POKE USR "p" + i, a
30 NEXT i

< BIN 00000000 = BIN 0 = BIN
< BIN 00000000

< BIN 00000010 = BIN 10 = 2
< BIN 00111100 = BIN 111100 =
< BIN 01010100 = BIN 1010100
< BIN 00010100 = BIN 10100 =
< BIN 00010100

< BIN 00000000

6

20

0

0
8

40 DATA 0,0,BIN 10, BIN 111100, BIN 1010100, BIN 10100, BIN 10100, O

16.2 STR$

ENGLEZA. STRing = sir
SINTAXA: STR$ expr
CATEGORIE: functie
DESCRIERE:

4

STR$ este functia complementard lui VAL; argumentul ei este un numar, iar rezultatul este

sirul de caractere pe care |-ar scrie PRINT pe ecran dac3 ar tip3ri acest num3r. Exemple:

STR$ 1e3 este ""1000"
STR$ 100.000 este 100"

Combinand STR$ cu VAL putem obtine efecte interesante. De pild3, putem forta evaluarea

functiei BIN cu un argument neconstant. lat3:

LET a=101001 : PRINT VAL ("BIN "+STR$ a)

121

16.3 Exercif iu rezolvat

Scrieti un program care testeaz3 cunostintele de tabla Tnmultirii.

Rezolvare

Solutia banal3 care urmeaz3 cuprinde o cursa:

10 LET a = INT (RND#10) + 1: LET b = INT (RND#*10) + 1

20 PRINT "Cat face ";a;" % ";b;" ?";TAB 20; : POKE 23692, -1
30 INPUT ¢ : PRINT c¢;" - ";

100 IF ¢ = a*¥b THEN PRINT "Corect'" : GOTO 10

110 PRINT "Gresit. Mai incercati.": GOTO 20

latd de ce un astfel de program nu este corect: la ntrebarea Cat face 2 * 3 7 pot s3
raspund la INPUT cu 2*3 — o expresie, care va da raspunsul corect. Pentru a evita posibilitatea
introducerii unei expresii, vom folosi INPUT cu un sir pe care il vom evalua. Modificdm programul
astfel:

30 INPUT c$: LET c¢ = VAL c$: PRINT c$;" - ";
40 IF c$ <> STR$ ¢ THEN PRINT "Nu trisa !": GOTO 20

Nici m3car acum programul nu este perfect, pentru c3 un bun cunoscdtor al BASIC-ului
va putea sterge ghilimelele afisate de INPUT si va putea tasta in schimb STR$(2#3). Pentru a
evita si aceasta perfidie, INPUT trebuie s3 fie schimbat cu INPUT LINE.

Asa cum exista 65536 locatii de memorie, numerotate de la 0 la 65535, existd si 65356 de
porturi intre aceleasi limite. Porturile servesc UC pentru a schimba informatii cu dispozitivele
periferice, tot asa cum locatiile se folosesc pentru a citi date din memorie. Comunicatia cu
exteriorul este realizatd prin intermediul porturilor. Dac3 un port este conectat la un periferic
care asteapt3 s3 citeascd informatii de la calculator, atunci este un port de iesire. Dac3 prin acel
port calculatorul primeste informatii de la periferic, portul se numeste de intrare. Informatia
care se comunicd unui/de la un port este un num3r intreg intre 0 si 255, deci un octet.

16.4 1IN

ENGLEZA: in = inZuntru
SINTAXA: IN port
CATEGORIE: functie
DESCRIERE:

port este adresa unui port, adicd un numar cuprins intre 0 si 65535. Altfel survine eroarea B.
IN citeste si returneazi valoarea de la portul specificat.

122

16.5 O0OUT

ENGLEZA: out = in afard

SINTAXA: OUT port, byte
CATEGORIE: comand3
DESCRIERE:

port este adresa unui port. byte este un numar intre 0 si 2565. Altfel obtinem eroare B. OUT
trimite valoarea byte la portul specificat.

Nu toate cele 65536 porturi sunt conectate la un periferic. Vom da aici lista celor care sunt
utile. SZ remarcdm c3 scrierea la un port nefolosit (cu OUT) nu are efect, iar citirea de la un
port nefolosit d& un rezultat neprecizat (probabil 0).

Tastatura este citita prin intermediul porturilor. Existd o suma de programe care se ocup3 cu
decodificarea tastei ap3sate si transformarea ei intr-un caracter, tinand cont de tipul cursorului
si toatd bucatdria. IN permite doar verificarea faptului c3 o tast3 este ap3satd sau nu.

Intreaga tastaturd este grupat3 in 8 semi-randuri numerotate de la 0 la 7, ca in figurd (n
este num3rul semi-randului):

n=3) |[s][7][8][s][o]| (n=4)

[Qwl[e][r][t]|er=2 |[¥][u][1][o][p]| (n=5)
[A][s][o][F[s]] (=)
n=0) |[B][n][m][ss][]

Fiecare semiradnd are asociat un port care depisteazd care din taste sunt apsate. Cele 8
porturi sunt:

—

~—~

—

n=6)

~—~
~—~

n:7)

Port n Taste
65278 0 CS-V
65022 1 A-G
64510 2 Q-T
61486 3 1-5
61438 4 0-6
57342 5 P-Y
49150 6 CR-H
32766 7 blanc-B

Regula de calcul a adresei este port(n) = 254 + 256 *(255 - 2°n).

123

Informatia cititd de la port este un num3r care, dacd-l considerdm scris in baza 2, are
Tn ultimii cinci biti o ,,0glind3” a tastelor din semi-randul respectiv. Ordinea tastelor este
urm3toarea: tasta cea mai din exterior corespunde bitului 0 (cel mai putin semnificativ) tasta
cea mai din interior bitului 4. Valoarea bitilor 5-7 nu este influentatd de tastaturd, dar nu e
bine s3 mizati pe ea ca fiind constant3. Bitul 5 este influentat de casetofon (este folosit pentru
comunicatia cu casetofonul)!

Tn realitate putem citi mai multe semi-randuri odat3, dar nu putem spune pe care din
ele e ap3satd o tastd. Adresa unui port pentru aceastd operatiune se obtine dupd cum
urmeazd: octetul mai putin semnificativ e 254, Tn octetul mai semnificativ, toti bitii sunt
1, cu exceptia celor care corespund unor semi-randuri pe care le dorim citite. De exemplu
IN BIN 1011110111111110 citeste semi-randurile 1 si 6 (bitii 1 si 6 din cel mai semnificativ
octet sunt 0). Testati urm3torul program:

5 INPUT "Octetul mai semnificativ in binar ";a : PRINT a
10 LET adr = 254 + 256#VAL ("BIN "+STR$ a)
20 LET info = IN adr

30 LET a$ = "" : REM extragem in a$ ultimii 5 biti
40 FOR i=1 TO 5

50 LET r=a - 2*INT (a/2) : LET a = INT (a/2)
60 LET a$ = STR$ r + a$

70 NEXT i

80 PRINT AT 1,10;" taste apasate :";a$

90 GOTO 20

Apasati apoi diferite taste, corespunzand sau nu semi-randurilor alese.

Remarcati cd IN ne permite s3 citim mai multe taste ap3sate simultan sau s& vedem dac3

e apasat singur, ceea ce INKEY$ nu poate!

Din pacate, datoritd constructiei calculatorului, se Tntampld un fenomen neplacut: dac3
sunt apasate trei taste astfel: doud Tn acelasi semi-rand, si una Tn alt semi-rand corespunzand
uneia din celelalte doud, atunci calculatorul are impresia ca si a patra tastd, corespunzidtoare
celei de-a doua din primul semi-rand este ap3satd! Acesta este un defect de constructie si nu
poate fi nicicum evitat folosind programe.

De aceea, ap3sand simultan , si , calculatorul crede c3 s-a apdsat si spatiu (

corespunde lui , spatiu lui) De aceea, aceastd combinatie de trei taste este echivalent3

cu | BREAK| (|CS| + si poate opri un program din executie. Incercati! Acesta este un
|BREAK] si poate opri un prog , ,

impediment serios pentru jocurile care se desfdsoara Tntre doi participanti, si au nevoie de multe
taste, pentru c3 cei doi se influenteazad reciproc prin tastaturd.

Alte porturi importante:

o Portul 254, folosit ca port de iesire (este distinct de portul de intrare 2541): bitii 0, 1,
2 controleaz culoarea BORDER-ului (care e considerat periferic!), bitul 3 iesirea spre
casetofon (este folosit la salvarea programelor pe banda), bitul 4 este dedicat difuzorului
(este folosit de comanda BEEP). Din p3cate, viteza BASIC-ului este prea mic3 pentru a
putea produce semnale utile la bitii 3 si 4. Puteti incerca OUT 254,0 pentru a vedea
efectul asupra BORDER-ului (dar nu si asupra celor dou3 linii din josul ecranului).

124

e Portul 251 este folosit Tn lucrul cu imprimanta, atat pentru a trimite date, cat si pentru
a le primi (imprimanta semnalizeazd cand a terminat de lucrat).

e Porturile 254, 247 si 239 mai sunt folosite si pentru comunicarea cu alte periferice:
microdrive, interfata seriald RS232.

Pentru alte informatii, rugdm s3 va adresati cartii tehnice a calculatorului. Pentru cat vom
lucra noi, ceea ce stim este mai mult decat suficient.

16.6 Exercit ii

1. Scrieti un program pentru definirea caracterelor 3, 7, s, t, 3 . Eventual folositi formele
predefinite ale caracterelor a, i, s, t, a din ROM.

2. Scrieti un program pentru conversii intre cele trei baze importante de numeratie (2, 10,
16). Lucrati numai cu numere intregi.

3. Scrieti un program pentru desenare, in care utilizatorul ghideazd un punct pe ecran cu
patru taste, dar are si posibilitatea de a combina cate doud directii simultan. Prevedeti
o metodd pentru a putea sterge desenele gresite.

4. Este adevarat3 relatia ATTR (y,x) = PEEK (22528 + y#32 + x) pentru orice x si y
admisibili pozitivi? Justificati.

125

Chapter 17

Casetofonul

Inv&tEm s3 inspectdm ecranul, s& definim noi functii si s& folosim casetofonul pentru a pune la
p&strare capodoperele BASIC pe care le-am creat.

e SCREENS$ pentru a citi un caracter de pe ecran;
e DEF FN pentru definirea de functii;

e FN pentru folosirea functiilor definite;

e SAVE care pune programe pe band3;

e LOAD care citeste programe de pe banda;

e MERGE — amesteca programe;

e VERIFY - verifici programe.

17.1 SCREENS$

ENGLEZA: screen = ecran
SINTAXA: SCREEN$ (y,X)
CATEGORIE: functie
DESCRIERE:

SCREENS$ este o functie mai rar utilizat3, care are drept parametri coordonatele unui p&tratel
din grila de joasa rezolutie. Dacd X nu e intre 0 si 31 si y intre 0 si 23, veti obtine eroarea B.

SCREEN$ Tncearcd sa recunoasca caracterul tiparit pe ecran la coordonatele y, X si sa in-
toarcd un sir format din acest caracter. Dac3 nu recunoaste caracterul, Tntoarce "". SCREEN$
recunoaste si caracterele scrise cu INVERSE 1.

126

PRINT AT 5,5;"STOP" : PRINT SCREEN$ (5,6)

va scrie pe ecran STOP si apoi T.

17.2 DEF FN

ENGLEZA: to DEFine = a defini, FUNction = functie
SINTAXA: DEF FN f[$1(p1,...,pn) = expr
CATEGORIE: comand3

DESCRIERE:

DEF FN permite programatorului s3-si defineasc3 propriile functii, prin compunerea functiilor
existente.

f este numele functiei care se defineste, format dintr-o singurd liter§. Literele mici sunt
echivalente cu majusculele.

Numele functiei trebuie s3 fie succedat de semnul $, dacd functia va avea un rezultat de
tip sir. $ trebuie s3 lipseascd dacd functia d3 un rezultat numeric.

P1,- - -, Pn sunt parametrii simbolici ai functiei, care apar in expresia de definitie a functiei
si al c3ror rol 1l vom defini la prezentarea instructiunii FN. p; sunt ca niste nume de variabile de
o singurd literd, continand semnul $ dac3 este vorba de parametri de tip sir.

expr este o expresie BASIC, n care de obicei apar parametrii simbolici, expresie care arat3
cum se defineste functia.

Executarea instructiunii DEF FN nu are nici un efect, asemenea instructiunii DATA. Ea este
folositd doar Tn momentul executdrii instructiunii FN corespunzatoare.

17.3 FN

ENGLEZA: FuNction = functie
SINTAXA: FN f(v1,...,vn)
CATEGORIE: functie
DESCRIERE:

f este numele functiei invocate, care trebuie s3 fie definitd undeva in program cu DEF FN.

v1,...Un sunt expresii care, evaluate, dau valorile parametrilor cu care se va apela functia
S3 vedem ce se intdmpl3 la executarea instructiunii FN.

1. Int4i, calculatorul caut in intreg programul o definitie de functie (o instructiune DEF FN)
pentru acelasi nume f (si de acelasi tip) cu functia invocatd. Daca instructiunea DEF FN
nu exista, survine eroarea P.

2. Dac¥ definitia a fost g3sitd, se evalueazd pe rand expresiile (numite argumente) v;.
Rezultatele evaludrilor devin valorile parametrilor simbolici p; din instructiunea DEF FN
(dar nu valorile unor variabile BASIC cu acelasi nume!). Dac3 expresiile nu genereazi
rezultate de acelasi tip cu al parametrilor simbolici corespunzatori sau numarul parametrilor
simbolici nu este egal cu al argumentelor, se obtine eroarea Q.

127

3. Dupd aceasta, se trece la evaluarea expresiei din instructiunea DEF FN. Oriunde apar
nume de parametri simbolici, se foloseste valoarea pe care tocmai au c3patat-o. Dac3
apar numele altor variabile, atunci sunt folosite valorile variabilelor programului BASIC.

4. Tn fine, rezultatul evalurii acestei expresii este Tntors de apelul functiei FN.
Exemplele sunt mai mult decat utile:

5 DEF FN r(x) = INT (x+.5)

este definitia functiei ,rotunjire”. La executarea instructiunii:

PRINT FN r(PI)

se parcurg urmatorii pasi:

1. definitia este localizat3 in linia 5;

2. se evalueazd expresia PI. Parametrul x devine 3.1415926 (o eventuald variabild x este
nealteratd);

3. se evalueaz3 expresia INT (3.1415926 + .5), care d3 3;

4. se tipareste 3.

latd o definitie pentru functia putere:
1 DEF FN p(x,y) = (ABS x) " y

Functia aleatoare (f&r3 parametri !):
2 DEF FN a() = RND

S3 mai vedem un exemplu:

10 LET x=0 : LET y=0 : LET a=10

20 DEF FN p(x,y) = a + x*y

30 DEF FN q() = a + x*y

40 DEF FN r(a) = FN p(FN q() , 6)
50 PRINT FN p(2,3), FN q(), FN r(0)

Acest program va scrie numerele 16, 10 si 70. S3 vedem cum le obtine:
FN p(2,3) = a + 2%3 = 10 + 2%3 = 16
(se foloseste valoarea curentd a variabilei a).
FN q() = a + x*y = 10 + 0*%0 = 10
(foloseste valorile curente ale tuturor celor trei variabile.)
FN r(0) = FN p(10, 6) = a + 10%6 = 70

(functia r este, practic, independent3d de argumentul s3u.)

128

Se pot defini si functii recursive (care folosesc Tn expresia de definitie un apel la ele insele),
dar trebuie ficute niste scamatorii. Curiosilor le recomanddm s3 studieze aceastd problem3
mai pe larg. Evaluarea lui FN nu foloseste o stivd; valorile parametrilor sunt memorate chiar in
linia BASIC care contine instructiunea DEF FN (vezi si Anexa F), de aceea se pot realiza numai
recursii la coada. (Nu intr8m n am&nunte n legdturd cu recursia la coad3.)

latd un exemplu : definitia factorialului (n!=1 x 2 x 3 x ... x n):

5 DEF FN f(n) = VAL (("1" AND n=0) +
("n * FN f£(n-1)" AND n>0))

Tncercati PRINT FN £(5).
-

Instructiunile care urmeaz3 se folosesc pentru a schimba informatii cu casetofonul. Acesta
este un lucru util pentru transportarea programelor de la un calculator la altul si pastrarea lor
dup3 Tntreruperea aliment3rii cu curent electric. Se spune despre casetofon c3 este un suport
de memorie permanenta.

17.4 SAVE

ENGLEZA: to save = a salva

SINTAXA: SAVE numeprg [LINE etch] [SCREEN$] [CODE adr, lung] [DATA
var ()]

CATEGORIE: comand3

DESCRIERE:

SAVE salveaza (termen consacrat pentru p#strarea pe suporturi permanente de memorie)
o parte din continutul memoriei. Pentru informatia salvatd se mai foloseste numele de fisier.
SAVE poate avea o multime de forme, pe care le vom analiza separat. Numai unul dintre
.parametrii” indicati ca optionali poate ap3rea intr-o instructiune SAVE.

In toate cazurile, numeprg este un sir de 1 pan3 la 10 caractere, care va fi numele cu care
este identificatd informatia salvatd. Dacd numele nu respect aceast3 reguld survine eroarea F.

Inainte de a incepe salvarea, pe ultima linie a ecranului se afiseazd mesajul Start tape,
then press any key, care inseamnd ,,Porniti casetofonul si apoi ap3sati orice tastd”. Dup3
ap3sarea unei taste, mesajul este sters si salvarea incepe.

17.4.1 SAVE numeprg
Salveaz3 pe band3 programul BASIC din memorie, impreun3 cu toate variabilele sale si valorile

lor curente. Dac3d nu este nevoie de variabile la o inc3rcare ulterioard (pentru c3 programul Tsi
face singur initializdrile), se recomandd CLEAR Tnainte de SAVE.

17.4.2 SAVE numeprg LINE etch
etch este o etichetd. Aceast3 instructiune face acelasi lucru ca SAVE numeprg, cu diferenta

c3 programul, atunci cand va fi Tncdrcat n calculator, va porni automat Tn executie de la linia
cu eticheta etch.

129

17.4.3 SAVE numeprg SCREEN$

salveazd pe band3 continutul memoriei video si informatia de culoare. Este echivalentd cu SAVE
numeprg CODE 16384,6912

17.4.4 SAVE numeprg CODE adresa, lung

salveazd continutul unei zone de memorie cu lungimea lung (in octeti), octet cu octet, Tncepénd
de la adresa.

17.4.5 SAVE numeprg DATA var ()

unde var este numele unei variabile multidimensionale de orice tip. Aceast3 instructiune salveaza
continutul matricei cu numele var.

17.5 LOAD

ENGLEZA: to load = a inc3rca

SINTAXA: LOAD numeprg [SCREEN$] [CODE [adresa [, lungl]l] [DATA
var ()]

CATEGORIE: comand3

DESCRIERE:

LOAD este comanda pentru citirea unui program de pe bandd magneticad Tn memorie. Vom
discuta pe rand formele posibile.

numeprg poate s3 fie un sir nul. In acest caz se Tncarcd de pe band3 primul program care
are tipul specificat de ,parametrii” optionali (nu sunt chiar niste parametri, dar nu inventdm
acum nume noi).

17.5.1 LOAD numeprg

citeste de pe band3 programul BASIC si variabilele sale, care au fost salvate sub acelasi nume
cu cel specificat. Programul prezent in memorie este pierdut.

17.5.2 LOAD numeprg SCREEN$

este echivalent cu LOAD numeprg CODE 16384, 6912

17.5.3 LOAD numeprg CODE adresa, lung
citeste de pe band3 primul fisier salvat cu SAVE n CODE X, Y, care are numele corespunzdtor

si lungimea y < lung. Citirea se face Tn memorie Tncepand de la adresa specificatd si nu de la
cea folosit3 la salvare (X).

130

17.5.4 LOAD numeprg CODE adresa

actioneaz3 precum instructiunea precedentd, dar fir3 a mai constrange in vreun fel lungimea
programului salvat.

17.5.5 LOAD numeprg CODE

Tncarcd un program salvat cu SAVE .. .CODE chiar |la adresa de la care a fost salvat.

17.5.6 LOAD numeprg DATA var ()

citeste matricea de pe banda, stergand matricea existentd cu acelasi nume. Poate surveni
eroarea 4 Tn cazul lipsei de memorie.

Dac3 citirea de pe band3 se face eronat (cel mai adesea calculatorul poate depista daca
sunt informatii incorecte pe band3), survine eroarea R.

S3 aruncdm o privire asupra modului Tn care este organizat un fisier pe band3. Salvarea se
face in doud parti. Prima parte este o buc3ticd numit3 Tn englezd header si poart3 informatii
despre fisier: nume, tip si lungime. Header-ul are intotdeauna 17 octeti. Dup3 header urmeaz3
fisierul propriu-zis. Atat header-ul cat si fisierul Tncep pe bandi printr-o zond cu un sunet
uniform, folosit in sincronizare. Tn timpul citirii zonelor de sincronizare, BORDER-ul este in
dungi rosii si albastre deschis (red si cyan). Pentru zonele de informatie, dungile sunt albastre
si galbene (blue si yellow).

17.6 MERGE

ENGLEZA: to merge = a amesteca

SINTAXA: MERGE numeprg
CATEGORIE: comand3
DESCRIERE:

MERGE exist doar pentru fisiere de programe BASIC (nu si pentru CODE sau DATA). Efectul
sdu este de a amesteca variabilele si programul de pe bandd cu cele din memorie. Liniile si
variabilele care existd Tn ambele programe se iau de pe band3, iar vechea informatie se pierde.
Liniile de pe band3 sunt intercalate la locurile lor, printre cele existente deja.

Erori posibile:

e R, eroare de citire pe band3;

e 4, memorie insuficient3.

Un program Tncarcat cu MERGE nu porneste automat Tn executie, chiar daca a fost salvat cu
SAVE LINE X.

Ca si la LOAD, numeprg poate fi sirul nul si atunci este folosit primul fisier Tntalnit.

131

17.7 VERIFY

ENGLEZA: to verify = a verifica

SINTAXA: VERIFY numeprg [SCREEN$] [CODE [adr [,lgl1] [DATA var()]
CATEGORIE: comand3
DESCRIERE:

VERIFY seam&n3 foarte mult cu LOAD, doar ¢ nu Tncarcd programul (datele) de pe band3, ci
1l compara cu cel existent Tn memorie. Diferentele sunt anuntate prin eroarea R. Se recomand3
Tntotdeauna verificarea unui program salvat.

La executarea comenzilor LOAD, MERGE sau VERIFY calculatorul afiseazi cand apar header-
ele Tntalnite, Tn forma urmatoare:

Program : numeprg pentru programe BASIC
Bytes : numeprg pentru programe salvate cu CODE sau SCREEN$
Number array : numeprg pentru o matrice numeric3

Character array : numeprg pentru o matrice de caractere

unde numeprg presupunem c3 este numele sub care a fost salvatd informatia. Acest mesaj se
tipareste Tntotdeauna pe rand nou.

LOAD, VERIFY si MERGE dau variabilei sistem SCR_CT valoarea 3, asa incat niciodata nu vor
produce aparitia mesajului scroll?.

latd de ce VERIFY "' SCREEN$ va da aproape sigur eroare: in momentul Tntalnirii antetului
(header-ului) se va scrie pe ecran Bytes : nume, ceea ce va modifica imaginea existentd, care
nu va mai corespunde cu cea salvatd. Pentru a salva integral imagini (cu tot cu cele dou3
randuri de jos) si pentru a le putea verifica, se recomand3 intdi mutarea lor in altd zon3 de
memorie, rezervatd anterior cu CLEAR (dar anterior desen3rii, deoarece CLEAR sterge si ecranul).

17.8 Exercit iu rezolvat

Imaginati o metod3 prin care citirea header-ului s§ provoace nu scrierea mesajului
Program: nume

ci a unui text oarecare (nu prea lung).

Rezolvare

Programul care realizeazd aceastd Tncircare miraculoass aratd dupd cum urmeaz3d (s3 pre-
supunem cd numele programului salvat este un si format din 10 caractere CHR$ 226 = STOP):

1 PAPER 7: INK 7: OVER 1: CLS

5 PRINT AT 1,0; "Program : ";

7 FOR i=1 TO 10: PRINT CHR$ 226; : NEXT i

10 PRINT AT 1,0; "Textul acesta va aparea la citirea headerului"”
15 INK 0: PRINT AT 0,0;
20 LOAD ""

132

Pe ecran sunt suprapuse in OVER 1 doud texte: cel ce trebuie s3 apar3 si cel afisat Th mod
normal de LOAD la Tntalnirea header-ului, alb pe alb. Céand header-ul tipareste a doua oara
textul (de data aceasta Tn INK 0), datoritd proprietdtilor lui OVER, va ap3rea de fapt cel3lalt
text.

17.9 Exercit ii

1. Scrieti un program care si permit3 salvarea si verificarea continutului zonei memoriei
video.

Indicatie: pentru a salva integral imagini (inclusiv cele doud randuri de jos) si pentru
a le putea verifica, se recomand3 Tntdi mutarea lor in alti zond de memorie, rezervat3
anterior cu CLEAR.

2. Imaginati o situatie cand VERIFY "' SCREEN$ ar merge.

3. Este SCREENS$ functia ,,opusd” vreunei comenzi sau functii (in sensul IN-OUT de pild3)?

133

Chapter 18

Periferice

e LLIST pentru listare la imprimant3;

e LPRINT pentru tip3rire la imprimant3;

e COPY pentru desenare la imprimant3;

e drivere care deservesc periferice. C3i si canale.

e OPEN# pentru a deschide o cale;

e CLOSE# pentru a nchide o cale;

e PRINT#, INPUT#, LIST#, INKEY$# pentru comunicatii pe c3i;
e Discul:

— LOAD* pentru a inc3rca;

— SAVE* pentru a salva;

— MERGE#* pentru a amesteca;

— VERIFY* pentru a verifica;

— CAT pentru a inspecta;

— ERASE pentru a sterge;

— FORMAT pentru a initializa;

— MOVE pentru a copia;

— CLEAR# pentru a inchide canale;

— CLS# pentru a sterge ecranul.

134

Probabil c3 stiti ce este o imprimanta: un fel de masin3 de scris comandat¥ de calculator.
(Imprimantele tind s& semene din ce Tn ce mai putin cu o masina de scris.) Pentru SPECTRUM
exista o imprimant3 foarte speciald, care nu semdna cu nici o alta. Dac3 aveti una obisnuitd
s-ar putea s& mai aveti nevoie si de un program special (driver, dupd cum vom explica de
indatd) pentru a o face s3 functioneze.

S3 vedem cum se poate folosi cu HC una:

18.1 LLIST

ENGLEZA. Line printer LIST = LIST la imprimanta

SINTAXA: LLIST [# cale] [etch]
CATEGORIE: comand3
DESCRIERE:

LLIST listeazd programul la imprimant3 incepand de la linia etch sau de la prima dac3 etch

lipseste. Listarea poate fi opritd cu | BREAK | Despre #cale vorbim spre sfarsitul capitolului.

18.2 LPRINT

ENGLEZA: Line printer PRINT = PRINT la imprimant3

SINTAXA: LPRINT [# cale] [AT y, x] [TAB x] [expresiel [*] [;1 [,]
CATEGORIE: comand3
DESCRIERE:

Sintaxa este ca a lui PRINT, doar c& nu mai apar culorile. Despre #cale, spre sfarsitul
capitolului.

LPRINT tip3reste la imprimantd valorile expresiilor date ca parametri. Exist3 cateva mici
diferente fatd de PRINT. In primul rand, tip3rirea nu are loc odat3 cu executia instructiunii. Ca-

racterele sunt stranse n buffer-ul imprimantei (vezi Capitolul 15 si Anexa C) si trimise grupat.
Tip&rirea pe hartie se face atunci cand buffer-ul este trimis spre imprimant3; asta se Tntampl3
cand:

e buffer-ul este plin;

e o instructiune LPRINT nu se termind cu , sau cu ;

e o virguld, un apostrof sau un TAB trebuie s3 treac3 pe rand nou;

o la sfarsitul programului.

Instructiunea LPRINT AT ignord coordonata y. Nu este echivalentd cu LPRINT TAB X,
pentru cd AT nu trece niciodat3 pe rand nou.

10 FOR n=5 TO O STEP -
20 LPRINT TAB n;"x"
30 NEXT n

scrie ceva de genul

135

pe cand, schimband linia 20 7n
20 LPRINT AT 21-n ,n ;"x"
vom obtine:

XXXXX

18.3 COPY

ENGLEZA. to copy = a copia
SINTAXA: COPY
CATEGORIE: comand3
DESCRIERE:

Dac3 imprimanta lucreazd Tn mod grafic, atunci COPY pur si simplu face o copie dup3
continutul ecranului.

Instructiunile pentru lucrul cu imprimanta, folosite fard a avea o imprimanta conectat3, nu
au efect.

18.4 Drivere

S3 presupunem c3 un program a efectuat niste calcule si trebuie s3 comunice utilizatorului
rezultatele. Utilizatorul poate cere ca datele sa-i fie afisate pe ecran, sau la imprimant3 sau
poate trimise spre un alt calculator prin interfata de la retea sau mai stiu eu ce. De toate
aceste operatii se ocup3 o parte a interpretorului BASIC numit¥ driver. Driver este un cuvant
englezesc si Tnseamn3d ,sofer’. Numele aratd c3 driverul ,conduce” informatia spre perifericul
respectiv. Acest program (c3ci un program este) primeste un sir de caractere si trebuie s3-|
transforme Tntr-o form3 care s3 fie , priceputd” de un periferic.

De ce sunt driverele importante? Pentru c3 interactiunea programatorului cu un driver este
aceeasi, indiferent de natura perifericului pe care acel driver 1l deserveste. Cu alte cuvinte,
cu instructiuni foarte aseman3toare se scre atat pe ecran cat si la imprimant3, folosind dri-
vere diferite. Este treaba driverelor s3 transforme informatia Tntr-una inteleasd de perifericul
respectiv.

Existd drivere pentru fiecare tip de periferic care se poate conecta la calculator. Dac3
inventati un periferic nou, trebuie s3 scrieti si un driver pentru el. Pentru un acelasi periferic
pot exista mai multe drivere diferite. De pilda, pentru ecran putem imagina, pe langa driverul
existent, unul care scrie cu caractere mai inguste. Pentru cei care stiu asamblare este un
exercitiu interesant.

Exist3 si drivere care functioneaz3 in sens invers, dinspre periferic spre calculator. Ele con-
vertesc datele achizitionate de la periferic intr-o form3 care are o semnificatie pentru programele

136

care se executd pe calculator. Un exemplu tipic este driverul de tastaturd, care, citind tastele
de la porturile tastaturii, transform3a informatia n caractere, tinand cont de cursor.

La un calculator ,adevirat” (HC este mai curdnd o jucdrie), driverele fac parte dintr-un
program mare care numit Sistem de operare. HC-ul, desi nu are sistem de operare, niste
drivere tot are. La ele si la modul in care preiau informatia o sd ne uitdm acum.

In nomenclatura HC (preluatd de la SINCLAIR) driverele poartd denumirea de canale.
Canalele au nume de cate o literd. Existd din constructie trei canale, dar la adiugarea unor
periferice mai apar si altele.

Canalul K (KEYBOARD) deserveste tastatura. Surprinzdtor, este un canal bidirectional,
adic3 serveste atat la citirea datelor (de la tastaturd) cat si la scrierea lor.

Canalul S (SCREEN) deserveste ecranul. Este un canal unidirectional de iesire.

Canalul P (PRINTER) pentru imprimant3. Este un canal unidirectional.

Calculatorul TIM-S, compatibil cu HC (adic3 toate programele care merg pe unul merg
si pe celdlalt), are si alte canale: G, A, M, B, X. Pentru detalii, trimitem la cartea tehnic3 a
TIM-S ului.

Pentru a putea trimite/citi datele spre/de la un canal este previzut un mecanism supli-
mentar. Avem 16 Cdi, numerotate de la 0 la 15. Imaginea pe care trebuie s3 ne-o facem este
urmatoarea:

Programe

0

0123456789101112131415

K S P
T 4 4
tastatura ecran imprimanta

Tn ,cutia” pe care am desenat-o mai sus, intre c3i (0-15) si canale (K, S, P) pot exista niste
,conexiuni". Caile pot fi inchise, si atunci nu sunt conectate cu nici un canal sau deschise, si
atunci ele sunt conectate cu un canal. Vom vedea imediat cum se fac si cum se desfac aceste
conexiuni. Ajunge s3 spunem cd, dacd am conectat calea 8 cu canalul K, atunci toate datele pe
care programul le va scrie pe calea 8 vor ajunge la canalul K si toate datele pe care programul
le va citi de la calea 8 vor veni de la canalul K. Dac3 o cale este conectatd la canalul S sau P,
atunci de pe ea nu se pot citi date, caci aceste canale sunt unidirectionale.

La pornirea calculatorului sunt facute automat urm3atoarele conexiuni:

0123456789101112131415

137

adicd avem legate:

cdile0si 1 cu canalul K
calea 2 cu canalul S
calea 3 cu canalul P
caile 4-15 sunt Tnchise

18.5 OPEN#
ENGLEZA: to open = a deschide, # = prescurtare pentru ,,nr"
SINTAXA: OPEN# cale, canal
CATEGORIE: comand3
DESCRIERE:

Aceastd comand3 face o conexiune cale-canal. cale specificatd este legatd de canal spec-
ificat. cale trebuie s fie un num3r cuprins intre 0 si 15. Dacd este mai mare ca 255 se
obtine eroarea B. Dacj este peste 15 se obtine eroarea O. Canalul este indicat printr-o liter3,
majusculd sau minusculd, dintre cele trei: "k'", "s'" sau "p".

18.6 CLOSE#
ENGLEZA: to close = a inchide
SINTAXA: CLOSE# cale
CATEGORIE: comand3
DESCRIERE:

Tnchide calea specificatd. Atentie: tentativa de a inchide o cale nedeschis3 se soldeaz3 cu
catastrofe!

Incercarea de a inchide una din cdile 0-3 se soldeazd cu redeschiderea lor automatd pe
canalul initial.

|
S3 vedem acum ce instructiuni pot transfera date prin canale.

Existd numai patru instructiuni BASIC care pot face acest lucru; iat3-le: PRINT (LPRINT),
INPUT, LIST (LLIST) si INKEY$#.

Fiecare din instructiunile de mai sus lucreazd in mod implicit pe o cale. Pentru fiecare
dintre ele putem schimba calea, addugand Tn instructiune directiva # cale. Tot ce urmeaz3

dupd parametrul de indicare a c3ii va fi vehiculat pe calea indicatd. Incercarea de a vehicula
date pe o cale inexistentd sau Tnchis3 se soldeazd cu mesajul O.

e PRINT este echivalent cu PRINT #2 (PRINT lucreazd in mod normal pe calea 2);
e LPRINT este echivalent cu LPRINT #3 (sau cu PRINT #3);
e INPUT este implicit INPUT #0;

o LIST este LIST #2;

138

e LLIST este LLIST #3;

e INKEY$ Tn forma ei de functie BASIC, nu lucreaz3d folosind ciile! Exist o instructiune
care ntampl3tor are acelasi nume, INKEY$#, care lucreazd pe o cale specificatd si citeste
un caracter de pe acea cale. INKEY$# nu merge pe cai asociate canalului K. Ea are sens
numai dupd conectarea unor noi drivere si deschiderea canalelelor corespunzatoare. Un
exemplu este lucrul cu discul, la care vom reveni.

Tentativa de a citi date de pe o cale asociatd unui canal care nu are intrare sau de a scrie
date pe un canal care nu are iesire se soldeaz3d cu eroarea J.

A r8mas neldmurit3 Tntrebarea: cum de este canalul K si canal de iesire? Simplu: canalului
tastaturii Ti este asociatd ca periferic de iesire nimic altceva decat partea de jos a ecranului!

latd ca ncepem sa intelegem de ce INPUT scrie acolo textele — pentru c3 foloseste calea 0,
asociata de obicei canalului K.
|

Putem face lucruri interesante, dirijand datele pe alt3 cale decat cea obisnuit3.
Astfel PRINT #0 va tipari in partea de jos a ecranului.

INPUT #2 va tip&ri pe ecran (insd nu va putea cere valori pentru expresii pe ecran, cici
canalul S este unidirectional).

Tncerca;i PRINT #0; AT 1,0; "Linia 23": PAUSE O

Putem s3 facem un program s3 tipareasca totul la imprimant3 n loc s3 scrie pe ecran, far3
a schimba o singur3 linie din program: pentru cd PRINT e totuna cu PRINT #2, trebuie doar

sa mutam calea 2 la alt canal. In cazul nostru la canalul K:

OPEN#2, "p"
RUN

E mai greu s& schimbim canalul asociat c&ii 1, pentru cd fiecare INPUT face automat
OPEN #1, "k".

Folosind asamblare (cod-masing) puteti scrie noi drivere pe care s§ le addugati celor exis-
tente. Puteti crea noi drivere pentru ecran: care s3 gestioneze un sistem de ferestre, s3 scrie cu
alte seturi de caractere s.a.m.d. Programele voastre BASIC vor putea r&mane aceleasi, indifer-
ent de canalele care vor fi folosite: doar o instructiune OPEN# 2, xx va face toate PRINT-urile
sa lucreze cu noile canale xx. lat3d cat de flexibil este acest sistem!

Nota: mai existd nc3 trei c3i, care Tns3 nu-i sunt accesibile BASIC-ului; ele sunt folosite
de interpretorul BASIC pentru treburile-i interne:

e calea 253, asociatd canalului "K": folosit3 la editarea (scrierea) programelor si la afisarea
mesajelor de eroare;

o calea 254, asociatd canalului "S": folositd pentru a genera listingurile automate (un
listing automat este acela care apare in timp ce scrieti un program dup3 ce introduceti o
linie);

e calea 255, care foloseste canalul "R" (WORKSPACE) — un canal care nu e accesibil
BASIC-ului. Este folositd pentru transferul datelor intre zone de memorie.

139

Variabila sistem STRMS (23568) retine datele despre canalul asociat fiecarei cai. Tn zona
de memorie care Tncepe la (CHANS) se afld datele despre fiecare canal (numele si adresele
driverelor care asigurd intrarea si iesirea pe acel canal; dacd una din ele nu este suportatd de
acel canal, acolo se gdseste adresa unei rutine de eroare).

18.7 Discul

Acest periferic odatd introdus extinde BASIC-ul cu noi instructiuni.

Driverele de disc sunt programe foarte destepte, care fac din disc un suport de memorie
extern foarte atractiv. Ele apar odatd cu montarea interfetei de disc.

Pentru c¥ instructiunile de disc nu fac parte din BASIC-ul standard, le vom prezenta pe
scurt:

Extensii ale comenzilor pentru casetofon

e LOAD * specificator;

e SAVE #* specificator;

e MERGE * specificator;

e VERIFY * specificator;
unde specificator are forma:
aparat; nr_aparat; nume fisier

e aparat este "d" pentru disc si "m" pentru microdrive (unitate automat3 de band3)
(un periferic nu prea r3spandit);

e nr_aparat este numarul unittii (0-2 pentru disc, 0—7 pentru microdrive);

e nume:_figier este ca la instructiunile BASIC de lucru cu casetofonul (cu CODE etc.).

Comenzi noi

CAT nr produce o listd a fisierelor de pe unitatea de disc nr;
ERASE specificator sterge fisierul specificat;
FORMAT specificator reinitializeaz3 discul (il sterge complet);

MOVE specificatorl TO specificator2 copiaza fisierul dat de prima specificatie Tntr-
un fisier cu a doua specificatie.

Comenzi de cai pentru disc

e OPEN # cale, specificator asociaza acea cale unui fisier; atunci:
— PRINT # cale, LIST # cale vor scrie in acel fisier;
— INPUT # cale; var va citi valoarea variabilei din fisier;
— INKEY$# cale va citi un caracter din fisier.

Comenzi ,,ad-hoc”

e MOVE cale; TO cales — toate informatiile trimise pe prima cale vor ajunge pe a
doua;
e CLEAR# Tnchide toate caile deschise;

e CLS# sterge ecranul si aduce culorile la cele normale.

140

18.8 Exercit ii

(Cam putine si cam subtirele.)

1. Scoateti la imprimant3 graficul functiei sinus.

2. Experimentati lucrul cu canalele (nu are rezolvare in carte).

141

Appendix A

Erorile

Cod

Text

Traducere

Tovo=Ea=ErRouHIDODQTMEOOQmWE OO ~NO TR WN - O

0K

NEXT without FOR
Variable not found
Subscript wrong

Out of memory

Out of screen
Number too big
RETURN without GOSUB
End of file

STOP statement
Invalid argument
Integer out of range
Nonsense in BASIC
BREAK - CONT repeats
Out of DATA

Invalid file name

No room for line
STOP in INPUT

FOR without NEXT
Invalid I/0 device
Invalid colour
BREAK into program
RAMTOP no good
Statement lost
Invalid stream

FN without DEF
Parameter error

Tape loading error

totul e Tn regula

NEXT fara FOR

variabila nu a fost gasita

indice (de matrice) gresit

s-a terminat memoria

in afara ecranului

numar prea mare

RETURN fara GOSUB

sfarsit de fisier

instructiune STOP

argument nepotrivit

numar intreg Tn afara limitelor (admise)
nu are sens in BASIC (eroare de sintaxa)
BREAK, CONTINUE repeta (instructiunea)
s-a terminat lista DATA

nume incorect de figier

nu mai e spatiu pentru linia (noud)
STOP la INPUT

FOR fara NEXT

dispozitiv de intrare/iesire incorect
culoare incorecta

program intrerupt cu BREAK

valoare gresita pentru RAMTOP
instructiunea s-a pierdut

calea aleasa este gresita

FN fara DEF (FN

parametri eronati

eroare de citire de pe banda

Modul de afisare al erorilor este cod MESAJ, xxxx:yyyy,unde

o XXXX este eticheta liniei unde a survenit eroarea;

e yyyy este numarul comengzii in linie, la a carei executie a survenit eroarea.

142

Appendix B

Setul de caractere HC

Z80
Dec | Hex Caracter Cu prefix CB | Cu prefix ED

0 00 nefolosit NOP RLC B

1 01 nefolosit LD BC,nn RLC C

2 02 nefolosit LD (BC),A RLC D

3 03 nefolosit INC BC RLCE

4 04 nefolosit INC B RLCH

5 05 nefolosit DECB RLC L

6 06 | PRINT virgula | LD B,n RLC (HL)

7 07 EDIT RLCA RLC A

8 08 = EX AFAF RRC B

9 09 = ADDHL,BC | RRCC
10 0A U LD A,(BC) RRC D
11 0B 0 DEC BC RRCE
12 oC DELETE INCC RRCH
13 oD ENTER DECC RRC L
14 | OE urm. numar LD C,n RRC (HL)
15 OF nefolosit RRCA RRC A
16 10 Ctrl. INK DJNZ dis RLB
17 11 Ctrl. PAPER LD DE,nn RLC
18 12 Ctrl. FLASH LD (DE),A RLD
19 13 | Ctrl. BRIGHT | INC DE RLE
20 14 | Ctrl. INVERSE | INCD RLH
21 15 Ctrl. OVER DEC D RL L
22 16 Ctrl. AT LD D.n RL (HL)
23 17 Ctrl. TAB RLA RL A
24 18 nefolosit JR dis RR B
25 19 nefolosit ADDHL,DE | RRC
26 1A nefolosit LD A,(DE) RR D
27 1B nefolosit DEC DE RRE
28 1C nefolosit INC E RRH
29 1D nefolosit DECE RRL
30 1E nefolosit LD E,n RR (HL)
31 1F nefolosit RRA RR A

143

Z80

Dec | Hex | Caracter Cu prefix CB | Cu prefix ED
32 20 blanc JR NZ,dis SLAB
33 21 ! LD HL,nn SLAC
34 22 " LD (nn),HL | SLAD
35 23 t INC HL SLAE
36 24 $ INC H SLAH
37 25 yA DECH SLAL
38 26 & LD H,n SLA (HL)
39 27 ’ DAA SLAA
40 28 (JR Z,dis SRA B
41 29) ADDHLHL | SRAC
42 2A * LD HL,(nn) | SRAD
43 2B + DEC HL SRAE
44 | 2C R INC L SRAH
45 2D - DECL SRAL
46 2E . LD L,n SRA (HL)
47 2F / CPL SRA A
48 30 0 JR NC,dis sls B
49 31 1 LD SR,(nn) slsC
50 32 2 LD (nn),A sls D
51 33 3 INC SP slsE
52 34 4 INC (HL) sls H
53 35 5 DEC (HL) slsL
54 36 6 LD (HL),n sls (HL)
55 37 7 SCF sls A
56 38 8 JR C,dis SRL B
57 39 9 ADDHL,SP | SRLC
58 3A : LD A,(nn) SRLD
59 3B ; DEC SP SRLE
60 3C < INC A SRLH
61 3D = DEC A SRLL
62 3E > LD An SRL (HL)
63 3F ? CCF SRL A
64 40 Q LD B,B BIT 0,B IN B,(C)
65 41 A LD B,C BITO0,C OUT (C),B
66 42 B LD B,D BIT 0,D SBC HL,BC
67 43 ¢ LD B,E BIT O,E LD (nn),BC
68 44 D LD B,H BIT O,H NEG
69 45 E LD B,L BIT O,L RETN
70 46 F LD B,(HL) BIT O,(HL) IM 0
71 47 G LD B,A BIT 0,A LD LA
72 48 H LD C,B BIT 1,B IN C,(C)
73 49 I LD C,C BIT 1,C OuUT (C),C
74 4A J LD C,D BIT 1,D ADC HL,BC
75 4B K LD C,E BIT 1,E LD BC,(nn)
76 | 4C L LD CH BIT 1,H
77 | 4D M LDC.L BIT 1,L RETI
78 4E N LD C,(HL) BIT 1,(HL)
79 4F 0 LD C,A BIT 1,A LD R,A
80 50 P LD D,B BIT 2,B IN D,(C)

144

Z80

Dec | Hex | Caracter Cu prefix CB | Cu prefix ED
81 51 Q LDD,C BIT 2,C OUT (C),D
82 52 R LD D,D BIT 2,D SBC HL,DE
83 53] LD D.E BIT 2,E LD (nn),DE
84 54 T LD DH BIT 2,H
85 55 U LD DL BIT 2,L
86 56 v LD D,(HL) | BIT 2,(HL) IM 1
87 57 W LD DA BIT 2,A LD Al
88 58 X LDEB BIT 3,B IN E,(C)

89 59 Y LD E,C BIT 3,C OUT (C),E
90 5A Z LD E,D BIT 3,D ADC HL,DE
91 5B L LD E,E BIT 3,E LD DE,(nn)
92 5C \ LD EH BIT 3,H

93 5D] LDE,L BIT 3,L

94 5E - LD E,(HL) | BIT 3,(HL) IM 2

95 5F _ LD E,A BIT 3,A LD AR

96 60 $ LDH,B BIT 4,B IN H,(C)

97 61 a LD H,C BIT 4,C OuUT (C),H
98 62 b LD H,D BIT 4,D SBC HL,HL
99 63 c LD H,E BIT 4,E LD (nn),HL

100 64 d LD H,H BIT 4,H

101 65 e LD H,L BIT 4,L

102 66 f LD H,(HL) | BIT 4,(HL)

103 67 g LD H,A BIT 4,A RRD

104 68 h LDL,B BIT 5,B IN L,(C)

105 69 i LDL,C BIT 5,C OUT (C),L

106 6A j LD L,D BIT 5,D ADC HL,HL

107 6B k LD L,E BIT 5,E LD HL,(nn)

108 6C 1 LD L,H BIT 5,H

109 6D m LDL,L BIT 5,L

110 6E n LD L,(HL) | BIT 5,(HL)

111 6F o LD LA BIT 5,A RLD

112 70 P LD (HL),B | BIT 6,B IN F(C)

113 71 q LD (HL),C | BIT6,C

114 72 r LD (HL),D | BIT 6,D

115 73 s LD (HL),E | BIT6,E SBC HL,SP

116 74 t LD (HL),H | BIT 6,H LD (nn),SP

117 75 u LD (HL),L | BIT6,L

118 76 v HALT BIT 6,(HL)

119 77 W LD (HL),A | BIT6,A

120 78 x LDAB BIT 7,B

121 79 y LD AC BIT7,C IN A,(C)

122 7A z LD AD BIT 7,D OUT (C),A

123 7B { LD AE BIT 7,E ADC HL,SP

124 | 7C — LD AH BIT 7,H LD SP,(nn)

125 7D ¥ LD AL BIT7,L

126 7E - LD A,(HL) | BIT 7,(HL)

127 7F (&) LD AA BIT 7,A

145

Z80

Dec | Hex Caracter Cu prefix CB | Cu prefix ED
128 80 | semigraficO | ADD AB RES 0,B

129 81 | semigraficl | ADD AC RES 0,C

130 82 | semigrafic2 | ADD A,D RES 0,D

131 83 | semigrafic3 | ADD AE RES 0,E

132 84 | semigrafic4 | ADD AH RES O,H

133 85 | semigrafic5 | ADD AL RES O,L

134 86 | semigrafic6 | ADD A,(HL) | RES 0,(HL)

135 87 | semigrafic7 | ADD A,D RES 0,A

136 88 | semigrafic8 | ADC AB RES 1,B

137 89 | semigrafic9 | ADC AC RES 1,C

138 8A | semigrafic 10 | ADC A,D RES 1,D

139 8B | semigrafic 11 | ADC AE RES 1,E

140 8C | semigrafic12 | ADC AH RES 1,H

141 8D | semigrafic 13 | ADC AL RES 1,L

142 8E | semigrafic 14 | ADC A,(HL) | RES 1,(HL)

143 8F | semigrafic 15 | ADC A/A RES 1,A

144 90 UDG a SUB B RES 2,B

145 91 UDG b SUB C RES 2,C

146 92 UDG ¢ SUB D RES 2,D

147 93 UDG d SUB E RES 2,E

148 94 UDG e SUBH RES 2,H

149 95 UDG f SUB L RES 2,L

150 96 UDG g SUB (HL) RES 2,(HL)

151 97 UDG h SUB A RES 2,A

152 98 UDG i SBC AB RES 3,B

153 99 UDG j SBC AC RES 3,C

154 9A UDG k SBC AD RES 3,D

155 9B UDG | SBC AE RES 3,E

156 9C UDG m SBC AH RES 3,H

157 9D UDG n SBC AL RES 3,L

158 9E UDG o SBC A,(HL) | RES 3,(HL)

159 9F UDG p SBC AA RES 3,A

160 A0 UDG q AND B RES 4,B LDI
161 Al UDG r AND C RES 4,C CPI
162 A2 UDG s AND D RES 4,D INI
163 A3 UDG't AND E RES 4,E OUTI
164 A4 UDG u AND H RES 4,H

165 A5 RND AND L RES 4,L

166 A6 INKEY$ AND (HL) RES 4,(HL)

167 A7 PI AND A RES 4,A

168 A8 FN XOR B RES 5,B LDD
169 A9 POINT XOR C RES 5,C CPD
170 AA SCREEN$ XOR D RES 5,D IND
171 AB ATTR XOR E RES 5,E OUTD
172 AC AT XOR H RES 5,H

173 AD TAB XOR L RES 5,L

174 AE VAL$ XOR (HL) RES 5,(HL)

175 AF CODE XOR A RES 5A

146

Z80

Dec | Hex | Caracter Cu prefix CB | Cu prefix ED
176 BO VAL ORB RES 6,B LDIR
177 B1 LEN ORC RES 6,C CPIR
178 B2 SIN ORD RES 6,D INIR
179 B3 cos ORE RES 6,E OTIR
180 B4 TAN ORH RES 6,H

181 B5 ASN ORL RES 6,L

182 B6 ACS OR (HL) RES 6,(HL)

183 B7 ATN ORA RES 6,A

184 B8 LN CPB RES 7,B LDDR
185 B9 EXP CpPC RES7,C CPDR
186 BA INT CPD RES 7,D INDR
187 BB SQR CPE RES 7,E OTDR
188 | BC SGN CPH RES 7,H

189 | BD ABS CPL RES 7,L

190 BE PEEK CP (HL) RES 7,(HL)

191 BF IN CPA RES 7,A

192 co USR RET Nz SET0,B

193 C1 STR$ POP BC SETO,C

194 Cc2 CHR$ JP NZ,nn SETO0,D

195 C3 NDT JP nn SETO,E

196 c4 BIN CALLNZ,nn | SETO,H

197 C5 OR PUSH BC SETO,L

198 C6 AND ADD An SET 0,(HL)

199 Cc7 <= RST 0 SETO,A

200 Ccs8 >= RET Z SET 1B

201 C9 <> RET SET1,C

202 | CA LINE JP Z,nn SET 1D

203 CB THEN .prefix. SET 1,E

204 | CC TO CALL Z,nn SET 1,H

205 | CD STEP CALL nn SET1,L

206 | CE | DEF FN | ADCAn SET 1,(HL)

207 | CF CAT RST 8 SET1,A

208 DO | FORMAT | RETNC SET 2,B

209 D1 MOVE POP DE SET 2,C

210 D2 ERASE JP NC,nn SET 2,D

211 D3 OPEN# OouT (n),A SET 2,E

212 D4 | CLOSE# | CALLNC,nn | SET2H

213 D5 MERGE PUSH DE SET2,L

214 D6 | VERIFY | SUBn SET 2,(HL)

215 D7 BEEP RST 16 SET 2,A

216 D8 | CIRCLE | RETc SET 3,B

217 D9 INK EXX SET 3,C

218 | DA PAPER JP C,nn SET 3,D

219 | DB FLASH IN A, (n) SET 3,E

147

Z80
Dec | Hex | Caracter Cu prefix CB | Cu prefix ED
220 | DC BRIGHT CALL C,nn SET 3H
221 DD INVERSE .prefix. SET 3,L
222 | DE OVER SBC An SET 3,(HL)
223 DF QuT RST 24 SET 3,A
224 EO LPRINT RET PO SET 4,B
225 El LLIST POP HL SET4,C
226 E2 STOP JP PO,nn SET 4,D
227 E3 READ EX(SP),HL | SET4,E
228 E4 DATA CALLPO,nn | SET 4,H
229 E5 | RESTORE | PUSHHL SET4,.L
230 E6 NEW AND n SET 4,(HL)
231 E7 BORDER RST 32 SET4,A
232 E8 | CONTINUE | RET PE SET5,B
233 E9 DIM JP (HL) SET5,C
234 | EA REM JP PE,nn SET5,D
235 EB FOR EX DE,HL SET5,E
236 | EC GOTO CALLPE,nn | SET5,H
237 ED GOSUB .prefix. SET5,L
238 EE INPUT XOR n SET 5,(HL)
239 EF LOAD RST 40 SET5,A
240 FO LIST RET P SET 6,B
241 F1 LET POP AF SET 6,C
242 F2 PAUSE JP Pnn SET 6,D
243 F3 NEXT DI SET 6,E
244 F4 POKE CALL Pnn SET 6,H
245 F5 PRINT PUSH AF SET6,L
246 F6 PLOT ORn SET 6,(HL)
247 F7 RUN RST 48 SET 6,A
248 F8 SAVE RET M SET7,B
249 F9 | RANDOMIZE | LD SPHL SET7,C
250 FA IF JP M,nn SET7,D
251 FB CLS El SET7,E
252 FC DRAW CALL M,nn SET 7H
253 FD CLEAR prefix IY. SET7,L
254 FE RETURN CPn SET 7,(HL)
255 FF COPY RST 56 SET7,A

Functiile care se comporta la fel sunt grupate Tmpreuna in setul de caractere:

Codul Caracteristici Codul Caracteristici

165-167 fara parametri 192 numar sau sir — numar

168 definibila 193-194 numar — sir

169-171 de doua variabile, prefixate 195 numar — numar, prioritate 4
172-173 folosite numai cu PRINT Si INPUT | 196 cu parametru optional, constant
174 Sir — gir 197-201 functii binare infixate

175-177 sir — numar 202-205 parti optionale de comenzi
178-191 numar — numar, prioritate 11 206-255 comenzi

148

Appendix C

Harta memoriei

| Adresa | Continut
00000 ROM
Interpretorul BASIC
16384 memoria video (pixelii)
22528 atribute
23296 buffer-ul imprimantei
23552 variabilele sistemului BASIC
23734 informat ii despre disc/microdrive
CHANS informat ii despre canale
128 (80h)
PROG programul BASIC
VARS variabile BASIC
128 (80h)
E_LINE comanda sau linia "1 n curs de interpretare
13 (0Ch)
128 (80h)
WORKSP date pentru INPUT
13 (0Ch)
spat iu de lucru temporar
STKBOT stiva evaluatorului de expresii BASIC
STKEND liber
sp stiva codului mas ira (Z80)
stiva GOSUB
3Eh
RAMTOP ?
UDG caractere grafi ce defi nibile
P_RAMT ?
65536 prima adresa "I n afara memoriei

149

Appendix D

Codurile culorilor

La HC culorile fundamentale sunt codificate dupa cum urmeaza:

Cod Culoare Engleza”
0 negru black

1 albastru blue

2 rosu red

3 mov magenta
4 verde green

5 albastru deschis cyan

6 galben yellow

7 alb white

8 contrast

9 transparent

e BORDER poate avea una din valorile 0-7.

e PAPER si INK au una din valorile 0-9. Valorile 8 si 9 au urmatoarele semnificatii:

150

— tiparind un caracter cu INK 8 (PAPER 8), el va pastra drept culoare a cernelii (hartiei)
chiar culoarea existenta anterior tiparirii sale n acel loc pe ecran. lata un exemplu:

25 PRINT AT 0,0;

30 FOR i = 0 TO 31

35 PRINT INK i - 4xINT(i/4) ; "=";

40 NEXT I

45 PAUSE 0

50 PRINT AT 0,0; INK 8;"REMARCATI CERNEALA CARACTERELOR"

PLOT, DRAW Si CIRCLE sunt implicit PAPER 8 (adica trasarea unui punct intr-un patratel nu
va modifica PAPER-ul acestuia daca nu se specifica explicit). Exemplu:

55 PRINT AT 0,0; PAPER 1, : PAUSE 0
65 PAPER 2: PLOT 0,715 : PAUSE 0O
75 PLOT PAPER 2, 0, 175

— tiparind un caracter cu INK 9 (PAPER 9) el va aparea fie alb, fie negru, astfel incat sa iasa
cat mai bine Tn evidenta pe fondul (cerneala) pe care se scrie. Din urmatorul exemplu
deducem ca vom avea alb pentru fond 0-3 si negru pentru fond 4-7:

22 FOR i=0 TO 7: PRINT PAPER i; INK 9 ; "xx%";: NEXT i
e FLASH poate fi O (standard), 1 (clipitor) sau 8 (se pastreaza FLASH-ul din locul respectiv de
pe ecran). PLOT, DRAW Si CIRCLE sunt implicit FLASH 8.

e BRIGHT poate fi O (standard), 1 (stralucitor; pe HC85 BRIGHT 1 nu are nici un efect vizual!)
sau 8 (transparent).

e INVERSE Si OVER pot fi 0 sau 1 (Capitolul 10).
Atragem atentia asupra diferentelor dintre instructiunile de culoare:

o BORDER e intotdeauna comanda (nu are sens PRINT BORDER 2;);
e INK, PAPER, BRIGHT, FLASH sunt atribute, care caracterizeaza un patrat de pe ecran;

e 0OVER Si INVERSE sunt moduri de scriere/trasare; ele nu sunt caracteristicile imaginii; de aceea
nu are sens OVER 8 sau INVERSE 8.

Sa mai remarcam asezarea culorilor. Televizorul formeaza culorile folosind numai 3 culori fun-
damentale: ALBASTRU, ROSU si VERDE. Celelalte culori se obtin din combinatii ale acestora.
Codurile culorilor la HC scrise Tn baza 2 (vezi si Anexa E) au pe bitul 0 componenta in albastru, pe
bitul 1 componenta in rosu si pe bitul 2 componenta in verde. Astfel:

Culoare Cod Binar Componenente
negru 0 000 —

albastru 1 001 albastru

rosu 2 010 rosu

mov 3 011 albastru, rosu

verde 4 100 verde

bleu 5 101 albastru, verde
galben 6 110 rosu, verde

alb 7 111 albastru, rosu, verde

151

Appendix E

Baze de numerat ie

Pentru a exprima valoarea unui numar am preluat de la arabi sistemul de scriere pozitionala in baza
10 (cu 10 cifre). Fie un numar in baza 10 de forma A, ... Az A; Ag unde A; sunt cifrele sale. Atunci
valoarea lui se mai poate scrie A, x 10™ +... 4+ Ay x 10 + A; x 10" 4+ Ay x 10°.

in mod analog, putem exprima valoarea unui numar intr-o baza de numerat,ie arbitraé (bazele
sunt numere ntregi nenule), folosind un numar corespunzator de cifre distincte. De pilda, baza 2.
Numerele sunt scrise numai cu 0 si 1 (numite cifre binare). Valoarea se calculeaza ca in formula
de mai sus, doar ca punem 2 in loc de 10. Vom calcula efectiv valoarea unui numar in baza 2,
exprimand-o in baza 10.

)

10110010 =

)

)

)

)

N NDNDNDNDNDNDN
Yy)

O R, N W TN

+ o+ + + + + o+

)

=128+ 0+ 32+ 16 + 0+ 0+ 2 + 0 = 178.

Pentru baze mai mari ca 10 avem un deficit de cifre. De aceea construim baza 16 cu 6 noi cifre
ad-hoc, simbolizate de literele A-F. Avem corespondentele:

Bazal6 Bazal0 Baza?2 | Bazalé Bazal0 Baza?2
0 0 0 8 8 1000
1 1 1 9 9 1001
2 2 10 A 10 1010
3 3 11 B 11 1011
4 4 100 C 12 1100
5 5 101 D 13 1101
6 6 110 E 14 1110
7 7 111 F 15 1111

Observam ca, odata cu cresterea bazei, numerele isi micsoreaza lungimea. Cu toate acestea,
n informatica, cea mai folosita baza de numeratie este 2. Aceasta pentru ca e, evident, mai simplu

152

de construit un circuit care are doar doua pozitii posibile (de pilda aprins-stins) decat unul care are
mai multe. Asociind dispozitivelor electronice bistabile (cu doua stari) cifrele binare, putem construi
cu usurinta dispozitive pentru operatii cu numere binare. O cifra binard se numeste in engleza bit
(Blnary digiT; binary = binar, Tn baza 2; digit = cifra (nu deget!)).

Folosind n biti putem exprima numere ntregi pozitive in intervalul 0, 2™ — 1.
Sa descriem algoritmul de transformare din baza 10 Tn baza 2 si algoritmii de calcul in baza 2.

lata, fara justificari matematice, cum se procedeaza pentru a transforma un numar din baza 10

n baza 2. Fie N numarul de transformat. impartim N la 2, obtinand catul M si restul R. R este 0 sau
1 si este chiar ultima cifra a numarului in baza 2. Apoi impartim M la 2 si obtinem un nou rest, care
este penultima cifra a rezultatului. Continuam pana obtinem catul 0. Resturile obtinute, citite de la
coada spre cap, formeaza chiar rezultatul cautat. Exemplu:

178 in baza 2 =7

178 :2= 89 restO

89 2= 44 restl
44 2= 22 rest0
22 :2= 11 restO
11 :2= 5 restl
5 :2= 2 restl
2 2= 1 restO
1 :2 0 restl

Numarul este 10110010 (citind resturile de jos in sus).
lata acum tablele adunarii si inmultirii Tn baza 2:

rROO
+ + + +
RrORO
TRRTRRTINT
ORr RO
mrROO
* K ¥ K
RrORO
TRRTERTINT
mrooOO

[EnY

Sa adunam 1011010 cu 10111; sa Tnmultim 1001 cu 110:

1011010+
10111
——————— 1001%
1 110
10 -———=
1 0
1 1001
10 1001
0 _______
1 110110
1110001

Sa dublezi un numar in baza doi este echivalent cu a-i adauga un zero la coada. Restul impartirii
unui numar binar la doi este ultima lui cifra.

153

Appendix F

Reprezentari interne

Locatiile de memorie le calculatorului sunt colectii de cate 8 bistabile. Pe un octet putem
reprezenta in memorie numere cu valori cuprinse intre 0 si 255 (2% — 1). Pentru a reprezenta
valori ale diverselor tipuri de date, variabile si programe BASIC se folosesc diferite metode. Le vom
explora pe rand.

Variabilele sistem a caror valoare este o adresa (un numar pe 16 biti), se memoreaza astfel:
reprezentarea foloseste doi octeti consecutivi; cel care are adresa mai mica retine (surprinzator)
partea mai putin semnificativa. (Zic surprinzator pentru ca noi scriem intai cifrele mai semnifica-
tive.) Partea mai putin semnificativd se numeste Less Significant Byte, si o0 vom prescurta LSB.
Partea mai semnificativa se numeste in engleza Most Significant Byte — MSB.

De exemplu, pentru a afla adresa de la care incepe programul BASIC trebuie sa citim valoarea
variabilei sistem PROG, situata la adresa 23635 (vezi si Anexa H). Atunci putem tipari adresa
programului BASIC astfel:

PRINT PEEK 23635 + 256%PEEK 23636

Pentru ca o vom folosi de mai multe ori, construim o functie PEEK extinsa, care citeste doi octeti
consecutivi.

5 DEF FN p(a)=PEEK a + 256*PEEK (a+1)
latd un program pentru exemplu (atasati linia de mai sus):

15 PRINT "ADRESA BASIC-ULUI ";FN P(23635)

25 PRINT "ADRESA VARIABILELOR ";FN p(23627)

35 PRINT "RAMTOP ";FN p(23730)

45 PRINT "SFARSITUL RAMULUI ";FN p(23732)

55 PRINT "Timpul de cand merge BASICul (sec) ";
65 PRINT (PEEK 23672 + 256%FN p(23673)) / 50

Ultima linie afiseaza valoarea ceasului de timp real (vezi Anexa H), care se calculeaza astfel:
PEEK 23672 + 256+PEEK 23673 + 65536*PEEK 23674 — 0 valoare memorata pe 3 octeti

Exista doua metode pentru a reprezenta valorile datelor de tip numeric. Ambele folosesc 5
octeti.

154

Numere “Intregi 7n intervalul —65535, +65535:
Aceste numere sunt numite mici T1ntregi (small integers). Cei cinci octeti au urratoarele valori:

00 H SEMN H LSB H MSB H 00
1 2 3 4 5 + octetul

¢ Semn este:

— 00 pentru numere pozitive;
— 255 (FF hexazecimal) pentru numere negative.

e Fie N numarul de reprezentat. Definim K astfel:
— K=NdacaN > 0;
— K=65536+ NdacaN < 0.
e LSB este cel mai putin semnificativ octet al lui K.
¢ MSB este cel mai semnificativ octet al lui K.

Exemple de reprezentari:

Numar Cei cinci octet i Observat ii
0 0 0 0 0 O | O0e pozitiv (semn=0)
1 0 0 1 0 O
23650 | O 0 98 92 0| 98+256 x 92 =23650
65535 | O 0 255 255 0 | 255+ 256 x 255 =65535
-1 0 255 255 255 O | 65536-1=65535
—23650 | 0 255 158 163 0 | 158+ 256 x 163 = 65536 — 23650

Numere “Intregi “Tnafara intervalului de mai sus s i numere ne’intregi:
Algoritmul de conversie este urmatorul (acest mod de reprezentare se mai numeste si n

virgulaflotanta = Floating Point, abreviat FP):
1. numarul se transforma in baza 2; fie N valoarea sa;
2. N se separa in doua valori, astfel:

e semnul S (0 pentru pozitiv, 1 pentru negativ);
¢ modulul M;

3. Meste adus la forma M = K % 2% unde K este cuprins intre 0.5 si 1. (Aceasta operatie
se numeste normalizare. Ea nu face altceva decéat sa puna virgula Tnainte de prima cifra
semnificativa nenuld a numarului.)

e K se numeste mantisa;
¢ E se numeste exponent;

4. numarul K are Tntotdeauna primul bit 1, asa ca n locul lui putem reprezenta valoarea
semnului S;

5. Cei cinci octeti primesc urmatoarele valori:

E+128 H S MANTISA K REPREZENTATA PE 4 OCTETI
1 2 3 4 5 + octetul

155

6. Exponentul este reprezentat adaugandu-i 128, pentru a putea reprezenta si valori ne-
gative. Daca E+128 nu incape ntr-un octet, numarul e prea mare pentru a putea fi
reprezentat.

e Cand E > 127 se obtine eroarea 6 Number too big. (overflow).
e Cand E < —128 numarul devine 0 (underflow).

Sa vedem niste exemple:

e Numarul 0.25:
1. inbaza 2:0.25=.0100
2. semnul S = 0; modulul M = .01
3. M=(0.11n baza 2) * 27!, deci
— K '=.10000000 pe 32 de biti
- E=-1
4. primul octet este E+128 = 127
5. al doilea octet are primul bit S = 0 iar restul sunt bitii luati de la K
6. Reprezentarea pe 5 octeti este:

27 o |l o J[o J[o
e Numarul 12000000 (un milion):
1. N=1111 0100 0010 0100 0000 (verificati)
2. S=0;M=N
3. M=(.11110100 00100100 in baza 2)x2%°
4. Reprezentarea este

| ws || e || s | o]| o]
(BIN 01110100 = 116, BIN 00100100 = 36)

¢ Numarul -0.25:
Pasii ca la calculul lui 1/4, doar semnul e S=1

a2z | 128 || o J| o || o |
e Numarul 0.1:
1. N=.0001100110011001100.... (periodic!)

2.5=0,M=N
3. E=-3,K=11001100 11001100 11001100 11001100 (32 de cifre)
4. reprezentarea:

125 H 76 H 204 H 204 H 204

(avem BIN 01001100 = 76, BIN 11001100 = 204)

|
Sa vedem cum sunt reprezentate intern liniile unui program BASIC.

MSB H LSB H LSB H MSB H H 13

ETICHETA LUNGIMEA TEXTUL ENTER

Reprezentarea etichetei unei linii BASIC face exceptie de la regula de reprezentare pe doi octefi
a numerelor: intai vine MSB.

Urmeaza, reprezentata pe doi octeti, o valoare care arata lungimea restului liniei (de la urmatorul
octet pana la octetul final ENTER).

Textul liniei este o succesiune de coduri de caractere, in ordinea in care sunt plasate in textul
liniei. Sunt necesare doua precizari:

156

gl W =

10

17
20
25
27
28
29
30

40

n textul unei linii pot aparea si caractere de control, cu parametrii lor. De exemplu, daca,

scriind o linie, am inserat un caracter INVERSE VIDEO (apasand + n locul core-
spunzator din memorie vom avea doi octeti cu valorile 20, respectiv 1 (vezi si Capitolul 12);

cand n textul unui program apare un numar (o constanta numerica), in linie se insereaza sase
octeti, cu urmatoarele semnificatii: un octet cu codul 14, care indica reprezentarea valorii
unui numar si apoi pe 5 octeti chiar valoarea numarului cum am descris-o mai sus. Inserarea

acestor informatii se face in momentul in care cel care scrie linia apasa : daca linia este
corecta sintactic, i se insereaza aceste valori si apoi este mutata din zona liniei in curs de
editare Tn zona programului BASIC. Valorile inserate maresc viteza BASIC-ului, pentru ca
in momentul executiei nu se mai tine cont de caracterele care formeaza textul numarului, ci
doar de forma convertitd. Conversia nu mai trebuie facuta. (Unii smecheri schimba cu buna
stiinta caracterele care formeaza numarul pentru a induce in eroare privitorii.) Cand o linie
este editata, toate reprezentarile acestea sunt scoase automat.

in fine, ultimul caracter al liniei este intotdeauna CR (CHR$ 13).

Bazat pe aceste consideratii, iatd un program care permite explorarea zonei de memorie a
programului BASIC:

DEF FN p(a) = PEEK a + 256+PEEK (a+1)

LET PROG = 23635 : LET VARS = 23627

LET PROG AD = FN p(PROG) : LET VARS AD = FN p(VARS)
LET nr = 0 : REM indicator de valoare FP

LET adr = PROG AD

PRINT "Linia "; 256*PEEK adr + PEEK (adr + 1);

PRINT " are lungimea ";FN p(adr + 2): LET adr = adr + 4
IF PEEK adr = 14 AND nr = 0 THEN LET nr = 6
PRINT adr; TAB 10; PEEK adr; TAB 20;
PRINT ((CHR$ PEEK adr) AND PEEK adr > 31) AND nr = 0;
PRINT ("*FP*") AND nr > O
LET adr = adr + 1: IF nr > 0 THEN LET nr = nr - 1
IF PEEK adr = 13 AND nr = 0 THEN LET adr = adr + 1:

GOTO 15 + 30%(adr = VARS AD)
GOTO 20
Explicat, ii:

nr este o variabila a carei valoare diferita de 0 arata ca adresa pe care tocmai o exploram
contine un octet din reprezentarea FP a unui numar. Cand se intilneste un CHR$ 14 (care nu
face parte el insusi dintr-o forma FP), atunci nr devine 6, semn ca urmatorii 6 octeti nu sunt
coduri de caractere. nr scade apoi mereu spre 0.

adr este adresa pe care tocmai o exploram.

Linia 25 scrie adresa curenta si continutul ei. Linia 27 scrie caracterul care se gaseste acolo,
daca este printabil.

Programul nu fine cont de faptul c& exista caractere de control care pot avea parametri. Im-
bunatatiti-I!

Linia 30 trece la descrierea unei noi linii, daca s-a ntalnit CR, sau termina executia, daca s-a
atins zona destinata variabilelor.

Executand programul anterior ati, remarcat, probabil ca a aparut o zona care memoreaza un
numar FP si in linia 1, dupa a-ul dintre parantezele lui DEF FN (desi acesta nu este un numar). Ex-
plicatia este data de modul de lucru al lui DEF FN: la momentul evaluarii lui FN — de exemplu in linia

157

5, unde argumentul este 23635 — valoarea obtinuta pentru parametrul simbolic a al functiei definite
este pusa chiar in locul rezervat n linia cu DEF FN in cei sase octeti.

Acest mod de lucru permite doar recurente de ordinul intai pentru functii care lucreaza cu nu-
mere si nu permite deloc recurente pentru functii care lucreaza cu siruri (caci sirurile sunt indicate
n cei cinci octeti printr-un pointer la valoarea reald). (Un pointer la un obiect este adresa unde se
gaseste acel obiect.)

O remarca interesanta: pentru a memora etichetele unei linii BASIC avem la dispozitie doi
octeti, dar valorile admise sunt doar intre 0 si 9999. Cu POKE putem forta etichetele si la valori
non-standard. Editorul, insd, nu permite lucrul cu linii care capata etichete ciudate.

Folosind asemenea linii le veti da multa bataie de cap celor care incearca sa va ,fure” pro-
gramele. O protectie foarte interesantd, care se obtine, este cea anti-MERGE. Transformand eticheta
unei linii dinspre sfarsitul programului intr-un numar foarte mare, MERGE va confunda aceasta linie cu
o0 variabila si rezultatul va fi dezastruos. Astfel de programe nu pot fi incarcate cu MERGE! (Si, deci,
nu pot fi incarcate fara a porni in executie.)

]
Toate formele de memorare ale variabilelor au ceva comun:

e Literele sunt transformate n litere mici;
e Primul octet are urmatoarea forma:

I71615141312]1]0] bit

| cod | litera |

e Primii trei biti dau tipul variabilei, astfel:

Cod Cod binar Variabila tip

2 010 Sir

3 011 numerica, cu nume de o litera

4 100 matrice numerica

5 101 numerica, nume de mai multe caractere
6 110 matrice de siruri

7 111 FOR - NEXT

o Urmatorii trei biti sunt ultimii 5 biti din codul literei cu care Tncepe numele (caci orice nume de
variabila Tncepe cu o literd!).

latd cum se memoreaza fiecare tip:

Variabila numerica, nume de o litera:

011 uT VALOAREA PE CINCI OCTET!

Variabila numerica, nume lung:

‘ 101 LT H 0 chrs H . H 1chry ‘ VALOAREA PE 5 OCTET!

Ultimul caracter din nume are primul bit 1.
Matrice de numere:

‘ 100 LIT H LUNG H NR. DIM H dimy ‘ FIECARE VALOARE PE 5 OCTET!

e lung e lungimea pana la sfarsit, pe doi octeti;

158

e nr.dim e numarul de dimensiuni, pe un octet;
e dimpx sunt valorile fiecarei dimensiuni, pe doi octeti.

Variabila FOR — NEXT:

111 ur H VAL. CURENTAH LIMITA H PAs H LINIA FOR H NR. INSTR.

e Linia FOR e eticheta liniei cu FOR-ul, pe doi octeti;
e NR. instr. € numarul instructiunii din linie care e FOR-ul, pe un octet;
e cele trei valori sunt pe 5 octeti.

Variabilas ir simp&’

‘010 LIT ‘ LUNGIME (2 0) CARACTERE (POT LIPSI) (1 OCTET FIECARE)

Variabilas ir matrice:

‘110 LIT H LUNG. 20 H NR. DIM. H dimg H H FIECARE CHR. 10

e nr dim e numarul de dimensiuni reprezentat, pe 1 octet;
e dinK e valoarea dimensiunii K, pe doi octeti.

159

Appendix G

Rezolvarile exercit iilor

G.1 Capitolul 1

1. Programul este urmatorul
10 PRINT AT O’O;a;ﬂ l|;b;l| ”;C;” l|;d;l| l|;e;l| l|;f
2. Nu pot fi nume de variabile

b) variabila sir cu nume prea lung
c) caracterul ,,."

d) Tncepe cu o cifra

g) semnul ,="

G.2 Capitolul 2

1. Cam asa:
10 PRINT AT 0,0; O, 370, 1, 371, 2, 372, 3, 373, 4, 374
2. Greselile sunt urmatoarele:

¢ 1n linia 60, unei variabile numerice i se atribuie valoarea unei variabile sir;
¢ Tn linia 70 se foloseste operatia ,—" care nu este definita pentru siruri;

¢ in linia 80 putem aprecia drept greseala folosirea variabilei b, care nu a fost definita
(initializatd, adica nu i s-a dat vreo valoare) anterior;

e daca variabila LET este pozitiva, atunci instructiunea din linia
100 LIST -LET

va da eroare.

in linia 90 nu este nici eroare, pentru ca avem de a face cu variabila scrisa cu semnele
L, E si T, iar nu cu comanda LET, care este un singur caracter.

160

G.3 Capitolul 3

1. Pentru a putea executa numai o instructiune din mai multe posibile (trebuie sa existe instruc-
tiuni pentru scrierea numelui fiecarei cifre) este necesar sa putem selecta cumva una din ele
care sa se execute. Acest lucru Tl putem face numai cu RUN, calculand eticheta de destinatie
n functie de cifra de tiparit. lata:

5 INPUT "cifra ";cfr
10 RUN cfr + 20

20 PRINT "zero": STOP
21 PRINT "unu": STOP
22 PRINT "doi": STOP
23 PRINT "trei": STOP
24 PRINT "patru'": STOP
25 PRINT "cinci": STOP
26 PRINT "sase": STOP
27 PRINT "sapte': STOP
28 PRINT "opt": STOP
29 PRINT "noua": STOP

STOP-urile sunt necesare pentru a scrie un singur text. Daca se doreste executarea repetata
a programului, STOP-urile trebuie schimbate cu:

INPUT "Tastati CR": RUN

INPUT "Tastati CR" este necesar pentru ca RUN sterge ecranul.
2. Se vor executa n ordine liniile:

25 a=4
35 a=80
40

80 anu mai exista (RUN sterge variabilele!)
90 eroare 2 (a nu exista)

G.4 Capitolul 4

1. Programul este urmatorul:

5 LET a=10 : PRINT AT 0,0;
7 LET a$ =" "
220 PRINT PAPER 0;a$;PAPER 1;a$;PAPER 2;a$;PAPER 3;a$;PAPER 4;a$;
PAPER 5;a$;PAPER 6;a$;PAPER 7;a$: LET a = a + 10 : GOTO a

latd cum functioneaza: la prima tura a=10. Apoi a=20, GOTO a, apoi a=30, GOTO a Si tot
asa, pana ce a=230, cand GOTO a opreste programul — exact 22 de treceri, cate randuri are
ecranul.

2. lata un exemplu :

5 INPUT "culoarea ";ppr
10 INPUT "coordonata x='";x’"coordonata y=";y
20 PRINT AT y,x; PAPER ppr; " " : GOTO 5

161

G.5 Capitolul 5

1. Programul este destul de simplu. Sa remarcam ca el nu memoreaza nicaieri numerele a caror
suma o face (nici nu putea, folosind numai instructiunile cunoscute). Variabila S este suma,
iar N numarul de numere.

5 INPUT "Cate numere 7 ..."; N : LET s = 0

10 IF n > 30 THEN PRINT "prea multe." : GOTO 5

15 IF n < 2 THEN PRINT "Sa fim seriosi'!" : GOTO 5
18

20 CLS : LET ¢ = 1 : REM contor

30 PRINT AT 0,0;"Numarul nr. ";c;" =";
35 INPUT nr : PRINT nr

40 LET S =S+ NR : LETC=C + 1

50 IF C <= N THEN GOTO 30

60 PRINT "Suma celor ";n;" numere este ";s
70 INPUT "0 noua suma ? (da/nu) ";a$

80 IF a$ = "da" THEN RUN

2. Programul seamana cu cel anterior:

5 INPUT "Cate numere 7 ..."; N
10 LET P = 0: LET M = 0: LET0 =0
20

30 LET c=1 : REM contor
40 INPUT "nr al ";(c);"-lea :";nr

50 IF nr < O THEN LET M = M + 1
55 IF nr = 0 THEN LET 0 = 0 + 1
60 IF nr > O THEN LET P = P + 1
70 LET ¢ =c + 1

80 IF ¢ <= N THEN GOTO 40

90 PRINT "sunt ";M;" numere negative"’ TAB 5; 0; "nule si "
100 PRINT TAB 5; P; " pozitive"

110 INPUT "o noua rulare 7 (d/n) ";a$

120 IF a$ = "d" THEN RUN

130 IF a$ = "n" THEN STOP

140 GOTO 110

G.6 Capitolul 6

1. Sa urmarim valorile tuturor variabilelor de-a lungul programului:

5 nu sunt variabile

10 a=14

20 a=14 q=4

30 a=18 q=4

40 a=18 g=4 (REM este un comentariu!)
50 a=18 q=4 ak=15

60 a=20 q=4 ak=15

Deci se tipareste 14.

2. Sa calculam intai cate patratele are ecranul: 32 x 24 = 768. Cum pe cele doua randuri de
jos nu putem scrie Tn mod obisnuit, raman 768 — 64 = 704.

Ordinea culorilor ne sugereaza un algoritm interesant: valorile 0, 1, 2, 3,4, 5,6, 7,0, 1, 2
etc. sunt de fapt resturile impartirii la 8 a unui numar care creste mereu. Vom folosi o singura

162

variabila contor, care va indica prin valoarea sa cate patratele s-au tiparit. Restul impartirii
valorii acestui contor la 8 va da chiar culoarea. Deci:

5 PRINT AT 0,0;

7 LET ¢ = 0

10 PAPER c - 8*INT (c/8)

15 PRINT " "; : LETc =c + 1
20 IF ¢ < 704 THEN GOTO 10

25 PAUSE 0

Ultima instructiune amana aparitia mesajului 0 0K pana dupa apasarea unei taste. Am pus <
si nu <=1n linia 20, pentru ca incepem de la 0.

3. Pentru ca majoritatea patratelelor nu au ambele coordonate pare, le vom colora folosind CLS.
Vom folosi rosu (2) pe galben (6) pentru desen. Programul foloseste doua bucle, una-ntr-alta.
Prima bucla traseaza cele 11 linii, iar a doua traseaza patratelele fiecarei linii.

5 BORDER 6 : PAPER 6 : CLS : PAPER 2

10 LET x = 0 : LET y = 0 : REM contoare
15 PRINT AT y, x;" "

20 LET x = x + 2

30 IF x < 31 THEN GOTO 15

35 LET x = 0 : REM incepem un nou rand
40 LETy =y + 2

50 IF y < 21 THEN GOTO 15

4. lata noul program:

1 REM mira

5 PRINT AT 0,0; :LET t = 0

10 PRINT PAPER t - 8 % INT(t/8);" "
20 LET t =t + 1
30 IF t < 32%22/4 THEN GOTO 10

Trebuie sa remarcam ca nu am folosit transcrierea solutiei prezentate la exercitiul respectiv,
ci am dat o rezolvare care se bazeaza pe cea a primului exercitiu.

5. Pentru a memora ultimii doi termeni ai sirului se foloseste metoda din exercitiul rezolvat cu
c.m.m.d.c., adica doua variabile ce reprezinta ultimii doi termeni si care isi schimba valoarea
la calcularea unui nou termen astfel: a doua trece in prima, iar noul termen trece in a doua.

1 REM sirul lui Fibonacci

5 INPUT "Cati termeni se afiseaza (4-100) 7 ";t
10 LET t = INT ABS t : IF t < 4 THEN GOTO 5

11 IF t > 100 THEN GOTO 5

15 LETa=1: LET b =1
20 PRINT "Primul termen este 1"
30 LET k = 2 : REM contor
40 PRINT "termenul ";k;" este ";c,
50 LET 4 = b : REM punem momentan la pastrare b
60 LET b =a+b: LET a=4d
70 LET k =k + 1
80 IF k <= t THEN GOTO 40

6. O varianta de program este:

1 REM numere prime
5 INPUT "nr de testat ";nr
10 LET nr = INT nr

163

164

20 LET ¢ = SQR nr : REM limita de testare

30 IF s = INT s THEN GOTO 100 : REM patrat perfect

40 LET k = 2 : REM contor

50 LET b =nr / k

60 IF b = INT b THEN GOTO 100

70 IF k < s THEN LET k =k + 1 : GOTO 50

90

95 PRINT "Numarul este prim'" : STOP

100 PRINT "Numarul nu este prim; se divide cu "; k : STOP

Scrieti, folosind aceasta metoda, un program care determina toti divizorii unui numar.

Probleme pune numai ,reflexia” bilei la atingerea marginii mesei. Sa studiem un caz partic-
ular: presupunem ca bila se misca pe verticala. Atunci coordonata ei verticala (y) va varia
la fiecare pas cu 1, cea orizontald (x) ramanand neschimbata. Daca bila urca, la fiecare
pas se scade 1 din y-ul ei. Daca o ia in jos, atunci se adauga 1. Cand ajunge la margine,
trebuie ca directia de miscare sa se schimbe, ceea ce este echivalent cu a schimba semnul
»incrementului” (valorii care se adauga). Lucrurile stau similar pentru miscarea pe orizontala.
Miscarea pe oblica este suprapunerea a doua miscari independente, una pe verticala si alta
pe orizontala.

De aici sugestia unui algoritm general de miscare: folosim doua variabile, xi si yi, care repre-
zinta incrementii pentru fiecare directie. Pentru directia 2 (stanga, sus) ei ar fi xi=1 si yi=-1
(caci in sus y scade). Bila se misca pana cand atinge o margine (sau se opreste). Atunci,
incrementul corespunzator isi schimba semnul.

lata o propunere de program. Notam cu X, Y coordonatele curente ale bilei, cu pasi numarul
de pasi pe care I-a facut bila (proportional cu PAUSE), cu xi, yi incrementii si cu xa, ya
coordonatele cu un pas mai inainte (coordonatele anterioare):

5 REM biliard
7 BORDER O : PAPER 7 : INK 0 : CLS
10 LET x = 11 : LET y = 16 : LET pa = 0
15 PRINT AT y,x ; "O"
18 INPUT '"Directia (1-8)"; d : LET d = INT d
19 IF D < 1 THEN GOTO 18
20 IF D > 8 THEN GOTO 18
25 GOTO D + 100
100 REM se initializeaza incrementii

101 LET xi = 0 : LET yi = -1 : GOTO 120
102 LET xi =1 : LET yi = -1 : GOTO 120
103 LET xi =1 : LET yi = 0 : GOTO 120
104 LET xi =1 : LET yi = 1 : GOTO 120
105 LET xi = 0 : LET yi = 1 : GOTO 120

106 LET xi = -1 : LET yi =1 : GOTO 120

107 LET xi = -1 : LET yi = 0 : GOTO 120

108 LET xi = -1 : LET yi = -1

109

110 REM pornire de la margine

120 IF x = 0 THEN LET xi = ABS xi

123 IF x = 31 THEN LET xi = -ABS xi

1256 IF y = 0 THEN LET yi = ABS yi

128 IF y = 21 THEN LET yi = -ABS yi

130 REM bucla principala

199

200 LET xa = x : LET ya =y : REM vechile coordonate
210 LET x =x + xi : LETy =y + yi : REM noile coordonate
220 PRINT AT y,x; "0" ;AT ya, xa; " "

230 LET pa =pa + 1

240 PAUSE INT (pa/2)

245

250 REM test de reflexie

260 IF x = 0 THEN LET xi = - xi
270 IF x = 31 THEN LET xi = - xi
280 IF y = 0 THEN LET yi = - yi
290 IF y = 21 THEN LET yi = - yi
300 IF pa < 40 THEN GOTO 200

310 GOTO 18

G.7 Capitolul 7

1. Listingul programului este prezentat mai jos. Sa subliniem punctele mai delicate ale rezolvarii:

¢ Tnlinia 140 se face asupra numarului a urmatoarea operatie: LET a = INT ABS apentru
a scurta testele asupra lui. ABS elimina semnul, INT 7l aduce la o valoare intreaga,
urmand a mai fi verificata doar apartenenta la intervalul 1-3, ceea ce se face n liniile
140 si 145;

¢ 1n linia 160, acel a$ de 320 de caractere este folosit pentru a sterge doar primele 10 linii
ale ecranului;

¢ Tnlinia 245 este exemplificatd o metoda interesanta de a opri executia programului pana

la apasarea tastei ;

¢ cel mai subtil punct al programului este linia 260 — acel DIM a$(32). Variabila a$ este
pregatita sa preia de la utilizator o denumire de ocupatie. Pentru a determina care dintre
elementele matricei c$ este egal cu a$, trebuie efectuata o comparatie. Dar doua siruri
nu pot fi egale daca nu au aceeasi lungime. Pe de alta parte toate elementele lui c$ au
lungimea fixata prin linia 110, la 32 de caractere. a$ este fortat prin DIM sa aiba si el
aceasta lungime.

e variabila A din linia 275 initializata cu 0 este un contor al numarului de persoane ce
au ocupatia cautatd; acest contor e folosit numai in cazul in care are valoarea finala
0, pentru a indica printr-un mesaj ca nu exista nici o persoana care sa corespunda
cerintelor (linia 292).

De remarcat asa numitul meniu, care ofera posibilitatea de a alege o optiune din mai multe
posibile (liniile 120-149).

100 BORDER 4 : INPUT "Cate persoane 7 :'";n
105 IF n < 1 THEN GOTO 100
106 LET n = INT n : IF n > 100 THEN GOTO 100
110 DIM n$(n, 15) : DIM o$(n, 32) : REM nume, ocupatii
113
115 PRINT AT 0,10; PAPER 3; n; " persoane'
120 PRINT ’’TAB 5;'"Selectati optiunea :"
130 PRINT ’"1. Introduceti o persoana" ’
"2. Listati persoanele si ocupatiile lor" ’’
"3. Listati persoanele cu o" ’ "anumita ocupatie"
140 INPUT a : LET a = INT ABS a : IF a < 1 THEN GOTO 140
145 IF a > 3 THEN GOTO 140
148 GOTO 100 + 50%*a
149
150 REM introd. pers.
160 DIM a$(320) : PRINT AT 3,0; a$

165

165 PRINT AT 3,0;" Dati numarul la care doriti sa introduceti persoana";
170 INPUT p: IF p < 1 THEN GOTO 170

171 IF p > n THEN GOTO 170

175 PRINT p

180 PRINT "Numele :'";

182 INPUT p$: IF p$ = "" THEN GOTO 182

185 PRINT p$: LET n$(p) = p$

188 PRINT "Ocupatia :";

190 INPUT p$: IF p$ = "" THEN GOTO 190

195 PRINT p$: LET o$(p) = p$

198 PRINT AT 21,0;"Apasati o tasta ...": PAUSE 0: CLS: GOTO 115
199

200 REM list. pers.
210 CLS : PRINT INK 9; TAB 6; PAPER 1; "Ocupatii si persoane" : LET p=1
220 PRINT TAB 5; INK 2; PAPER 6;"PERSOANA " ; p ; " SE NUMESTE" °’
PAPER 5; n$(p); TAB O; PAPER 4; TAB 9;
"SI ARE OCUPATIA "; TAB O; PAPER 5; o$(p)
230 PRINT : PAUSE 50 : LET p=p + 1
240 IF p <= n THEN GOTO 220
245 INPUT "Apasati CR ";LINE a$: CLS : GOTO 115
249
250 REM list. pers. cu o oc.
260 CLS : DIM a$(32)
270 INPUT "Ocupatia :'";a$
273 PRINT "PERSOANE CU OCUPATIA ";a$’’
275 LET p =1 : LET A =0
280 IF o0$(p) = a$ THEN PRINT p; ". "; n$(p) : LET a =a + 1
290 LETp=p + 1
291 IF p <= n THEN GOTO 280
292 IF A=0 THEN PRINT PAPER 0; INK 7;
"Nu sunt persoane cu aceasta ocupatie !"
295 INPUT "Apasati CR ";LINE a$: CLS : GOTO 115

G.8 Capitolul 8

1. Programul pe care 1l prezentam constituie probabil cea mai rapida si eficientd metoda de a

166

rezolva problema. Se foloseste instructiunea TAB pentru tiparirea de blancuri. Tinand cont ca
TAB scrie spatii si nu trece pur si simplu la coloana respectiva, obtinem un mod rapid de a tipari
blancuri, pentru ca TAB se executa ntr-un timp scurt. Mai departe, logica programului nu e
prea complicata: bucla cu contor i trece prin toate culorile, iar bucla j contorizeaza randurile
din care este format patratul pentru fiecare culoare, cu doua mai putin decat pentru culoarea
precedenta (de aici expresia 15 - 2xi). Primul patrat (cel negru) are latura de 15, urmatorul
13 etc. Laturile verticale ale patratului de culoare I sunt la 7+I si 23-I. Foarte importanta
este specificarea PAPER 8 cu care Tncepe PRINT, pentru ca altfel primul TAB (i+7) ar sterge
patratele desenate anterior. (Rulati programul si fara acel PAPER 8). in fine, instructiunea
PRINT AT i+4, i; fixeaza coltul din stanga sus al fiecarui patrat.

1 REM patrate concentrice
10 FOR i = 0 TO 7

15 PRINT AT i+4, i;
20 FOR j = 0 TO 15 - 2%i

30 PRINT PAPER 8; TAB i+7; PAPER i; TAB 23 - i
35 NEXT j
40 NEXT i

2. Saurmarim valorile variabilelor pe diferitele linii:

10 a=oarecare
20-40 (in bucld) a=5, a=12, a=19, a=26
50 w=5, a=26
60-80 bucla nu se parcurge : z=12. w=>5, a=26
90 w(1)=w(2)=w(3)=0
100 w=5
110 Tintai r=oarecare,
apoi r=0 daca initial era 0 sau
.... rI=-1 daca initial r0;
apoi daca r=0, atunci r = -1,
... altfel r=-1
concluzie : w=5, r=—1
120-130 w=-5

3. lata solutia (n~p este modul de n la puterea p, cu semnul plus cand p e par si cu semnul luin
altfel):

10 INPUT "Numarul de ridicat la putere ";n
20 INPUT "Puterea (intreaga) ";p

30 IF p <> INT p THEN GOTO 20

40 PRINT n;l!"l!;p;H:l!;

50 IF p/2 = INT (p/2) THEN LET n = ABS n
60 PRINT SGN n * (ABS n) ~ p

De remarcat metoda de test a divizibilitatii: A se divide cu B numai daca A/B e intreg, adica
A/B = INT (A/B).

G.9 Capitolul 9

1. Vom folosi pentru ,monstru” litera M. Variabilele x1 si y1 memoreaza pozitia anterioara a

monstrului. Prezinta interes mai ales liniile 40-50, in care se relizeaza calculul aleator al
noilor coordonate ale monstrului.
Sa urmarim procedeul: coordonata variaza cu INT (RND#3)-1. INT (RND*3) poate fi 0, 1 sau
2. Scazand 1 vom obtine —1, 0 sau 1. Cele doua coordonate variaza independent. in liniile
60-90 se aduce monstrul ihapoi pe ecran, in caz ca luat-o razna. Linia 95 realizeaza oprirea
monstrului din periplu, la apasarea unei taste. Variabila i este folosita pentru a retine culoarea
monstrului, care, avand Tnsusiri cameleonice, si-o schimba la fiecare pas. Instructiunea INK
9 de la inceput ne asigura ca oratania va fi intotdeauna vizibila. Remarcati ajustarea lui i Tn
linia 98 pentru a-l cicla prin toate valorile posibile. Acestea fiind zise, iata si programul:

10 INK 9 : LET i=0 : PAUSE 5 : RANDOMIZE : LET x=10 : LET y=10
20 PRINT PAPER i; AT y,x;"M"

30 LET x1 =x : LET y1 =y

40 LET x = x + INT (RND*3) - 1

50 LET y = y + INT (RND*3) - 1

60 IF x < 0 THEN LET x = 0

70 IF x > 31 THEN LET x = 31

80 IF y < 0 THEN LET y = 0

90 IF x > 21 THEN LET x = 21

95 IF INKEY$ <> "" THEN STOP

98 LETi=1i+1:1IF1i>7 THEN LET i =0
100 PRINT AT yi1, x1;" ": GOTO 20

167

2. Programul este un mixaj al celui anterior cu exercitiul rezolvat, la care se adauga liniile 20-23

pentru testarea coincidentei pozitilor. Am complicat putin rezolvarea fata de cerinte, cerand
trecerea de 8 ori peste monstru, acesta schimbandu-si la fiecare trecere culoarea (variabila
d) — pasamite pierde putere si se innegreste de suparare. Avem si timp, reprezentat de
variabila i. xj, yj sunt coordonatele jucatorului, xa, ya coordonatele sale anterioare. Taste
5,6,7,8.

10 LET d=7 : LET xj = O0: LET yj = 0: INK 9 : LET i = 0 : PAUSE 5
15 RANDOMIZE : LET x = 10 : LET y = 10

20 IF x<>xj THEN GOTO 25

23 IF y=yj THEN LET d = d - 1: IF d=0 THEN STOP
25 PRINT PAPER d; AT y,x; "M"

30 LET x1 = x: LET yl1 =y

40 LET x = x + INT (RND*3) - 1

50 LET y = y + INT (RND*3) - 1

60 IF x < 0 THEN LET x = 0

70 IF x > 31 THEN LET x = 31

80 IF y < 0 THEN LET y = 0

90 IF x > 20 THEN LET x = 20

98 LET i = i + 1: PRINT AT 21,0; "timp :"; i

99 LET xa = xj: LET ya = yj

100 IF INKEY$="" THEN GOTO 150

105 IF INKEY$="8" THEN IF xj < 31 THEN LET xj = xj + 1
110 IF INKEY$="5" THEN IF xj > O THEN LET xj = xj - 1
120 IF INKEY$="6" THEN IF yj < 20 THEN LET yj = yj + 1
130 IF INKEY$="7" THEN IF yj > O THEN LET yj = yj - 1

140 PRINT AT ya, xa;" "
150 PRINT AT yj, xj; "$"
200 PRINT AT y1, x1;" "
210 GOTO 2

G.10 Capitolul 10

1. Programul va tipari numerele 1 si 0. lata de ce: 1el1-1el11 = 0 (au aceeasi reprezentare

168

in memorie), deci 1e11-1e11+1 = 1 apoi 1e11+1 se va aproxima tot prin 1ei1, caci nu e-
xista suficientd precizie pentru a memora ultima cifrd a numarului 10000000001. De aceea
lel11+1-1e11=0!

Adunarea nu este asociativa!

(Acest lucru este adevarat la toate calculatoarele care lucreaza numeric.)

Neavand nici o specificatie de PAPER, INK, BRIGHT, BORDER sau INVERSE, aceste culori Si
moduri de scriere vor ramane asa cum erau Tnainte de executarea programului. inainte de a
urmari desfasurarea programului, sa facem o observatie care ne va folosi adesea: tiparind un
spatiu in OVER 1, imaginea ramane neschimbata. Acest blanc poate Tnsa cauza schimbarea
culorilor! Putem foarte repede sa schimbam culorile unui desen sofisticat, fara a trebui sa-I
redesenam. lata o secventa care face fondul galben, lasand cernelurile neschimbate:

105 DIM a$(32%22)

110 PAPER 6

115 INK 8 : REM transparenta
120 PRINT OVER 1; AT 0,0; a$

Si acum, sa urmarim programul nostru pe linii:

5 ecranul e ,curat”;
6 listingul e pe ecran (incape fara scroll?);
7 cursorul lui PRINT se muta in origine; OVER 1;
10 deasupra listingului sunt scrise numerele de la 1 la 200 (fara scrol1?);
20 cursorul la origine;
50 o noua listare care o sterge pe cea veche; raman numerele; cursor sus;
70 FLASH 1;
80 a$ are 64 de spatii (2 randuri);
100 11*2=22 de randuri de spatii in FLASH;

Deci ecranul e Tn FLASH, cu cele 200 de numere scrise.
. lata rezolvarea, pe care o s-0 comentam pe-ndelete:

1 REM tunulet umblaret

5 OVER O: INK 9: CLS

10 LET x=0 : LET xg=0 : LET yg=21
20 PRINT AT 21,x;" || "
25 IF INKEY$="" THEN GOTO 50
30 IF INKEY$="x" THEN IF x < 28 THEN LET x = x + 1
40 IF INKEY$="z" THEN IF x > O THEN LET x = x - 1
45 IF INKEY$=" " THEN IF yg = 21 THEN LET yg = 20: LET xg = x + 1
50 IF yg = 21 THEN GOTO 80
60 PRINT AT yg, xg;"\/"; AT yg+1, xg;" "
70 LET yg = yg - 1: IF yg = -1 THEN LET yg = 21: PRINT AT O,xg;" "
80 GOTO 20

ntai, variabilele folosite:

x = coordonata orizontala a tunului (cea verticala e mereu 21);

xg Si yg = coordonatele eventualului obuz (g de la glont);

Am desenat tunul din patru caractere: un spatiu, tunul | | si Tnca un spatiu. Aceasta forma ne
ofera un mare avantaj: dupa mutare, tunul nu mai trebuie sters din vechea pozitie! Aceasta
pentru ca, mutandu-l intotdeauna cu cel mult un patratel, spatile marginale vor fi tiparite
peste locul unde se afla tunul anterior, stergandu-I! Exista si un dezavantaj: cele doua spatii
impiedica tunul sa ajunga la marginile ecranului (acest lucru se poate evita adaugand niste
teste suplimentare). Variabila x reprezinta coordonata spatiului din stanga al tunului, putand
varia ntre 0 si 32—4=28.

O alta restrictie (nu foarte nenaturald) este ca pe ecran nu se poate afla la un moment dat
mai mult de un glont (altfel pozitiile tuturor proiectilelor ar trebui memorate ntr-un vector, iar la
viteza BASIC-ului miscarea lor nu ar fi prea cursiva). Glontele |l-am construit din doua carac-
tere, numitele ,,slash” si ,backslash” (\). Cand nu exista nici un glonte pe ecran, consideram
ca se afla in tun, iar coordonata sa verticala este yg=21.

Un lucru foarte important, pe care nu trebuie sa-I scapam din vedere, este ca glontele, odata
plecat, se misca independent de tun.

intai initializam variabilele: x=0 (tunul pleaca din stanga), xg=0 (inifializare redundanta, adica
nenecesara) si yg=21 (tun ,incarcat”).

Linia 20 este prima linie a ciclului si realizeaza tiparirea belicoasei instalatii.

in linia 25 se verificd apasarea vreunei taste; daca nu sunt taste apasate, se sare la linia 50,
de unde Tncepe partea care se ocupa cu miscarea proiectilului.

Linia 30 muta tunul la dreapta, la apasarea tastei | x | (daca se mai poate).

Linia 40 1 muta la stanga.

in linia 45, la apasarea unui spatiu (INKEY$=" "), dac& nu exista glonte pe ecran (yg=21),
se porneste glontele (LET yg=20) memorand totodata si coordonata de la care a fost tras
(xg=x+1, din cauza spatiului din stanga tunului).

169

in linia 50 programul inchide bucla, dac& nu e nici un glont de miscat.

Linia 60 deseneaza obuzul, stergandu-I din vechea sa pozitie (cu un rand mai jos). Interesant
este ca, daca acesta tocmai a fost tras, se sterge nu vechea sa imagine, ci chiar tunul, ceea
ce Tnsa nu supara prea tare pentru ca tunul va fi redesenat curand (un test suplimentar ar
elimina si aceasta situatie).

Linia 70 urca glontul (LET yg = yg-1) Si testeaza daca nu cumva acesta a iesit din ,,spatiul
de luptd” — ecranul (adica yg a devenit —1) — caz in care sterge ultima aparitie a glontelui i
fncarca tunul din nou.

Tn fine, linia 80 reia ciclul.

G.11 Capitolul 11

1. Calculand a XOR b vedem ca este totuna cu a OR b cu exceptia cazului cand a=b=1. Acest

170

caz se exprima prin a AND b = 1. Deci a XOR b se defineste prin:
(a OR b) AND (NOT (a AND b))

Programul urmator afiseaza si tabelul de adevar (valoarea functiei pentru toate combinatiile
posibile de valori argument).

5 FOR a=0 TO 1
7 FOR b=0 TO 1

10 PRINT a;" XOR ";b;" =";
20 LET c=(a OR b) AND (NOT (a AND b))
30 PRINT c

40 NEXT b

50 NEXT a

lata intai rezolvarea, dupa care vom face unele precizari:

10 LET a=0 : INPUT "Sirul in care se cauta :";a$

15 PRINT PAPER 6; a$; PAPER 7;" cuprinde pe ";

20 INPUT "Sirul care se cauta :"; b$

25 PRINT PAPER 5; b$; PAPER 7;'" 7"’

30 IF B$="" OR LEN B$>LEN A$ THEN STOP

40 FOR I=1 TO LEN A$-LEN B$+1

50 IF A$(i TO i+LEN b$-1) = b$ THEN LET a = a+1: PRINT PAPER 5; B$;:
LET i = i + LEN B$ - 1: GOTO 60

55 PRINT a$(i);

60 NEXT i

70 PRINT ’’’B$; PAPER 3;'" apare de ";a;" ori."

Corectitudinea acestui program este discutabila, in functie de sensul pe care il dam cuvantului
~cuprinde” din enunt. Putem considera ca sirul "aba" se cuprinde de doua ori in sirul "ababa"
, sau o singura data fara sa se , autointersecteze”. in forma scrisa mai sus, programul gaseste
doar siruri care nu se autointersecteaza, insa poate fi modificat cu usurinta pentru a gasi si
astfel de aparitii, inlocuind linia 50 cu:

50 IF a$(i TO i+LEN b$-1) = b$ THEN LET a = a + 1
Am dat programul Tn aceasta forma pentru ca am exemplificat ,,marcarea” sirurilor gasite,

scriindu-le cu o alta culoare, lucru mai dificil in cazul autointersectarii.

Remarcati cautarea lui b$ incepand de la primul panala al (LEN a$ - LEN b$ + 1)-lea car-
acter, precum si instructiunea de test cu T0. a este contorul aparitiilor.

Acest program introduce unele elemente interesante, cum ar fi alegerea tastelor de catre
jucator si 0 metoda originala de animatie folosind scroll. lata, comentate, punctele delicate:

e cele doua taste vor fi memorate intr-o variabila sir cu lungimea de doua caractere (a$),
careia la Tnceput 1i dam valoarea arbitrara "po".

e variabilele s, a, b reprezintd, respectiv, scorul (timpul de joc), coordonata din stanga
soselei si coordonata masinii, care, pentru a se afla pe soseaua cu latime de 8 carac-
tere, trebuie sa satisfaca relatiab < a < b+ 8.

e Tasta ,dreapta” este memorata in a$(1). Lasam cititorului testarea alegerii unor taste
incorecte (de pilda, aceeasi tasta pentru ambele directii).

e O smecherie care ne usureaza munca este afisarea scorului curent pe prima linie a
ecranului, astfel incat scroll-ul sa elimine necesitatea stergerii vechii valori.

e Testul iesirii din sosea este evident. Recunoastem, de asemenea, metoda unduirii ale-
atoare a soselei si a variatiei coordonatei masginii.

¢ Interesant este faptul ca nu trebuie testat daca masina a iesit din ecran, pentru ca fnainte
ea ar fi trebuit sa iasa din sosea. Linia 65 produce o accelerare cu timpul. Cele doua
apostrofuri din linia 20 au menirea de a avansa ecranul.

1 REM raliu

2 LET a$="po": INPUT "stanga ";b$: LET a$(2) = b$
4 INPUT "dreapta ";b$: LET a$(1) = b$

10 LET s=0 : LET b=11 : LET a=15

20 PRINT AT 21,b;"#"; AT 21, b+8;"#"; AT 21,a;"V" ’>’” AT 0,24;"SCOR ";8
256 POKE 23692, 255
30 IF a <= b OR a >= b+8 THEN PRINT AT 21,21; "CRASH !": STOP

40 LET b = b + INT (RND * 3) - 1
43 IF b < 0 THEN LET b = 0
47 IF b > 23 THEN LET b = 23

50 LET a = a + (INKEY$ = a$(1)) - (INKEY$ = a$(2))
65 FOR i =1 TO (1500 - s)/300 : NEXT i

70 LET s = s+1

80 GOTO 20

G.12 Capitolul 12

1. Vom folosi un paianjen cu numai 6 picioare, si alea scurte, reprezentat de caracterul *.

Vom proceda altfel decat deobicei, pentru ca nu vom memora pozitia veche pe care arahnoida
a ocupat-o, ci deplasarea pe care o face pentru a ajunge in pozitia cea noua. a si b vor fi res-
pectiv adaosurile la coordonatele x si y. Acest mod de reprezentare ne permite sa trasam
mai usor segmentele panzei. Pentru a asigura imposibilitatea iesirii din ecran atunci cand
paianjenul este la margine, vom face ca la programul de biliard, fortand incrementii la valori
cu un anume semn. Asta fac liniille 23-27.

Pentru a nu sterge si panza cand oratania se misca, o vom sterge si desena folosind OVER 1.

Interesanta este si metoda de calcul a coordonatelor unui punct din grila de Tnalta rezolutie
care corespunde unui patratel de coordonate x si y in cea de joasa rezolutie. Pe orizontala
vom avea x*8 + 4, pentru ca fiecare patrat are latura de 8, iar centrul e la 4 pixeli de latura din
stanga. Pe verticala e un pic mai greu, pentru ca originile nu corespund pe ecran. De aceea,
y trebuie ntai inversat Tn 21-y si abia apoi aplicat acelasi procedeu. Panza este formata din
segmente cu dimensiunile 8%a si respectiv -8xb (minus din cauza inversarii lui y).

Un ultim amanunt: pentru ca panza nu se traseaza in OVER 1, ordinea operatiilor este urma-
toarea: se sterge paianjenul, se deseneaza panza spre noua pozitie si abia apoi se muta
paianjenul. Cum totul merge repede, nu se vede ca panza o ia de fapt Thainte!

1 REM spiders
10 LET x=10 : LET y=10 : PRINT AT y,x;"*"

171

172

20 LET a=INT (RND*3)-1

21 LET b=INT (RND*3)-1

23 IF x=0 THEN LET a = ABS a

24 IF x=31 THEN LET a = - ABS a
26 IF y=0 THEN LET b = ABS b

27 IF y=21 THEN LET b = - ABS b
29 PRINT OVER 1; AT y,x; "*"

30 PLOT x#8 + 4, (21-y)*8 + 4 : DRAW 8%a, -8%b
35 PRINT OVER 1; AT y+b, x+a; "*"
40 LET x=x+ a: LETy=y + b
50 GOTO 20

Pentru a testa formula propusa facem si o tabla de conversie grade-radiani:

10
20

PRINT AT 0,0;'"grade","radiani"
FOR i=0 TO 90 : PRINT i, i/180 % 3.141592 : NEXT i

Realizati si conversia inversa — radiani-grade — din 0.05 Tn 0.05 radiani.

Pentru a face mai util programul, vom mari numarul de segmente al desenului pana la 24.
Vom proceda la rezolvare, astfel:

vom afla numarul de varfuri ale desenului; il punem in variabila N (liniile 10-30);

vom rezerva spatiu pentru a memora celelalte n-1 varfuri (primul schimbandu-si coor-
donatele la miscarea desenului) in doi vectori, x(n-1), y (n—1) (liniile 40-45);

vom permite utilizatorului sa fixeze varful de pornire cu ajutorul a cinci taste (5, 6, 7, 8
pentru deplasari si 0 pentru a-| fixa) (50-90);

cu aceleasi taste vom afla si coordonatele celorlalte varfuri, memorandu-le in vectorii
corespunzatori; vom trasa segmentele (95-180);

permitem miscarea intregului desen cu tastele 5, 6, 7, 8 (200-240).

Listingul:

10
15
20
30
40
45
50
55
60
70
80
90
95
97
100
105
110

120
125
130
140
145

REM introducerea desenului
BORDER 5 : OVER O
INPUT " Numar de varfuri :'";n
LET n = INT n: IF n<2 OR n>25 THEN GOTO 20
DIM x(n-1) : DIM y(n-1)
PRINT TAB 10;n;" varfuri"
LET x=0 : LET y=0
PLOT x,y : PAUSE O0: PLOT INVERSE 1; x,y
LET x=x + (INKEY$="8" AND x<255) - (INKEY$="5" AND x>0)
LET y=y + (INKEY$="7" AND y<175) - (INKEY$="6" AND y>0)
IF INKEY$ <> "0" THEN GOTO 55
LET x0 = 0: LET y0O = 0: PLOT x0,y0
LET x1 = x: LET y1 =y

LET minx = x0 : LET MAXx = x0 : LET miny = yO :LET MAXy = y0
FOR i = 1 TO n-1
PRINT AT 0,5; "varful curent :"; i+1; " din '";n
OVER 1: PLOT x,y : DRAW x1-x, yl-y : PAUSE O:
PLOT x,y : DRAW x1-x, yl-y
LET x1=x1 + (INKEY$="8" AND x1 < 255) - (INKEY$="5" AND x1 > 0)
LET y1=y1 + (INKEY$="7" AND y1 < 175) - (INKEY$="6" AND y1 > 0)
IF INKEY$ <> "0" THEN GOTO 110
LET x(i) = x1 - x : LET y(i) = y1 - y
OVER 0: PLOT x,y : DRAW x1-x, yi-y

150 LET x=x1 : LET y=y1

155 IF x1 < minx THEN LET minx = x1

156 IF x1 > MAXx THEN LET MAXx = x1

1567 IF y1 < miny THEN LET miny = yi

158 IF y1 > MAXy THEN LET MAXy = y1

160 NEXT i

170

180 OVER 1: LET x=x0 : LET y=yO

200 CLS : REM miscarea desenului

210 PLOT x,y : FOR i=1 TO n-1 : DRAW x(i), y(i) : NEXT i: PAUSE 0
215 PLOT x,y : FOR i=1 TO n-1 : DRAW x(i), y(i) : NEXT i
220 LET x=x + (INKEY$="8" AND x < 255 - MAXX + x0)
(INKEY$="5" AND x > x0 - minx)

230 LET y=y + (INKEY$="7" AND y < 175 - MAXY + yO0)
(INKEY$="6" AND y1 > y0 - miny)

240 GOTO 210

O prima problema care trebuie lamurita este modul de memorare a pozitiei varfurilor — n
coordonate absolute sau relative la varful anterior? Am optat pentru a doua solufie, pentru
ca DRAW lucreaza in coordonate relative, deci scurtam calculele de facut la momentul trasarii,
care trebuie sa fie cat mai rapida (si asa miscarea desenului va avea mai mult un caracter de
redesenare).

Cel mai greu de rezolvat se dovedeste chestiunea iesirii desenului din ecran: avand mai
multe varfuri, oricare din ele ar putea iesi in cursul miscarii. Totusi, am iesit la liman destul de
simplu. Sa facem o schita a unui eventual desen, pentru a ne clarifica ideile (suntem in faza
introducerii desenului):

e 1,2, 3, 4,5, 6 sunt varfurile, in ordinea introducerii lor;

o cu linie punctata este figurat dreptunghiul minim de aceeasi orientare cu ecranul in care
Tncape tot desenul;

e cu linie continua — desenul;
e cu linie continua ingrosata — marginile ecranului grafic;
e minx, MAXX, miny, MAXY desemneaza valorile acestor variabile din program.

173

174

Constatam ca un segment nu poate iesi din ecran decat daca cel putin unul dintre varfurile
sale iese, pentru ca ecranul este o figurda convexa. Notam cu minx cea mai mica dintre
coordonatele x ale tuturor varfurilor (pe desen e varful 6), cu MAXX cea mai mare dintre coor-
donatele x ale tuturor varfurilor (pe desen pentru 3); la fel miny Si MAXY. Fie acum coodonatele
primului varf, x0 si y0. Daca n cursul miscarii (partea a doua a programului) acest varf ajunge
la coordonatele x,y, atunci coordonata orizontala a varfului, care initial era laminx, va fi acum
minx+x-x0. Condifia ca acest varf sa nu iasa prin stanga (deci ca nici un varf sa nu iasa prin
stanga, acesta fiind cel mai din stanga varf) este minx+x-x0 > 0 sau, cum apare in linia 220,
x > x0-minx.

Analog, varful care iniial era la MAXX se va afla la MAXX + x - x0. Conditia sa nu iasa prin
dreapta este x < 255 - MAXX + x0. Avem relatii similare pentru y.

Ar mai fi de explicat prin program:

e metoda de a misca primul punct: linia 55 7l deseneaza, asteapta apasarea unei taste si
il sterge, scriindu-I in INVERSE 1;

e metoda de a desena segmente ,elastice” — linia 110;

e 1n linia 150 se tin in x si y coordonatele absolute punctului tocmai trasat, pentru a putea
calcula pozitia relativa a urmatorului punct fata de acesta. x1 si y1 sunt coordonatele
absolute ale varfului curent;

o liniile 155-158 actualizeaza valorile coodonatelor extreme Tn cazul fixarii unui nou punct;

¢ in fine, liniile 200-240 ajuta la mutarea desenului, modificand coordonatele x si y ale
varfului initial. Remarcati stergerea si trasarea in OVER 1.

Spunem in enunt ,opt taste”, pentru cele patru directii fundamentale si cele patru diagonale.
Dupa cum am mai spus, miscarea pe diagonala o vom concepe ca suma a doua miscari pe
axe.

Pentru a ilustra si alte tehnici am introdus si posibilitatea schimbarii modului de trasare: punc-
tul lasa/sterge urme, fara a complica prin aceasta programul. Am ales sugestiv tastele Tn jurul

lui , fiecare pentru directia corespunzatoare:

Q| |w] [g]

A

o

Folosim butonul O pentru schimbarea de mod scrie/sterge.

Am sacrificat prima linie a ecranului pentru a afisa permanent coordonatele punctului si modul
de trasare. (in Capitolul 18 vom fnvata sa folosim linia 23 pentru acest scop.) Valoarea
maxima pentru y devine 167.

Pentru a scrie/sterge vom folosi o variabila M, care va fi 0 pentru scris si 1 pentru sters; vezi
folosirea ei in linia 45.

Am mai introdus urmatorul efect: linia 40 va face ca patratelul in care se afla punctul sa cli-
peascé alternativ in alb si galben, pentru a ajuta reperarea acestuia pe ecran. in aceasta linie
punctul doar Tsi semnaleaza pozitia clipind; trasarea efectiva se face in 45.

Remarcati si schimbarea valorii lui m Tn linia 70. Schimbarea este Tnsotita de un efect coloristic
pe BORDER.

in fine, se vede cum grupe de cate trei taste folosesc la deplasarea punctului pe cate o
directie. Tastele care corespund diagonalelor au actiune pe mai multe directii simultan (liniile
50 si 55). Explicati ce se Intampla daca punctul ajunge la o margine si il miscam in continuare
n diagonala.

1 REM editor grafic
10 LET m = O: LET x = 128: LET y = 87

20 BORDER 6: PRINT AT 0,0; PAPER 6; TAB 31;" "

30 PAPER 8

40 OVER 1: PLOT PAPER 6,x,y: PLOT PAPER 7,x,y: IF INKEY$="" THEN GOTO 40

45 PLOT OVER O; INVERSE m; x,y

50 LET x = x + ((INKEY$="d" OR INKEY$="d" OR INKEY$="c") AND x<255)

((INKEY$="q" OR INKEY$="a" OR INKEY$="z") AND x > 0)

y + ((INKEY$="q" OR INKEY$="w" OR INKEY$="e") AND y<167)

((INKEY$="z" OR INKEY$="x" OR INKEY$="c") AND y > 0)

60 PRINT OVER O; AT 0,0; "x=" ; x ; TAB 8; "y=" ; y ; TAB 18;

65 PRINT ("scrie" AND m=0) + ("sterge" AND m=1)

70 IF INKEY$="0" THEN LET m=NOT m: FOR i=1 TO 5: PAUSE 1: BORDER 5:
BORDER 4: BORDER 3: BORDER 2: BORDER 1: BORDER 0: BORDER 6:
NEXT i: GOTO 60

80 GOTO 40

55 LET y

G.13 Capitolul 13

1. Algoritmul de fill(= a umple, Tn englez) este tipic pentru un algoritm recursiv. lata esenta sa:

Pentru a aplica algoritmul intr-un punct (a hasura conturul ce cuprinde acel punct) intai
coloram acel punct, apoi testam Tn ordine cei patru vecini ai sai (de pilda, intai cel din dreapta,
apoi cel de deasupra, apoi cel din stanga, apoi cel de dedesubt). Daca punctele testate sunt
»albe” le aplicam acelasi algoritm. Daca am testat toti vecinii, am terminat cu algoritmul pen-
tru acest punct si revenim la cel anterior. Pentru a aplica algoritmul unui vecin si apoi a reveni
la punctul anterior se foloseste GOSUB-RETURN. lata o subrutina care face acest lucru (o mare
consumatoare de memorie gi timp):

9000 IF POINT(x,y) = 1 THEN RETURN : REM punct aprins

9005 PLOT x,y

9010 IF x < 255 THEN LET x x + 1: GOSUB 9000 : LET x = x - 1
9020 IF y < 175 THEN LET y = y + 1: GOSUB 9000 : LET y =
9030 IF x THEN LET x = x - 1: GOSUB 9000 : LET x = x + 1
9040 IF y THEN LET y = y - 1: GOSUB 9000 : LET y = y + 1
9050 RETURN

Sa-l incercam:
CIRCLE 128,87,15 : LET x = 128: LET y = 87: GOSUB 9000
sau, mai complicat:

5 PLOT 128, 87
15 FOR i= 1 TO 25 STEP 4
25 DRAW 2%i,0 : DRAW 0,2%i: DRAW -2%i-4,0: DRAW 0, -2%i-4
35 NEXT i
45 DRAW 3,3
55 LET x=128 : LET y = 87: GOSUB 9000
8999 STOP

2. Din nou, o problema cu multa geometrie:

1 REM sferoid
100 LET r = 86: LET u=PI/4: LET v=-PI/3: LET nm=6: LET np=6
102 LET su=S8IN u: LET cu=CO0S u: LET sv=SIN v: LET cv=CO0S v
108
109 REM trasam meridianele

175

176

110 FOR a=0 TO PI-.1 STEP PI/nm
115 LET ca=C0S a: LET sa=SIN a
120 FOR i=-PI/2 TO PI/2 STEP .04: LET ci=COS i: LET si=SIN i
125 LET x=x*ca*ci : LET y=r*(si*cu - su*cixsa): GOSUB 9000
160 NEXT i
170 NEXT a
199
200 REM trasam paralelele
290 FOR a=PI/np TO PI/2 STEP PI/np : LET sa=SIN a: LET ca=C0S a
300 FOR i=0 TO PI STEP .04: LET si=SIN i: LET ci=CO0S i
310 LET k=r*sa*su*si
320 LET x=r*sa*ci : LET y=r*ca*cutk : GOSUB 9000 :
LET y=y-k-k : GOSUB 9000

330 NEXT i
340 NEXT a
900 STOP
8999 REM rotatie in jurul 0Oz
9000 LET xl1=x*cv - y*sv: LET yl=x*sv + y*cv:

PLOT 128+x1, 88+yl: PLOT 128-x1, 88-y1 : RETURN
9100 PLOT 128+x, 88+y: PLOT 128-x, 88-y : RETURN

in acest program se ascund concepte extrem de complexe, cum ar fi cel al reprezentarii
grafice a figurilor tridimensionale. Este un subiect palpitant, dar din pacate prea amplu pentru
a fi tratat aici. Exercitiul acesta este accesibil mai curand celor care au cunostinte in domeniu
din alte surse decat acest modest material. Explicatile pe care le vom da vor fi succinte.
Ideea centrala este urmatoarea: daca avem o figura in trei dimensiuni formata din puncte cu
coordonatele (z, y, z), atunci o metoda de a reprezenta aceste puncte este de a le proiecta
simplu pe planul zOy, adica de a le reprezenta prin punctele cu coordonate (z, y). Asta am
si facut in cazul sferei, numai ca am complicat putin problema, rotind sfera. Pozitia sferei am
descris-0 prin pozitia axului ei (fata de care ea este simetricd), iar pozitia axului am descris-o
prin doud unghiuri, u cu planul ecranului si v cu planul vertical perpendicular pe ecran.

Alte variabile: r=raza in pixeli, nm=numarul de cercuri meridiane trasate, np=numarul de cer-
curi paralele (inclusiv punctele de la poli).

Buclele n i traseaza de fiecare data cate un cerc; intai cercuri meridiane, apoi cercuri par-
alele. Buclele in a selecteaza care din aceste cercuri se traseaza. Pe linii:

110 contorizeaza meridianele;

120 pregateste punctele fiecarui meridian;

125 calculeaza meridianele ca elipse rotite;

290 contorizeaza paralelele;

300 variaza prin punctele fiecarei paralele;

320 traseaza punctele fiecarei paralele si a simetricei ei.

Toate aceste linii calculeaza punctele sferei ca si cum ar fi rotite numai in jurul axei Ox.
Procedura de la linia 9000 realizeaza si rotirea in jurul axei Oz, rotind doar proiectiile punctelor
(cu alte cuvinte, realizeaza inclinarea axei).

9000 Tnclind axa si traseaza doua puncte: cel calculat si simetricul fata de centrul sferei.
Procedura de la 9100 nu se executa niciodata; ea este identica celei de la 9000, cu exceptia
faptului ca nu mai inclind axa; introducand un REM la Tnceputul liniei 9000, puteti sa rulati
programul si Tn aceasta varianta.

lata si un desen care ar trebui sa explice formulele de rotatie n jurul unei axe:

(-Thyl)

(z,y)

Vrem sa rotim punctul (z, y) in jurul originii (sau, daca preferati, in jurul axei Oz) cu un unghi
v. Trebuie sa calculam pozitia finala (z1, y1). Fie ! lungimea segmentului din origine pana la
(z,y). Putem scrie relatiile (evidente):

= lcosa

= lIsina
z1 = lcosa+v
y1 = lsina+v

Dezvoltam cos(a + v) si sin(a + v) ca la scoala:

lcos(a +v) = (lcosa)cosv — (Isina)sinv

Isin(fa +v) = (Isina)cosv+ (Icosa)sinv

Observam ca parantezele de mai sus din partea dreapta reprezinta chiar valorile lui = si y.
Deci:

rCcosv — ysinv

T

y1 = xsinv+ycosv

Aceasta formula apare limpede Tn procedura de la linia 9000. Prin metode similare se pot
deduce si celelalte. Lasam ca exercitiu (nerezolvat) demonstrarea lor.

. Un program amuzant si simplu:

10 LET x=100 : LET y=50

156 LET z=50: LET w=80

18 LET a=-2.5 : LET b=-2

19 LET c=-1 : LET d=2.5

20 FOR i=1 TO 300

22 PLOT x,y: DRAW z-x,w-y

25 IF x<5 OR x>250 THEN LET a=-a
30 IF z<5 OR z>250 THEN LET c=-c
35 IF y<5 OR y>170 THEN LET b=-b
40 IF w<5 OR w>250 THEN LET d=-d
50 LET x=x+a : LET y=y+b

60 LET z=z+c : LET w=w+d

70 NEXT i

80 CLS : GOTO 20

177

Capetele au coordonatele (x,y) si (z,w), care iau initial valori arbitrare (linile 10-15) dar nu
prea aproape de margine. a, b, c, d sunt valorile cu care cresc x, y, z, w. lau si ele
valori arbitrare (dar mai mici ca 5).

Linia 20 asigura trasarea a cate 300 de segmente.

Linia 22 le traseaza.

Liniile 25-40 reflecta capetele cand ajung la o distanta mai mica de 5 fata de margine.
in 50-60 se calculeaza urmatorul segment.

Linia 80 face putina curatenie si trece la un nou desen.

G.14 Capitolul 14

1. lata noul program:

178

10
20
30
40
55
60
62
65
68
80
82
85
91
95
99
100
105
110
115
120
130

INPUT "f(x)="; LINE q$
INPUT nf:[n; Xl; n,n ; Xh; l|:|_>|:l|; yl, ||’||; yh, ||:|||
LET rx = 255/(xh-x1) : LET ox = -xl*rx
LET ry = 175/(yh-yl) : LET oy = -yl*ry
IF x1 > 0 OR xh < 0 THEN GOTO 80
PLOT ox, O: DRAW 0,175
IF ox >=2 AND ox <=253 THEN DRAW 2,-4: DRAW -4,0: DRAW 2,4
IF ox < 2 THEN DRAW 2,-4 : DRAW -2,0
IF ox > 253 THEN DRAW 2,4: DRAW 2,0
IF y1 > 0 OR yh < 0 THEN GOTO 100
PLOT O, oy: DRAW 255,0
IF oy >=2 AND oy <=173 THEN DRAW -4,2: DRAW 0,-4: DRAW 4,2
IF oy < 2 THEN DRAW -4,2 : DRAW 0,2
IF oy > 17253 THEN DRAW -4,-2 : DRAW 0,-2

FOR x = x1 TO xh STEP 1/rx

LET y = VAL g$

LET xr = x*rx + ox

LET yr = y*ry + oy

IF yr >=0 AND yr <= 175 THEN PLOT xr,yr
NEXT x

Programul a iesit ceva mai scurt decat cel din exercitiul rezolvat, pentru ca am eliminat testele
care nu prezinta interes din punct de vedere al noutdtii si ceva grafica (scrierea limitelor de
trasare). Sa-l comentam pe acesta:

Pe linii:

40
55

60
62

65

68
80-95
100

105
110

115
120
130

Se cere expresia functiei.

Se defineste suprafata pe care se traseaza (coordonate reale).

Folosind regula de trei simpla, se determina coordonata (orizontala, n sistemul
ecranului) a axei Oy. (La un interval de lungime 255 corespunde un interval de
lungime xh-x1; ox se afla la o distanta egala cu -x1 de marginea stanga a in-
tervalului [x1, xh], decila-x1 * 255 / (xh-x1) de limita stanga a intervalului
[0, 255].)

Ca mai sus, dar pentru axa Ox.

Daca intervalul [x1, xh] nuinclude punctul 0, atunci axa Oy nu apare pe ecran
si se sare la linia 80.

Se traseaza Oy.

Daca Oy nu e prea aproape de marginile ecranului, atunci e loc pentru a trasa
si 0 sageata in varful ei.

Daca Oy e prea in stanga, trasam doar jumatatea din dreapta a sagetii.

Cand Oy e in dreapta, trasam partea din stanga a sagetii.

Echivalentul liniilor 55-68 pentru cealalta axa.

Pentru punctele din intervalul [x1, xh]luate astfel incat sa fie Tn numar de 256
(se vor trasa (xh-x1) /STEP = (xh-x1)/rx = 255 la care se adauga si punctul
din dreapta), vom trasa functia.

y este valoarea functiei in punctul x; linia cheie a programului.

Folosind din nou regula de trei simpla, calculam unde pica x pe ecran (justificati
formula obtinuta).

lata si locul unde ar trebui sa fie y=f (x).

Daca yr incape pe ecran (xr Tncape sigur), atunci trasam un punct al graficului.
Evident.

Variabile folosite:

x1,xh
yl,yh

q$
rx

ry
ox

oy
Xr

yr

limitele intervalului pe Oz;

limitele intervalului pe Oy;

expresia functiei ih BASIC;

0 constanta pentru trecerea din sistemul de coordonate cu limitele
[x1, xh]1in cel cu limitele [0, 255]

pentru trecerea [yl, yh] — [0, 175]

coordonata originii pe axa, Tn pixeli; poate fi in afara ecranului (de pilda,
pentru trasare in intervalul [2, 3] pe Oz);

similar cu ox;

coordonata de pe ecran care i corespunde lui x Tn intervalul dat;
coordonata y n sistemul ecranului.

2. Programul acesta este foarte spectaculos si simplu de realizat. Pentru a mari literele, vom
folosi urmatorul artificiu: le vom scrie invizibil intr-un colt al ecranului si apoi vom explora acea
Zona cu POINT. latd programul si niste comentarii:

1 REM

titluri tridimensionale

2 LET lat = 6: LET ob = lat/1.6
3 PRINT INK 7; AT 21,0; "TEXT."
5FORi=0T07

10 FOR j=0 TO INT (256/lat) - 2

15 IF POINT(j,i)=0 THEN GOTO 99

21 PLOT j*lat, i*lat + 75

22 DRAW lat,0 : DRAW O,lat : DRAW -lat,0 : DRAW 0,-lat
25 DRAW ob,ob : DRAW lat,0 : DRAW -ob,-ob: DRAW ob,ob
27 DRAW 0,lat : DRAW -ob,-ob: DRAW ob,ob

31 DRAW -lat,0: DRAW -ob,-ob : DRAW ob,ob

35 DRAW 0, -lat

99 NEXT j

100 NEXT i

179

Linia Comentariu

2 1at e lungimea laturii in pixeli; Tncercati si alte valori (recomandam 4);
ob e lungimea celor doua proiectii ale unei muchii oblice
3 Scriem textul de marit
5 Literele au cate 8 randuri de pixeli
9 Calculam cate cubulete incap: fiecare are latura 1at si avem 256 de
puncte la dispozitie. 2 se scade pentru perspectiva
15 Daca punctul e stins, nu facem nimic
21 Coltul stanga-jos-fata al cubului. Coordonatele (i, j) sunt Tnmultite cu
lat (marim de lat ori); 75 centreaza desenul (pentru 1at peste 13, 75

e prea mare)
22 Fata cubului
25 Fata de jos

27 Fata din dreapta

31 Spatele

35 Ce-a mairamas

99,100 Totul pentru fiecare punct

Daca dati valori neintregi pentru 1at, din cauza erorilor de rotunjire cuburile n-o sa mai fie
perfecte, sau perfect suprapuse. Modificati acest program, pentru a elimina muchiile ascunse
(o idee, care merge cam lent, este de a sterge locul pe care se deseneaza fiecare cub Tnainte
de a-l trasa).

G.15 Capitolul 15

1. Se folosesc variabilele sistem VARS (23627) si E_LINE (23641).

180

1 PRINT "adresa variabilelor

2 PRINT "ultimul lor octet
3 PRINT "lungimea :'"; PEEK 23641-PEEK 23627 +

:"; PEEK 23627 + 256%PEEK 23628

:"; PEEK

256% (PEEK 23642-PEEK 23628) - 1

23641 + 256+ PEEK 23642

Pentru a lista numele tuturor variabilelor, programul este mult mai elaborat. Trebuie sa tinem
cont ca n timpul listarii lor, spatiul variabilelor fsi poate modifica forma (datorita crearii de noi
variabile sau modificarii valorii lor). Trebuie cunoscut intim mecanismul atribuirilor. Anexa F
descrie forma de memorare a variabilelor. lata un model de program:

10
15
17
19

20

21
22

23
24

25

26
27

LET £=9000

LET x=23627 : GOSUB f :
LET x=23641 : GOSUB f :
CLS: PRINT PAPER 5;'"Variabile de la '";ad;" la ";b’

"adr --- var --- tip --- lungime";PAPER 0; TAB 31;" "

LET a=INT ((PEEK ad)/32) :

LET ad=x

LET b=x-2

PAUSE 0: POKE 23692, -1
IF a=3 THEN PRINT ,"num";TAB 27;5 : LET ad = ad + 6
IF a=4 THEN PRINT TAB 14;"mat

PRINT

IF a=7 THEN PRINT TAB 14;'var

X:

LET ad =

LET ad =

IF a=2 THEN PRINT ,"sir"; TAB
PRINT x:

IF a=6 THEN PRINT TAB 14;"mat
PRINT x:

IF a<>5 THEN GOTO

30

LET ad =

PRINT ad;" '"; CHR$(PEEK ad - 32%a + 96):

num"; TAB 26;: LET x=ad+1: GOSUB f:
ad + x + 3

FOR";TAB 27;18 : LET ad=ad + 19
27;: LET x=ad+1: GOSUB f:

ad + x + 3

sir"; TAB 26;: LET x=ad+1: GOSUB f:
ad + x + 3

LET a=0 : REM numaram literele din nume

28 LET ad=ad+1 : PRINT CHR$(PEEK ad - 128*INT (PEEK ad/128));:
LET a=a+1: IF INT (PEEK ad/128)=0 THEN GOTO 28

29 PRINT ,"num'"; TAB 27; a+5: LET ad=ad+6
30 IF ad <= b THEN GOTO 20
31 PRINT ’PAPER 1; TAB 31; TAB 31;" ": PAUSE 0 : STOP

9000 LET x=PEEK x + 256+PEEK (x+1) : RETURN

Subrutina de la 9000 citeste continutul a doua locatii consecutive. a este tipul variabilei, iar
ad adresa variabilei curente.

. lata pentru Tnceput solutia, care este mult mai complicata decat ar fi lasat enuntul sa se
inteleaga:

1 REM contoare

2 LET RAMTOP=65535 - 128 : CLEAR RAMTOP

5 LET a=0 : LET b=0

10 LET adr = PEEK 23606 + 256%PEEK 23607

20 LET adr = adr + 8*CODE "O"

30 FOR i=1 TO 8%10 : POKE RAMTOP+i, PEEK(adr+i-1) : NEXT i

35 FOR i=1 TO 8 : POKE RAMTOP+80+i, PEEK (adr+i-1) : NEXT i

40 PRINT AT 10,11;"COUNTER";TAB 12;"-—-——-";TAB 12;"[000|"; TAB 12;"----—- "
50 LET adr = RAMTOP - 8%CODE "0" + 1

60 POKE 23606, adr - 256*INT(adr/256) : POKE 23607, INT (adr/256)

70 FOR i=0 TO 72: BEEP .001,5: POKE 23606,i: PRINT AT 12,15;0: NEXT i
75 IF INKEY$="s" THEN GOTO 9999

80 FOR i=1 TO 8 : BEEP .001,5 : POKE 23606,I

PRINT AT 12,14;A;9 : NEXT i : LET a=at+l

90 IF a < 8 THEN GOTO 70

94 FOR i=0 TO 72: BEEP .001,5: POKE 23606,i: PRINT AT 12,15;0: NEXT i
100 FOR i=1 TO 8: BEEP .001,5 : POKE 23606,1i:

PRINT AT 12,13;B;99 : NEXT i : LET b=b+1 : LET a=0
110 IF b < 9 THEN GOTO 70
120 LET a=0 : LET b=0 : GOTO 70
9999 POKE 23606,0 : POKE 23607,60

Programul are 4 parti principale:

(a) formarea unui nou set de caractere, care cuprinde doar cifrele (liniile 1-30) si pregatirea
ecranului (40);

(b) rotirea ultimei cifre a contorului (70);
(c) rotirea ultimelor doua cifre ale contorului (80-90);
(d) rotirea tuturor celor trei cifre ale contorului (94-120).

Programul este o bucla infinita, care se paraseste la apasarea (prelungita) a unei taste.

Am ales Tn asa fel adresa noului set, incat cel mai putin semnificativ octet al adresei sa fie in
mod normal 0. Cifrei O ii corespunde adresa 65535 — 127. Am mutat acolo imaginile cifrelor
0-9 si apoi din nou pe cea a cifrei 0!

Pentru a Incetini miscarea contorului am folosit un BEEP extrem de scurt (inauzibil): BEEP .001,5.
Variabilele a si b reprezinta cifra din mijloc, respectiv cea din stanga a contorului.

Linia 70 face sa defileze cifrele unitatilor ntre 0 si 9.

Linia 80 roteste cifra zecilor si cea a unitatilor.

Linia 94 roteste cifra unitatilor cat timp cifra zecilor este 9.

Linia 100 roteste toate cele trei cifre simultan.

181

G.16 Capitolul 16

1. Tehnica folosita pentru a aduce imaginile caracterelor din ROM seamana cu cea de la Exerci-

182

fiul 2, Capitolul 15. Litera & am pus-o pe tasta @ (Tn mod G). Liniile 10-60 muta caracterele
a, i, s, t, ain UDG-urile a, i, s, t, b. Liniile 70—100 construiesc semnele diacritice; linia 110
arata ce-a iesit — introduceti semnele in modul G al cursorului.

10 FOR j=0 TO 4: READ a$

15 LET adr = PEEK 23606 + 2564PEEK 23607 + 8*CODE a$
20 FOR i=0 TO 7

30 POKE USR a$ + 8*(j=4) + i, PEEK (adr+i)

40 NEXT i

50 NEXT j

60 DATA l|al| ,l|il| ,”S” ,l|tl| ,l|al|

70 POKE USR "a", BIN 101000 : POKE USR "a'+1, BIN 10000
80 POKE USR "i", BIN 10000 : POKE USR "i"+1, BIN 101000
90 POKE USR "s"+7, BIN 110000 : POKE USR "t'"+7, BIN 110000
100 POKE USR "b"+1, BIN 101000 : POKE USR "b", BIN 10000
110 PRINT "a i s t b"

Programul este conversational, in sensul ca cere de la utilizator toate datele. A iesit lunguiet,
dar foloseste metode eficace si are oarece aspect. Sa vedem ce e nou:

o se definesc doua variabile care sunt adresele (etichetele) unor proceduri pentru citirea
unui numar binar sau hexazecimal de la tastatura (INBIN si INHEX respectiv);
e interesant este modul de a citi o cifra cu LET a = CODE INKEY$ - CODE "0'"; (CODE "O"
= 48).
Cele sase subrutine de calcul lucreaza astfel:
HEX—DEC de remarcat metoda extrem de rapida a transformarii, care foloseste sase vari-
abile: A=10, B=11, ... F=15 pentru cifrele hex.

DEC—HEX 1n linia 150 se forteaza variabila sistem MODE la o valoare nonstandard, de
unde rezulta un cursor de editare straniu (echivalent cu C).

BIN—HEX numarul este dus intai in baza 10, dupa care este transformat in baza 16, ca la
DEC—HEX (puteam dealtfel sari la linia 180).

HEX—BIN numarul este adus in baza 10 prin metoda HEX—DEC, apoi se sare la procedura
DEC—BIN.

BIN—DEC evident, foloseste functia BIN.
DEC—BIN transformarea este standard, insa la afisare din numar se retin fie 8 fie 16 cifre.

Subrutinele de citire a tastaturii:

INHEX: din sirurile nule face 0, din sirurile cu mai mult de 4 caractere retine numai ultimele
4, dupa care testeaza pentru fiecare caracter apartenenta la intervalele 0-9, A-F.

INBIN: cala INHEX, pastrand ultimele 16 caractere ale numarului binar.
1 BORDER O: PAPER 0: INK 9: CLS

2 LET INHEX=1000 : LET INBIN=2000
5 PRINT AT 3,3;"ALEGETI CONVERSIA"

8 RESTORE
10 FOR i=0 TO 6: READ a$: PRINT AT i+5,4;" ";i;". ";a$; TAB 24: NEXT i
20 DATA " STOP ", "HEX -> DEC","DEC -> HEX","BIN -> HEX","HEX -> BIN"

25 DATA "BIN -> DEC", "DEC -> BIN"

30 LET a=CODE INKEY$-48 : IF a<0 OR a>6 THEN GOTO 30
35 PRINT AT 3,3; TAB 31
40 PRINT AT a+5, 4; OVER 1; PAPER 1; TAB 19; OVER 0; PAPER 3; INK 9;
AT a+14,0; TAB 31;" "; PAPER 2; INK 4; a;". ";
50 IF a=0 THEN STOP
60 LET t=a : PAPER 8: GOSUB (1+a)*50 : PAPER 0O: PRINT PAPER 1;
AT t+14,0; OVER 1; TAB 31;"
70 GOTO 5
99
100 GOSUB INHEX
105 LET R=0
107 LET A=10 : LET B=11 : LET C=12 : LET D=13 : LET E=14 : LET F=15
110 FOR I=1 TO LEN A$
120 LET R=R*16 + VAL A$(I)
130 NEXT I
140 PRINT A$; "="; R : RETURN
149
150 POKE 23617, 164: INPUT A
160 LET A=INT ABS A: IF A>65535 THEN GOTO 150
165 PRINT A; "=";
170 LET A$="0000"
180 FOR I=1 TO 4: LET R = A - 16*INT(A/16) : LET A
185 LET A$(5-I) = CHR$(48 + R + 7x(R>9)): NEXT I
190 PRINT A$: RETURN
199
200 GOSUB INBIN
205 PRINT A$; "=";
210 LET A=VAL ("BIN "+A$)
220 FOR I=1 TO 4: LET R = A - 16*INT(A/16) : LET A
225 LET A$(5-I) = CHR$(48 + R + 7*(R>9)): NEXT I
230 PRINT A$: RETURN
249
250 GOSUB INHEX
253 PRINT A$; "=";
255 LET A=10 : LET B=11 : LET C=12 : LET D=13 : LET E=14 : LET F=15
260 FOR I=1 TO LEN A$
265 LET R=R#16 + VAL A$(I)
270 NEXT I : LET A=R : GOTO 360
299
300 GOSUB INBIN
310 PRINT A$; "="; VAL ("BIN" + A$) : RETURN
349
350 POKE 23617, 164: INPUT A
355 LET A=INT ABS A: IF A>65535 THEN GOTO 150 :PRINT A; "=";
360 LET A$=""
370 LET R = A - 2+INT (A/3) : LET A = INT (A/2)
380 LET A$ = STR$ R + A$
390 IF A <> 0 THEN GOTO 370
400 LET A$="00000000"+A$
405 IF LEN A$ > 16 THEN LET A$ = A$(LEN A$-16 TO) :GOTO 420
410 LET A$ = A$(LEN $-8 TO)
420 PRINT A$: RETURN
999
1000 REM INPUT HEX NR
1010 POKE 23617, 164
1020 INPUT LINE A$: IF A$="" THEN LET A$="0000"

INT(A/16)

INT(A/16)

183

1030 IF LEN A$>4 THEN LET A$=A$(LEN A$-4 TO)
1040 FOR I=1 TO LEN A$
1050 IF NOT (A$(I) >= "O" AND A$(I) <="9")) AND
NOT (A$(I) >= "A" AND A$(I) <= "F")) THEN GOTO INHEX
1060 NEXT I
1070 RETURN
1999
2000 REM INPUT BIN NR
2005 POKE 23617, 164: INPUT LINE A$
2010 IF A$="" THEN LET A$="0000"
2020 IF LEN A$ > 16 THEN LET A$ = A$(LEN A$-16 TO)
2030 FOR I=1 TO LEN A$
2040 IF A$(I) <> "O" AND A$(I) <> "1" THEN GOTO INBIN
2050 NEXT I
2060 RETURN

Pentru a simplifica lucrurile, este recomandabila alegerea celor 4 taste ca apartinand la porturi

diferite. Sugeram urmatoarea combinatie: sus E| jos E| stanga , dreapta E Pentru a
simplifica si mai mult lucrurile, vom accepta orice tasta citita de acelasi port cu una din cele
de mai sus. In rest, putem adapta programul de la Exercitiul 4, Capitolul 12 schimband doar
liniile:

1 LET N=IN 254 : REM VALOAREA PENTRU NICI 0 TASTA APASATA

50 LET x = x + (IN 32766<>n AND x<255) - (IN 65278<>n AND x>0)
55 LET y = y + (IN 64510<>n AND y<175) - (IN 65022<>n AND y>0)

La momentul executarii liniei 1 trebuie sa nu fie nici o tasta apasata (explicati de ce!).
Este adevarata! Daca 0 <= x <= 31, 0 <= y <= 23,
Memoria atributelor Tncepe la 22528 si este organizata ,firesc”. Patratelul cu coordonatele

y, xlaPRINT are adresa atributelor 22528 + 32%y + x, pentru ca fiecare din randurile y are
32 de caractere. Deci:

ATTR (y,x) = PEEK (22528 + 32y + x)

G.17 Capitolul 17

1. lata solutia:

184

1 CLEAR 32767 : REM CLEAR sterge ecranul, deci trebuie dat inainte
5 REM se deseneaza ...

100 REM salvam

110 FOR i=0 TO 6911 : POKE 32768+i, PEEK (16384+i) : NEXT i
120 SAVE "SCREEN$'" CODE 32768, 6912

130 VERIFY "SCREEN$" CODE

Pentru ca verificarea implica scrierea numelui fisierului respectiv pe ecran, acest nume trebuie
sa faca parte din chiar componenta desenului de pe ecran! Daca dorim sa fie invizibil, 1l putem
scrie cu PAPER-ul si INK-ul de aceeasi valoare. Sa nu uitam ca, la scrierea titlului unui header,
calculatorul scrie intai un CR (CHR$ 13), deci numele va trebui sa apara la inceput de rand,
n nici un caz pe linia 0. Sa zicem ca n desen linia 6 este libera. Atunci, Tnainte de a salva
desenul, vom face:

100 PRINT AT 6,0;PAPER 8;"Bytes: nume"

intre literele numelui se insereaza caractere de control pentru INK, de exact PAPER-ul respec-
tiv. Apoi:

105 SAVE "nume" SCREEN$
110 PRINT AT 5,0; : PAPER 8 : VERIFY "nume" SCREEN$

Remarcati PRINT AT cu unrand mai sus.

O alta varianta ar fi sa folosim faptul ca un caracter scris de doua ori cu OVER 1 lasa ecranul
neschimbat. Atunci facem astfel:

1 LET a$=CHR$ 22 + CHR$ 1 + CHR$ O + "Bytes:" : REM AT 1,0 Bytes:
2 SAVE A$ SCREENS$

3 OVER 1: FLASH 8: BRIGHT 8: PAPER 8: INK 8

5 PRINT AT 0,0; : VERIFY a$ SCREEN$

La momentul Tntalnirii header-ului, VERIFY va scrie in OVER 1, fara a perturba culorile textul
de titlu pe linia 1 Bytes:, dupa care va scrie numele programului. Acesta incepe cu caractere
de control pentru pozitie, care se muta la Tnceputul aceluiasi rand si scrie deasupra acelasi
text, lasand ecranul in forma initiala!

3. SCREEN$ este oarecum opusa lui PRINT AT.

G.18 Capitolul 18

1. Se deseneaza pe ecran (stiti cum) si apoi se face COPY.
2. Dupa imaginatia fiecaruia.

185

Appendix H

Variabilele sistem la nivel de bit.
Jonglerii cu variabile sistem

H.1 Variabilele sistemului BASIC

Notat ii:
¢ Intre paranteze rotunde:

— numele unei variabile sistem semnifica valoarea ei; ex.: (REPPER) = PEEK 23652;
— un numar reprezinta valoarea normala a variabilei; ex: (64) — variabila aceasta are de
obicei valoarea 64;

¢ intre semnele < si >:
adresa unei instructiuni sau proceduri din ROM care foloseste aceasta variabila, in hexazec-
imal; ex: <1105> adresa 1105 Tn hexazecimal;

e punctul indica un octet al unei variabile mai lungi;
ex.. KSTATE.O/4 = octetii 0 si 4 ai lui K.STATE;
TVDATA.hi = primul octet al lui TVDATA, (hi — vine de la High byte, adica MSB; lo este LSB.)

o bit x=y: ce semnificatie are faptul ca bitul x al variabilei are valoarea y;
o bitii care nu sunt trecuti — autorul nu a putut identifica utilizarea lor (s-ar putea sa aiba una!).

Descrierile sunt foarte succinte; ele sunt utile mai ales celui care exploreaza programele inter-
pretorului BASIC din ROM.

186

Adresa

Dec. Hex. Nume Lg. | Descriere

23552 5C00 | KSTATE 8 Folosite Tn citirea tastaturii:
KSTATE.0/4 numarul tastei apasate
KSTATE.1/5 contor 5—0 pentru durata
KSTATE.2/6 (REPPER) sau (REPDEL)
KSTATE.3/7 codul caracterului

23560 5C08 | LASKK 1 | Codul ultimei taste apasate

23561 5C09 | REPDEL 1 Durata necesara pentru a reciti o tasta apasata mai mult
timp (0.7 sec)

23562 5COA | REPPER 1 Durata pentru a repeta o tasta apasata continuu (0.1
sec)

23563 5CO0B | DEFADD 2 | Adresa parametrilor lui DEF FN

23565 5COD | K_DATA 1 | Al doilea parametru al caracterelor de control pentru cu-
loare introduse de la tastatura <1105>

23566 5COE | TVDATA 2 | TVDATA.hi caracterul de control introdus
TVDATA.Io primul parametru (Al doilea parametru in
registrul A) <0A03>

23568 5C10 | STRMS 38 | Deplasamentul fafa de (CHANS) al adresei informatiei
de cale. Valorile initiale sunt:

Calea Adresa Continutul Tip canal
FD 5C10 0100 K
FE 5C12 0600 S
FF 5C14 0B0O R
00 5C16 0100 K
01 5C18 0100 K
02 5C1A 0600 S
03 5C1C 1000 P
04-0F 5C1E-5C34 0000 -

23606 5C36 | CHARS 2 | Adresa — 256 a Iimaginii setului de caractere
(003B=15360). Adresa lui " "=15516.

23608 5C38 RASP 1 | Lungimea bazaitului. (64) <1167>

23609 5C39 PIP 1 Lungimea clic-ului unei taste. (00)

23610 5C3A | ERRNR 1 | Codul erorii — 1. (255)

23611 5C3B FLAGS 1 bit 0=0: se tipareste un spatiu Tnaintea unui cuvint cheie
<187D>
bit 1=0: nu se foloseste imprimanta <1646>
bit 2=0: se scrie Tn modul K de cursor <1937>
bit 3=0: modul K al cursorului e selectat <1326>
bit 5=0: nu s-a apasat o0 noua tasta <1303>
bit 6=0: rezultatul este un sir
bit 7=1: se executa o linie <12CF>

=0: se verifica o linie (SINTAX FLAG)

23612 5C3C | TVFLAG 1 bit 0=1: se foloseste canalul tastaturii <1634>
bit 3=1: considera ca modul cursorului s-a schimbat
<15D4>
bit 4=1: listing automat <1835>
bit 5=1: partea de jos a ecranului va fi stearsa <1219>

23613 5C3D | ERR.SP 2 | Adresa de pe stiva Z80 care va fi folosita ca punct de
intoarcere in caz de eroare

23615 b5C3F | LISTSP 2 | Adresa de revenire dupa un listing automat <1795>

187

Adresa

Dec. Hex. Nume Lg. | Descriere

23617 5C41 MODE 1 | Specifica forma cursorului:
=1 modul E
>1 modul G
< 1 modul K/L/C (impreunda cu FLAGS.bit2 si cu
FLAGSZ2.bit3)

23618 5C42 | NEWPPC 2 Linia la care se sare (eticheta) <1E73>

23620 5C44 NSPPC 1 Nr. instructiunii la care se sare <1E73>

23621 5C45 PPC 2 Linia in curs de executie <1376>

23623 5C47 | SUBPPC 1 Nr. instr. in curs de executie <1376>

23624 5C48 | BORDCR 1 | Atributele din partea de jos a ecranului (BOR-
DER=PAPER de jos)

23625 5C49 E_PPC 2 Eticheta liniei cu cursorul ">"

23627 5C4B VARS 2 | Adresa variabilelor BASIC

23629 5C4D DEST 2 | Adresa variabilei in curs de atribuire (daca aceasta exis-
ta) <2AFF>

23631 5C4F CHANS 2 | Adresa datelor despre canale <1736>

23633 5C51 | CURCHL 2 | Adresa informatiei curente utilizate pentru intrare/iesire
<1615>

23635 5C53 PROG 2 | Adresa programului BASIC (23755)

23637 5C55 NXTLIN 2 | Adresa urmatoarei linii din program

23639 5C57 | DATADD 2 | Adresa caracterului de dupa ultimul caracter citit din lista
DATA (, : sau CR)

23641 5Ch9 E_LINE 2 | Adresa liniei in curs de editare

23643 5C5B K_CUR 2 Adresa cursorului de la editare (K, L, C, G, E)

23645 5C5D | CH.ADD 2 | Adresa urmatorului caracter de interpretat <0020>

23647 5C5F X_PTR 2 | Adresa caracterului la care s-a obtinut o eroare
Pointer la lista READ <1DEC>
Pointer la linie/variabila la MERGE

23649 5C61 | WORKSP 2 | Adresa spatiului de lucru

23651 5C63 | STKBOT 2 | Adresa varfului stivei evaluatorului

23653 5C65 | STKEND 2 | Adresa sfarsitului stivei evaluatorului

23655 5C67 B_REG 1 Registrul B al evaluatorului

23656 5C68 MEM 2 | Adresa memoriilor evaluatorului (23698)

23658 5C6A | FLAGS2 1 bit 0=1: a se sterge ecranul <12CF>
bit 1=0: bufferul imprimantei e gol <OEE7>
bit 2=0: caracterul nu e intre ghilimele <1881>
bit 3=1: modul C al cursorului <18F3>
bit 4=0: nu se foloseste canalul K <107F>

23659 5C6B DF_Sz 1 Numarul de linii din partea de jos a ecranului (inclusiv
una alba))

23660 5C6C S_TOP 2 Nr. liniei din partea de sus a ecranului la un listing
automat

23662 5C6E | OLDPPC 2 Linia la care sare CONTINUE

23664 5C70 OSPPC 1 Nr. instructiunii la care sare CONTINUE

23665 5C71 FLGX 1 bit 0=1: se va sterge vechea valoare a acestei variabile
Sir <2B72>
bit 1=1: o noua variabila
bit 5=1: mod INPUT <OFF3>

=0: mod editare <1313>

bit 7=1: se foloseste INPUT LINE <20DB>

23666 5C72 | STRLEN 2 Lungimea sirului destinat atribuirii

23668 5C74 | T_-ADDR 2 | Adresa urmatorului element in tabela de sintaxa

T_DDR.lo indica tipul de header <1B55>

188

Adresa

Dec. Hex. Nume Lg. | Descriere

23670 5C76 SEED 2 Folosita in calculul RND

23672 5C78 | FRAMES 3 | Ceasde timp real in 1/50 sec. LSB primul.

23675 5C78 UDG 2 | Adresa primului caracter definiblil

23677 5C7D | COORDS 1 | Coordonata x a ultimului punct

23678 5C7E 1 Coordonata y a ultimului punct

23679 G5C7F | P_POSN 1 | 33-nr. coloaneila imprimanta

23680 5C80 PR_CC 2 LSB al adresei urmatorului caracter de trimis spre impri-
manta (din buffer)

23681 5C81 1 Marcat nefolosit. In realitate, MSB al adresei urmatorului
caracter de trimis spre imprimanta

23682 5C82 | ECHO_E 1 | 33-coloana

23683 5C83 1 | 24 -linia din partea de jos a ecranului (=ultimul caracter
din INPUT buffer)

23684 5C84 DF_CC 2 | Adresain DF a urmatorului caracter de scris pe canalul
S

23686 5C86 | DF_CCL 2 | Adresain DF a urmatorului caracter de scris pe canalul
K

23688 5C88 | S_POSN 1 | 33-coloana

23689 5C89 1 | 24 -linia pozitiei PRINT din partea de sus a ecranului

23690 5C8A | SPOSNL 1 | 33-coloana

23691 5C8B 1 24 — linia pozitiei PRINT din partea de jos a ecranului

23692 5C8C | SCRLCT 1 Nr. de scroll de facut inainte de a intreba scroll?

23693 5C8D | ATTR_P 1 | Atributele permanente

23694 5C8E | MASK_P 1 Masca pentru atributele permanente (bitii 1 iau culoarea
de pe ecran)

23695 b5C8F | ATTR_T 1 | Atributele temporare

23696 5C90 | MASK_T 1 Masca pentru atribute temporare

23697 5C91 | P_FLAG 1 | bit0=1: OVER 1 <22F0>
bit 2=1: INVERSE 1 <22FD>
bit 4=1: INK 9 <OBFA>
bit 6=1: PAPER 9 <0BDB>

23698 5C92 | MEMBOT | 30 | Zonade memorie a evaluatorului (6 zone a 5 octeti)

23728 5CBO 2 nefolosit

23730 5CB2 | RAMTOP 2 | Adresa ultimului octet accesibil BASIC (65368)

23732 5CB4 | P_RAMT 2 | Adresa ultimului octet din RAM-ul fizic (65535)

H.2 Jonglerii cu variabile sistem

Sa vedem cate ceva din ceea ce putem face dand valori cu POKE acestor variabile (in orice caz, nu
un procedeu elegant de programare):

e Schimband continutul lui REPDEL si REPPER, se poate schimba viteza cu care se citesc
tastele la INPUT si la editare. Valoarea 0 inseamna 256. Tastati POKE 23562, 1 Si scrieti apoi

ceval

e Variabila CHARS arata adresa unde se afla memorata forma caracterelor tiparibile (cu co-
durile Tntre 32 si 127). Schimband valoarea ei, o facem sa puncteze o zona oarecare din
RAM, unde putem pune propriile noastre forme. lata si un program caraghios:

1
2
3

FOR i=0 TO 72
POKE 23606,1
PRINT AT 10,13;0

: BEEP .006, i/7

189

190

4 NEXT i
5 POKE 23606, 0

Se va intdmpla un lucru amuzant daca opriti programul cu | BREAK | Ce?

Modificand RASP se schimba lungimea bazaitului care apare la unele erori (de pilda la edita-
rea unei linii mult prea lungi).

PIP e lungimea clic-ului pe care il produce o tasta apasata. Normal e 0, Tns3, introducand
alte valori, putem obfine sunete ce par mai inalte. De fapt este o iluzie, toate sunetele avand
aceeasi indltime; unele sunt prea scurte si par mai joase. Tastati POKE 23609, 15.

lata un divertisment cu ERR_NR:

1 FOR i=0 TO 28
2 POKE 23610,1

Dati RUN si apoi mereu NEXT i. Veti obtine si niste mesaje surprinzatoare. Valoarea ei nor-
mala (nu e eroare) este 255.

ERR_SP indica o adresa (pe stiva) unde se gaseste adresa subrutinei care se foloseste la
aparitia unei erori. Modificarea ei folosind BASIC-ul este mai greu de facut. latd o metoda
care permite ignorarea erorilor de catre programul vostru (cu exceptia erorii C): POKE 23613,
PEEK 23730 - 5. Erorile nu mai intrerup programul din executie, dar afecteaza variabila
ERR_NR, ceea ce va permite sa le tratati. ,Protectia” aceasta este desfacuta de folosirea
lui GOSUB; folosirea ei Tn subrutine poate avea efecte catastrofale. Pentru a readuce sistemul
la starea normala: POKE 23613, PEEK 23730 - 3.

MODE specifica tipul cursorului (K, L sau C). POKE 23617,1:INPUT a$ va trece cursorul Tn
modul E pentru instructiunea INPUT. Puteti obtine si tipuri ciudate de cursor. Incercati 30 sau
164.

NEWPPC si NSPPC, daca sunt schimbate in aceasta ordine, forteaza saltul la o anumita
instructiune, dintr-o anumita linie.

BORDCR (atributele din partea de jos a ecranului) poate da si ea nastere la efecte interesan-
te. Tncerca;i POKE 23624,200. POKE 23624 ,0 face 0 atributele randurilor de jos, deci cursorul
de la editare (K, L etc.) ramane invizibil.

E_PPC modificata poate muta cursorul de editare > la o anumita linie. De pilda la linia 10:
POKE 23625,10 : POKE 23626,0

PROG arata unde incepe programul BASIC. O vom folosi pentru a forta la O eticheta primei
linii; nefiind o eticheta regulamentara, confera acelei linii un statut privilegiat (de nesters).
Folosind informatiile din Anexa F cu privire la forma de memorare, vedem ca putem schimba
eticheta primei linii in O cu:

LET a=PEEK 23635+256+PEEK 23636 : POKE a,0 : POKE a+1,0

DF_SZ reprezinta numarul de linii alocate partii de jos a ecranului (canalului K). De obicei,
acest numar este 2. Valori mai mici dau efecte secundare ciudate. Reducand aceasta valoare
la 0, tentativele de scriere pe canalul K vor distruge sistemul (inclusiv afisarea mesajelor de

eroare, de pilda a celor cauzate de . in plus, putem folosi PRINT pe 23 de linii. Din
pacate si CLS blocheaza sistemul.

Daca punem DF_SZ la 1 si apoi scriem ceva pe canalul K, Tntreg ecranul (inclusiv atributele)
este umplut cu valoarea variabilei ATTR_P. incercati:

5 FOR i=1 TO 8

6 POKE 23693, 27i-1 : REM ATTR_P
7 POKE 23659,1 : REM DF_SZ

8 INPUT ""

9 NEXT i

e OLDPPC si OSPPC pot face CONTINUE sa sara intr-un anumit loc.

1 POKE 23662,50 : POKE 23663,0 : REM linia 50
2 POKE 23664,2 : REM instructiunea a doua

3 CONTINUE

5 STOP
50 STOP : PRINT O

va tipari 0!

e SEED este initializata de RANDOMIZE. O putem folosi pentru a descompune rapid un numar in
doi octeti:

5 RANDOMIZE nr
10 LET nrlo= PEEK 23670 : LET nrhi= PEEK 23671

e FRAMES este o variabila care functioneaza ca un ceas. Valoarea celui mai putin semnificativ
octet este incrementata la fiecare 20ms. Al doilea octet este incrementat cand LSB devine 0
s.a.m.d. Incrementarea este oprita Tn timpul lucrului cu imprimanta, casetofonul sau al exe-
cutarii instructiunii BEEP. Timpul de cand a fost resetat ultima oara calculatorul, Tn secunde,
este:

(65536*PEEK 23674 + 256+PEEK 23675 + PEEK 23676) /50

Pentru a potrivi ceasul, de pilda la ora 10, trebuie sa fi trecut 10%60%60%50 de cinzecimi de
secunda = 1800000. Descompunand acest numar avem 1800000 = 65536*27 + 256*119 +
65. ,,Reglarea” ceasului se face cu: POKE 23674, 27: POKE 23673,119 : POKE 23672,64

Rescrieti ceasul cu limbi folosind FRAMES.

e UDG este adresa formelor caracterelor grafice definibile. Tn mod normal, ea este imediat dea-
supra RAMTOP-ului. Ca sa va distrati, puneti-o peste E_LINE si apoi tastati caractere grafice
definibile. Explicati ce se intampla.

e COORDS pot fi folosite pentru a obtine trasari de segmente in coordonate absolute. Pentru
atrasa panala punctul x,y:

DRAW x-PEEK 23677, y-PEEK 23678

e S_POSN o putem folosi ca sa aflam cate simboluri grafice are un sir: il scriem pe ecran la
0, 0 cu ; dupa el si apoi citim S_POSN ca sa aflam unde a ramas cursorul de tiparire.

e SCR_CT numara de cate ori poate fi ,,alunecat ecranul”’ inainte de a intreba scrol1?. Variabila
se decrementeaza la fiecare alunecare. Intrebarea survine la 0. POKE 23692, 255 ne scuteste
de scrol17? o buna bucata de vreme. Incercati:

1 POKE 23692,255

5 FOR i=1 TO 10000
10 PRINT i

20 NEXT i

o Variabila 23681 este trecutd in manuale ca nefolosita. In realitate, ea este MSB al adresei
bufferului imprimantei. Pentru ca SPECTRUM memora caracterele in buffer pe linii de pixeli
(avea o imprimanta speciald), putem obtine efecte ciudate, mutand bufferul peste memoria
ecran si trimitand date spre imprimanta Tn absenta acesteia (cu imprimanta conectata, acest
program nu merge). Studiind cu atentie memoria ecran veti intelege de ce urmatorul program
face ceea ce face (rulati-l si fara NEXT si observati dispunerea randurilor):

10 FOR i=64 TO 71: POKE 23681,i : LPRINT "Caractere mari'": NEXT i

Aceasta linie contruieste de 8 ori buffer-ul in memoria ecran si 7l umple cu imaginile carac-
terelor care apar pe feliute.

191

lata cateva metode de a modifica Thsusi programul BASIC, obtinand efecte ciudate. De pilda,
putem insera n listing caractere de control pentru AT, TAB, backspace (CHR$ 8) etc.

1 REM Mesaj copyright protejat
LET a=PEEK 23635+ 256*PEEK 23636 : FOR a+5 TO a+12 : POKE a,8: NEXT i
transforma in CHR$ 8 spatiile care le-am scris dupa REM.

Putem incerca si alte combinatfii: inserand CHR$ 22 + CHR$ 30 + CHR$ 0 (AT 30,0), vom obtine
la listarea acelei linii eroarea 5.

192

Index

[, 17 C

#, 138 c.m.m.d.c, 46
$, 20 c.m.m.m.c, 46
scroll?, 22 cat, 46
cale, 137
/\ canale, 137
ABS, 44 caracter, 16
ACS, 98 caracter definibil, 121
adevarat, 40 caractere de control, 88
adresd, 114 carriage return, 14
aleator, 61 CHR$, 88
AND, 76 ciclu, 37, 53
arccosinus, 98 cifre binare, 152
arcsinus, 98 CIRCLE, 86
arctangentd, 98 CLEAR, 39
argument, 15, 127 CLOSE#, 138
arhitectura, 112 CLS, 38
asamblor, 112 cod ASCII, 88
ASCII, 88 cod masina, 112
ASN, 97 CODE, 91
asociativitate, 28 comanda, 15
ATN, 98 comentariu, 43
atribuire, 29 compatibil, 137
atribute, 109 compilare, 113
ATTR, 108 compilator, 113
concatenare, 29
E; constantd, 18
CONTINUE, 32
Bach, 107 contor, 54, 163

backslash, 169

. contrast, 37
baza de numeratie, 152

coordonate grafice, 84

BEEP, 107 coordonate relative, 85
BIN, 120 COPY, 136

b%stabil, 153 cos, 97

bit, 153 cosinus, 96

blanc, 16 culori in mod grafic, 86
boolean, 40 culori fundamentale, 151
BORDER, 36 cursor de editare, 63
BREAK, 31 cursorul de la tiparire, 34
BRIG?T, 67 cuvant, 115

buclé, 53A . cuvant cheie, 21

bucla de intarziere, 80 cuvinte cheie, 15, 16
buffer, 117

byte, 114 [)

193

DATA, 105 infixare, 74

DEF FN, 127 INK, 37
DIM, 49 INKEY$, 63
dolar, 20 INPUT, 32
DRAW, 84 INT, 44
driver, 136 interactiv, 54
interpretare, 113
E interpretor, 113
.. 1 inirareiegine, 14
ecranul, 24 ’
editare, 22
efecte laterale, 35 P(
elastic, 174 kilooctet, 114
ENTER, 14
eroare, 17 L
etlcheta, 14 LEN, 80
Euclid, 46
Euler, 45 LETT 28 .
EXP, 45 lexicografic, 106
exponent, 72, 155 L¥FD’.95
o limbaj, 13
limbaj de asamblare, 112
F limbaj magina, 112
factorial, 129 linia curenta, 22
fals, 40 linie, 13
figier, 129 LIST, 22
Fibonacci, 47 listare, 22
fill, 103 listing, 22
FLASH, 68 listing automat, 139
FN, 127 LLIST, 135
FOR - TO - STEP, 53 LN, 45
forma de prezentare, 21 LOAD, 130
formatul stiintific, 72 locatie, 114
formatul exponential, 72 logaritm, 45
FP, 155 LPRINT, 135
funtie exponentiald, 45 LSB, 109, 154
functia semn, 45
functie, 15 hﬂ
mantisad, 155
(3 matrice, 48
GOSUB, 94 maximum, 51
GO0TO, 35 memoria, 112, 114
grils, 24 memorie permanenta, 129
memorie video, 115
F{ meniu, 165
MERGE, 131
harta memoriei, 115 mesaj de eroare, 17
header, 131 metoda bulelor, 57
migcare, 47
I mici intregi, 155
IF - THEN, 40 microdrive, 140
imprimantd, 135 microprocesor, 112
IN, 122 mnemonica, 112
incrementare, 29 modul, 44
indice, 49 modulo, 90

194

MSB, 154

N

Neper, 45
neprintabil, 88
NEW, 39

NEXT, 53

nivel inalt, 113
normalizare, 155
NOT, 75

nundr prim, 47

O

octet, 114
OPEN#, 138

operatii aritmetice, 28

operatii logice, 40
OR, 76

ordine pentru giruri, 106
originea grafica, 84

0UT, 123
OVER, 68
overflow, 156

P

PAPER, 36
parametru, 15

parametru optional, 17
parametru simbolic, 127

parte intreaga, 44
PAUSE, 44

PEEK, 114
periferice, 112
PI, 93

pixel, 24

PLOT, 84

POINT, 87
pointer, 158
POKE, 114

port, 122
precedenta, 28
precedenta, 78
prefixare, 74
PRINT, 23
prioritate, 78
procedura, 94
procustean, 51
program, 13, 14
proiectie, 85
punct, 16

R

radian, 85
radical, 45

RAM, 113

random access, 113
RANDOMIZE, 62
read only, 113
READ, 104
recursgie, 175
recursgiv, 96, 129
REM, 43

rest, 46

RESTORE, 105
RETURN, 94
rezolutie, 24
RND, 61

ROM, 113
rotunjire, 44
RS232, 125

RUN, 27

S

samanta, 62
salt, 35
salvare, 129

sau exclusiv, 68, 81

SAVE, 129

SCREEN$, 126

seed, 62

semne speciale, 16
separatori, 23
setare, 115

SGN, 45

SIN, 97

sintaxa, 17

sinus, 96

sistem de operare, 137

slash, 28
sortare, 57

sortare prin selectie, 58

SQR, 45

stiva, 95

stiva GOSUB, 94
STOP, 31

STR$, 121
subrutind, 94
sunet, 107
supraincdrcare, 29
sursa, 113

T

tabel de adevar, 170

tablou, 48

TAN, 97
tangenta, 96
tip de date, 18

tipul sir de caractere, 18

tipul numeric, 18

195

TO, 69
transparentda, 37
trigonometrie, 96

U

uc, 112

UDG, 121

underflow, 156
unitatea centrald, 112
USR, 118

V

VAL, 71

VAL$, 81

valoare absoluta, 44
variabila, 18, 19
variabile de sistem, 117
vector, 48

VERIFY, 132

virgulad flotantd, 155
von Neumann, 111

X

xor, 81
Z80, 112

196

