
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Software development at scale
Bonus slides: Unseen GoF design patterns

(The end)

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• Final exam Monday May 6th 5:30-8:30 GHC 4401
• Review session Saturday May 4th 1pm NSH 3305

317-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML
More Git

Streams

Design

Software
Engineering
in Practice

417-214

SOFTWARE DEVELOPMENT AT SCALE

517-214

Releasing at scale in industry

• Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

• Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
– https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-

google.html

• Why Google Stores Billions of Lines of Code in a Single
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

617-214

Pre-2017 release management model at Facebook

717-214

Diff lifecycle: First, local testing

817-214

Diff lifecycle: Next, CI testing (data center)

917-214

Diff lifecycle: Then, diff ends up on master

1017-214

Release every two weeks

1117-214

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day);
10 pushes/day

1217-214

Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can
run in production about 6 months before being publicly
announced (“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push
small changes just to gather metrics, feasibility testing. Large
changes just slow down the team. Do dark launches, to see
what performance is in production, can scale up and down.
"Shadow infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint
issues.

1317-214

Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html

1417-214

Issues with feature flags

Feature flags are “technical debt”
Example: financial services company with nearly $400 million in
assets went bankrupt in 45 minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

1517-214

Diff lifecycle: Finally, in production

1617-214

What’s in a weekly branch cut? (The limits of branches)

1717-214

Post-2017 release management model at Facebook

1817-214

Google: similar story. HUGE code base

1917-214

Exponential growth

2017-214

Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers

2117-214

Google code base vs Linux kernel code base

2217-214

How do they do it?

2317-214

1. Lots of (automated) testing

2417-214

2. Lots of automation

2517-214

3. Smarter tooling

• Build system
• Version control
• …

2617-214

3a. Build system

2717-214

Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?

2817-214

Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies
● Change 2 broke test 1

Google Continuous Build System

3117-214

Which tests to run?

3217-214

Scenario 1: a change modifies common_collections_util

3317-214

Scenario 1: a change modifies common_collections_util

3417-214

Scenario 1: a change modifies common_collections_util

3517-214

Scenario 1: a change modifies common_collections_util

3617-214

Scenario 2: a change modifies the youtube_client

3717-214

Scenario 2: a change modifies the youtube_client

3817-214

3b. Version control

• Problem: even git can get slow at Facebook-like scale
– 1M+ source control commands run per day
– 100K+ commits per week

3917-214

3b. Version control

• Solution: redesign version control

4017-214

3b. Version control
• Solution: redesign version control

– Query build system's file monitor, Watchman, to see which files have
changed

4117-214

3b. Version control
• Solution: redesign version control

– Query build system's file monitor, Watchman, to see which files have
changed à 5x faster “status” command

4217-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts??? (remember, git is a distributed VCS)

4317-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts:
– Change the clone and pull commands to download only the commit

metadata, while omitting all file changes (the bulk of the download)
– When a user performs an operation that needs the contents of files (such

as checkout), download the file contents on demand using existing
memcache infrastructure

4417-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts à 10x faster clones and pulls
– Change the clone and pull commands to download only the commit

metadata, while omitting all file changes (the bulk of the download)
– When a user performs an operation that needs the contents of files (such

as checkout), download the file contents on demand using existing
memcache infrastructure

4517-214

4. Monolithic repository

4617-214

Monolithic repository – no major use of branches for
development

4717-214

Did it work? Yes. Sustained productivity at Facebook
Lines Committed Per Developer Per Day

Growth of the size of the
Android and iOS dev teams

4817-214

MONOREPO VS MANY REPOS

4917-214

A recent history of code organization

• A single team with a monolithic application in a single
repository

…
• Multiple teams with many separate applications in many

separate repositories
• Multiple teams with many separate applications

microservices in many separate repositories
• A single team with many microservices in many repositories
…
• Many teams with many applications in one big Monorepo

5017-214 2015 talk by Benjamin Eberlei

What is a Monolithic Repository (monorepo)?

A single version control repository containing multiple

I projects
I applications
I libraries,

often using a common build system.

5217-214

Monorepos in industry

Google (computer science version)

5317-214

Advantages and Disadvantages of a Monolithic Repository
A case study at Google

Ciera Jaspan, Matthew Jorde,
Andrea Knight, Caitlin Sadowski,
Edward K. Smith, Collin Winter

Google
ciera,majorde,aknight,supertri,edwardsmith,

collinwinter@google.com

Emerson Murphy-Hill∗
NC State University

emerson@csc.ncsu.edu

ABSTRACT
Monolithic source code repositories (repos) are used by sev-
eral large tech companies, but little is known about their
advantages or disadvantages compared to multiple per-project
repos. This paper investigates the relative tradeoffs by utiliz-
ing a mixed-methods approach. Our primary contribution is a
survey of engineers who have experience with both monolithic
repos and multiple, per-project repos. This paper also backs
up the claims made by these engineers with a large-scale anal-
ysis of developer tool logs. Our study finds that the visibility
of the codebase is a significant advantage of a monolithic repo:
it enables engineers to discover APIs to reuse, find examples
for using an API, and automatically have dependent code
updated as an API migrates to a new version. Engineers
also appreciate the centralization of dependency management
in the repo. In contrast, multiple-repository (multi-repo)
systems afford engineers more flexibility to select their own
toolchains and provide significant access control and stability
benefits. In both cases, the related tooling is also a significant
factor; engineers favor particular tools and are drawn to repo
management systems that support their desired toolchain.

CCS CONCEPTS
• Software and its engineering → Software configu-
ration management and version control systems;

1 INTRODUCTION
Companies today are producing more source code than ever
before. Given the increasingly large codebases involved, it
is worth examining the software engineering experience pro-
vided by the various approaches for source code management.
Large companies with multiple products typically have many
internal libraries and frameworks, and a vast number of de-
pendencies between projects from entirely separate parts of
∗Work completed while on sabbatical at Google

ICSE-SEIP ’18, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). 978-1-4503-5659-
6/18/05
DOI: 10.1145/3183519.3183550

the organization. Successfully organizing these dependencies
and frameworks is crucial for development velocity.

One approach to scaling development practices is the
monolithic repo, a model of source code organization where
engineers have broad access to source code, a shared set
of tooling, and a single set of common dependencies. This
standardization and level of access is enabled by having a
single, shared repo that stores the source code for all the
projects in an organization. Several large software companies
have already moved to this organizational model, including
Facebook, Google, and Microsoft [10, 12, 17, 21]; however,
there is little research addressing the possible advantages
or disadvantages of such a model. Does broad access to
source code let software engineers better understand APIs
and libraries, or overwhelm engineers with use cases that
aren’t theirs? Do projects benefit from shared dependency
versioning, or would engineers prefer more stability for their
dependencies? How often do engineers take advantage of
the workflows that monolithic repos enable? Do engineers
prefer having consistent, shared toolchains or the flexibility
of selecting a toolchain for their project?

In this paper, we investigate the experience of engineers
working within a monolithic repo and the tradeoffs between
using a monolithic repo and a multi-repo codebase. Specifi-
cally, this paper seeks to answer two research questions:

(1) What do developers perceive as the benefits and
drawbacks to working in a monolithic versus multi-
repo environment?

(2) To what extent do developers make use of the unique
advantages that monolithic repos provide?

To answer these questions, we ran a mixed-methods case
study within a single company with a monolithic repo. We
surveyed software engineers to understand their perceptions
about working in monolithic repos. For engineers that also
had experience working in multi-repo systems, we asked
further questions to understand the benefits of each and why
they might prefer one model over another. We also analyzed
the logs from developer tools to study the extent to which
engineers utilize their ability to view and edit all of the code
in the codebase. We examined how often engineers view and
edit code far afield from their team and organization, and we
examined whether these views are simply to popular APIs.

Our survey results show that engineers at Google strongly

225

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

���

�����"$.�*&&&���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�4PGUXBSF�&OHJOFFSJOH��4PGUXBSF�&OHJOFFSJOH�JO�1SBDUJDF

5417-214

Monorepos in industry

Scaling Mercurial at Facebook

5517-214

Monorepos in industry

Microsoft claim the largest git repo on the planet

5617-214

Monorepos in open-source

2016 talk by FABIEN POTENCIER

foresquare public monorepo

5717-214

The monorepo

https://github.com/symfony/symfony

Bridge/

 5 sub-projects

Bundle/

 5 sub-projects

Component/

 33 independent sub-projects like Asset, Cache,

 CssSelector, Finder, Form, HttpKernel, Ldap,

 Routing, Security, Serializer, Templating,

 Translation, Yaml, ...

43 projects, 25 000 commits, and 400 000 LOC

Monorepos in open-source

2016 talk by FABIEN POTENCIER

5917-214

Common build system

Bazel from Google

Buck from Facebook

Pants from Twitter

6617-214

Some advantages of monorepos

6717-214

High Discoverability For Developers

I Developers can read and explore the whole codebase
I grep, IDEs and other tools can search the whole codebase
I IDEs can offer auto-completion for the whole codebase
I Code Browsers can links between all artifacts in the codebase

6817-214

Code-Reuse is cheap

Almost zero cost in introducing a new library

I Extract library code into a new directory/component
I Use library in other components
I Profit!

6917-214

Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

I Extract Library/Component
I Rename Functions/Methods/Components
I Housekeeping (phpcs-fixer, Namespacing, ...)

7017-214

Another refactoring example

• Make large backward incompatible changes easily... especially
if they span different parts of the project

• For example, old APIs can be removed with confidence
– Change an API endpoint code and all its usages in all projects in one

pull request

7117-214

Some more advantages

• Easy continuous integration and code review for changes
spanning several projects

• (Internal) dependency management is a non-issue
• Less context switching for developers
• Code more reusable in other contexts
• Access control is easy

7217-214

Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)
• Force you to have only one version of everything
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?

7317-214

Summary

• Software development at scale requires a lot of infrastructure
– Version control, build managers, testing, continuous integration,

deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick

rollback

