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Part 1:
Design at a Class Level

Design for Change:
Information Hiding, 

Contracts, Unit Testing, 
Design Patterns

Design for Reuse:
Inheritance, Delegation, 

Immutability, LSP, 
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment, 
Design Patterns, 

GUI vs Core,
Design Case Studies

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent 

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for 
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML
More Git

Streams

Design

Software 
Engineering 
in Practice
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SOFTWARE DEVELOPMENT AT SCALE
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Releasing at scale in industry

• Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

• Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
– https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-

google.html

• Why Google Stores Billions of Lines of Code in a Single 
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY
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Pre-2017 release management model at Facebook
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Diff lifecycle: First, local testing
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Diff lifecycle: Next, CI testing (data center)
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Diff lifecycle: Then, diff ends up on master
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Release every two weeks
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Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 
10 pushes/day
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Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can 
run in production about 6 months before being publicly 
announced (“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push 
small changes just to gather metrics, feasibility testing. Large 
changes just slow down the team. Do dark launches, to see 
what performance is in production, can scale up and down. 
"Shadow infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint 
issues.
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Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html
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Issues with feature flags

Feature flags are “technical debt”
Example: financial services company with nearly $400 million in 
assets went bankrupt in 45 minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
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Diff lifecycle: Finally, in production
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What’s in a weekly branch cut? (The limits of branches)
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Post-2017 release management model at Facebook
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Google: similar story. HUGE code base
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Exponential growth
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Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers
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Google code base vs Linux kernel code base
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How do they do it?
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1. Lots of (automated) testing
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2. Lots of automation
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3. Smarter tooling

• Build system
• Version control
• …
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3a. Build system
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Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?
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Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies 
● Change 2 broke test 1

Google Continuous Build System
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Which tests to run?
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 2: a change modifies the youtube_client
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Scenario 2: a change modifies the youtube_client
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3b. Version control

• Problem: even git can get slow at Facebook-like scale
– 1M+ source control commands run per day
– 100K+ commits per week
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3b. Version control

• Solution: redesign version control 
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed à 5x faster “status” command
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts??? (remember,  git is a distributed VCS)
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts:
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts à 10x faster clones and pulls
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure
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4. Monolithic repository
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Monolithic repository – no major use of branches for 
development
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Did it work? Yes. Sustained productivity at Facebook
Lines Committed Per Developer Per Day 

Growth of the size of the 
Android and iOS dev teams 
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MONOREPO VS MANY REPOS
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A recent history of code organization

• A single team with a monolithic application in a single 
repository 

…
• Multiple teams with many separate applications in many 

separate repositories 
• Multiple teams with many separate applications

microservices in many separate repositories 
• A single team with many microservices in many repositories
…
• Many teams with many applications in one big Monorepo
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What is a Monolithic Repository (monorepo)?

A single version control repository containing multiple

I projects
I applications
I libraries,

often using a common build system.
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Monorepos in industry

Google (computer science version)
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Advantages and Disadvantages of a Monolithic Repository
A case study at Google

Ciera Jaspan, Matthew Jorde,
Andrea Knight, Caitlin Sadowski,
Edward K. Smith, Collin Winter

Google
ciera,majorde,aknight,supertri,edwardsmith,
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ABSTRACT
Monolithic source code repositories (repos) are used by sev-
eral large tech companies, but little is known about their
advantages or disadvantages compared to multiple per-project
repos. This paper investigates the relative tradeoffs by utiliz-
ing a mixed-methods approach. Our primary contribution is a
survey of engineers who have experience with both monolithic
repos and multiple, per-project repos. This paper also backs
up the claims made by these engineers with a large-scale anal-
ysis of developer tool logs. Our study finds that the visibility
of the codebase is a significant advantage of a monolithic repo:
it enables engineers to discover APIs to reuse, find examples
for using an API, and automatically have dependent code
updated as an API migrates to a new version. Engineers
also appreciate the centralization of dependency management
in the repo. In contrast, multiple-repository (multi-repo)
systems afford engineers more flexibility to select their own
toolchains and provide significant access control and stability
benefits. In both cases, the related tooling is also a significant
factor; engineers favor particular tools and are drawn to repo
management systems that support their desired toolchain.

CCS CONCEPTS
• Software and its engineering → Software configu-
ration management and version control systems;

1 INTRODUCTION
Companies today are producing more source code than ever
before. Given the increasingly large codebases involved, it
is worth examining the software engineering experience pro-
vided by the various approaches for source code management.
Large companies with multiple products typically have many
internal libraries and frameworks, and a vast number of de-
pendencies between projects from entirely separate parts of
∗Work completed while on sabbatical at Google

ICSE-SEIP ’18, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). 978-1-4503-5659-
6/18/05
DOI: 10.1145/3183519.3183550

the organization. Successfully organizing these dependencies
and frameworks is crucial for development velocity.

One approach to scaling development practices is the
monolithic repo, a model of source code organization where
engineers have broad access to source code, a shared set
of tooling, and a single set of common dependencies. This
standardization and level of access is enabled by having a
single, shared repo that stores the source code for all the
projects in an organization. Several large software companies
have already moved to this organizational model, including
Facebook, Google, and Microsoft [10, 12, 17, 21]; however,
there is little research addressing the possible advantages
or disadvantages of such a model. Does broad access to
source code let software engineers better understand APIs
and libraries, or overwhelm engineers with use cases that
aren’t theirs? Do projects benefit from shared dependency
versioning, or would engineers prefer more stability for their
dependencies? How often do engineers take advantage of
the workflows that monolithic repos enable? Do engineers
prefer having consistent, shared toolchains or the flexibility
of selecting a toolchain for their project?

In this paper, we investigate the experience of engineers
working within a monolithic repo and the tradeoffs between
using a monolithic repo and a multi-repo codebase. Specifi-
cally, this paper seeks to answer two research questions:

(1) What do developers perceive as the benefits and
drawbacks to working in a monolithic versus multi-
repo environment?

(2) To what extent do developers make use of the unique
advantages that monolithic repos provide?

To answer these questions, we ran a mixed-methods case
study within a single company with a monolithic repo. We
surveyed software engineers to understand their perceptions
about working in monolithic repos. For engineers that also
had experience working in multi-repo systems, we asked
further questions to understand the benefits of each and why
they might prefer one model over another. We also analyzed
the logs from developer tools to study the extent to which
engineers utilize their ability to view and edit all of the code
in the codebase. We examined how often engineers view and
edit code far afield from their team and organization, and we
examined whether these views are simply to popular APIs.

Our survey results show that engineers at Google strongly
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Monorepos in industry

Scaling Mercurial at Facebook
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Monorepos in industry

Microsoft claim the largest git repo on the planet
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Monorepos in open-source

2016 talk by FABIEN POTENCIER 

foresquare public monorepo
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The                              monorepo

https://github.com/symfony/symfony

Bridge/ 

   5 sub-projects 

Bundle/ 

   5 sub-projects 

Component/ 

   33 independent sub-projects like Asset, Cache, 

    CssSelector, Finder, Form, HttpKernel, Ldap, 

    Routing, Security, Serializer, Templating, 

    Translation, Yaml, ...

43 projects, 25 000 commits, and 400 000 LOC

Monorepos in open-source

2016 talk by FABIEN POTENCIER 
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Common build system

Bazel from Google

Buck from Facebook

Pants from Twitter
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Some advantages of monorepos
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High Discoverability For Developers

I Developers can read and explore the whole codebase
I grep, IDEs and other tools can search the whole codebase
I IDEs can offer auto-completion for the whole codebase
I Code Browsers can links between all artifacts in the codebase



6817-214

Code-Reuse is cheap

Almost zero cost in introducing a new library

I Extract library code into a new directory/component
I Use library in other components
I Profit!
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Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

I Extract Library/Component
I Rename Functions/Methods/Components
I Housekeeping (phpcs-fixer, Namespacing, ...)
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Another refactoring example

• Make large backward incompatible changes easily... especially 
if they span different parts of the project 

• For example, old APIs can be removed with confidence 
– Change an API endpoint code and all its usages in all projects in one 

pull request 
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Some more advantages

• Easy continuous integration and code review for changes 
spanning several projects 

• (Internal) dependency management is a non-issue 
• Less context switching for developers
• Code more reusable in other contexts 
• Access control is easy 
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Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)
• Force you to have only one version of everything 
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security 

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?
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Summary

• Software development at scale requires a lot of infrastructure
– Version control, build managers, testing, continuous integration, 

deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick 

rollback


