Principles of Software Construction:
Objects, Design, and Concurrency

Software development at scale
Bonus slides: Unseen GoF design patterns

(The end)

Michael Hilton Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

= Institute F(|
17-214 1 SOt

Administrivia

* Final exam Monday May 6t 5:30-8:30 GHC 4401
* Review session Saturday May 4t 1pm NSH 3305

= Institute F(I
17-214 2 sormuase

UML GUISs Software

Intro to Java More Git Engineering

Static Analysis
Git, CI Streams

in Practice

Part 1: Part 2: Part 3:
Design at a Class Level Designing (Sub)systems Designing Concurrent
Systems
Design for Change: Understanding the Problem
Information Hiding, Concurrency Primitives,
Contracts, Unit Testing, Responsibility Assignment, Synchronization
Design Patterns Design Patterns,
GUI vs Core, Designing Abstractions for
Design for Reuse: Design Case Studies Concurrency
Inheritance, Delegation,
Immutability, LSP, Design for Reuse at Scale:
Design Patterns Frameworks and APIs

INstitute [()i
17-214 3 SorTwALe

SOFTWARE DEVELOPMENT AT SCALE

= Institute F(I
17-214 a |NY§ o

Releasing at scale in industry

* Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

* Google: https://www.slideshare.net/JohnMiccol/2016-0425-
continuous-integration-at-google-scale

— https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-
google.html

* Why Google Stores Billions of Lines of Code in a Single
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

 F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4dyY

= Institute F« I
17-214 5 SOt

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

Pre-2017 release management model at Facebook

-
Institute F(|
17-214 6 SOt

Diff lifecycle: First, local testing

B Tools/xctool/xctool/xctool/Version.m View Options ¥

NSString * const XCToolVersionString = @"0.2.1"; NSString * const XCToolVersionString =

B ExampleTest (0.050s)

OK (1 test, 4 assertions)

—

Test and lint locally

institute for
7 I S SOFTWARE
RESEARCH

Diff lifecycle: Next, Cl testing (data center)

| Feobook Messngwr s
am v 4 v

J'J i v v, v
Sandcastle - v v v

App and Build
Configuration Matrix

-
institute for
RESEARCH

Diff lifecycle: Then, diff ends up on master

Continuous Continuous

Dogfooding

-
institute for
RESEARCH

Release every two weeks

www.facebook.com
1week of development 1 week of development
Master
Rt? rlgﬁiﬁ Stabilize Release branch
(.I,I\JIEZ?(?VY,) Every weekday (3x)

10

institute for
SOFTWARE
RESEARCH

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day);

10 pushes/day

Push-Blocking Alerts
Push-Blocking Tasks
Crash Bot for WWW

Emergency Button

03— .

2% prod Push-Blocking Alerts
Push-Blocking Tasks
Emergency Button

AL WAL

employees

100% prod

Master

AA AL & AATA A AL f A AL MA A AL A A A AL A AN A A

institute for
SOFTWARE
11 RESEARCH

Aside: Key idea — fast to deploy, slow to release

Dark launches at Instagram

e Early: Integrate as soon as possible. Find bugs early. Code can
run in production about 6 months before being publicly
announced (“dark launch”).

o Often: Reduce friction. Try things out. See what works. Push
small changes just to gather metrics, feasibility testing. Large
changes just slow down the team. Do dark launches, to see
what performance is in production, can scale up and down.
"Shadow infrastructure" is too expensive, just do in production.

e Incremental: Deploy in increments. Contain risk. Pinpoint
issues.

2 INSLItLLE [(J
17-214 12 sormiast

Aside: Feature Flags

Typical way to implement a dark launch.

|~ "‘ AE [nITIo0N Kol NFVE | i pet survey

<toggle name = "petSurvey™=
code for pending feature... VURNIRZ DYooy am
<oggle=

petSurvey: true | false

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

institute for
17-214 13 softis

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html

Issues with feature flags

Feature flags are “technical debt”

Example: financial services company with nearly S400 million in
assets went bankrupt in 45 minutes.

http://dougseven.com/2014/04/17 /knightmare-a-devops-
cautionary-tale/

= Institute F(|
17-214 14 SOt

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

Diff lifecycle: Finally, in production

v
8 9.8.8.0 8,88 8.8
Production
v v

-
institute for

SOFTWARE

15 RESEARCH

What’s in a weekly branch cut? (The limits of branches)

Weekly web branch

10000
8000

6000

Diffs

4000

2000

0
13-Jan 13-Jun 13-Nov 14-Mar 14-Aug 15-Jan 15-May 15-Sep 16-Feb 16-Jun

-
institute for
SOFTWARE
1 6 RESEARCH

Post-2017 release management model at Facebook

Quasi-continuous web release

Google: similar story. HUGE code base

Google repository statistics

Total number of files*
Number of source files
Lines of code

Depth of history

Size of content

Commits per workday

1 billion

9 million

2 billion

35 million commits
86 terabytes

45 thousand

*The total number of files includes source files copied into release branches, files that are deleted at the latest revision, configuration files, documentat

18

ion, and supporting data files

institute for
SOFTWARE
RESEARCH

Exponential growth

Millions of changes committed (cumulative)

1/1/2000 1/1/2005 1/1/2010 1/1/2015

2016 numbers
Google Speed and Scale

e >30,000 developers in 40+ offices
e 13,000+ projects under active development

e 30k submissions per day (1 every 3 seconds)

e All builds from source

e 30+ sustained code changes per minute with 90+ peaks
e 50% of code changes monthly

e 150+ million test cases / day, > 150 years of test / day

e Supports continuous deployment for all Google teams!

Google Confidential and Proprietary

17-214 20 YN ok

Google code base vs Linux kernel code base

Some perspective

e 15 million lines of code in 40 thousand files (total)

e 15 million lines of code in 250 thousand files changed per week,
by humans

e 2 billion lines of code, in 9 million source files (total)

institute for
SOFTWARE
2 1 RESEARCH

How do they do it?

17-214 e o
2 2 RESEARCH

1. Lots of (automated) testing

Google workflow

Sync user
workspace
to repo

=

Write code

=

Code
review

—

Commit

e All code is reviewed before commit (by humans and automated tooling)

e Each directory has a set of owners who must approve the change to their
area of the repository

» Tests and automated checks are performed before and after commit
e Auto-rollback of a commit may occur in the case of widespread breakage

23 [Hi

institute for
SOFTWARE
RESEARCH

2. Lots of automation

Additional tooling support

Critique Code review

CodeSearch* Code browsing, exploration, understanding, and archeology
Tricorder** Static analysis of code surfaced in Critique, CodeSearch
Presubmits Customizable checks, testing, can block commit

TAP Comprehensive testing before and after commit, auto-rollback

Rosie Large-scale change distribution and management

* See “How Developers Search for Code: A Case Study”, In European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2015

** See “Tricorder: Building a program analysis ecosystem”, In International Conference on Software Engineering (ICSE), 2015

institute for
SOFTWARE
24 RESEARCH

3. Smarter tooling

* Build system
* \Version control

institute for

17-214 25 [YN sorne

3a. Build system

institute for

17-214 26 (1N o

Google

17-214

Triggers builds in continuous cycle

Cycle time = longest build + test cycle

Tests many changes together
Which change broke the build?

Standard Continuous Build System

Change 1

-

Change 2 Change 3
] |
: >
I ™
Test One Test One
Test Two Test Two

-

27

SOFTWARE
RESEARCH

Google

e Triggers tests on every change
e Uses fine-grained dependencies
e Change 2 broke test 1

17-214

Google Continuous Build System

Change 1 Change 2 Change 3

Test One

Test Two

Test One
Test Two

] |
I " I

Test One | Test One :

Test Two Test Two

: : :

28

RESEARCH

Which tests to run?

GMAIL

Test Target:
name: //depot/gmail_client_tests
name: //depot/gmail_server_tests

buzz_client_tests @il_client_t@ @il_server_t@

youtube_client gmail_client

BUZZ

Test targets:
name: //depot/buzz_server_tests
name: //depot/buzz_client_tests

gmail_server

buzz_server

youtube_server >

common_collections_util >

17-214

institute for

-
- SOF TWARE
31 i S RESEARCH

Scenario 1: a change modifies common_collections_util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying common collections util
common_collections_util is E:> < — = >

submitted.

N

Institute for
17-214 32 sor e

Scenario 1: a change modifies common_collections_util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests
[B

buzz_client : buzz_server

youtube_client gmail_client Qutube_serD

When a change modifying common_collections_util
common_collections_util is = (~ =

submitted.

institute for
17-214 33 softns

Scenario 1: a change modifies common_collections_util

buzz_client_tests gmail_client_tests

@il_server_tesD buzz_server_tests

gmail_client < youtube_server >
N

When a change modifying common_collections_util
common_collections_util is = < - -

submitted.

m

youtube _ cllent

institute for
17-214 34 [Hleis

Scenario 1: a change modifies common_collections_util

All tests are affected! Both Gmail and Buzz projects need to be updated

buzz _client_tests gmail_client_tests @I server tesD @

“ /

youtube _ cllent gma|l cllent

When a change modifying common_collections_util
common_collections_util is = < - =

submitted.

youtube_server >

institute for
17-214 35 [Fl e

Scenario 2: a change modifies the youtube_ client

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying
youtube_client is submitted.

common_collections_util

-
itute for

17-214 36 [HI o

RESEARCH

Scenario 2: a change modifies the youtube_ client

Only buzz_client_tests are run and
only Buzz project needs to be updated.

buzz_client_tests)

gmail_client_tests

gmail_client

youtube_client

When a change modifying
youtube_client is submitted.

& \

common_collections_util

17-214

gmail_server_tests buzz_server_tests

>

buzz_server

#

gmail_server

youtube_server
/ / % g

¥

institute for
I S SOFTWARE
RESEARCH

37

3b. Version control

* Problem: even git can get slow at Facebook-like scale
— 1M+ source control commands run per day
— 100K+ commits per week

Cloning with git: iOS Today

Many files
Deep history

Large “footprint” makes git slow

ios (git)

institute for

17-214 38 |ISY§ sormvax

3b. Version control

* Solution: redesign version control

Enter Mercurial: Sparse Checkouts

Work on only the files you need. Enter Mercurial: Shallow History

Build system knows how to

check out more.
Work locally without complete history.

~/fbsource/.hg

Need more history?
Downloaded automatically on demand.

institute for
39 I S r SOFTWARE
RESEARCH

3b. Version control

* Solution: redesign version control

— Query build system's file monitor, Watchman, to see which files have
changed

= Institute F(|
17-214 40 SOt

3b. Version control

* Solution: redesign version control

— Query build system's file monitor, Watchman, to see which files have
changed = 5x faster “status” command

status diff, no changes diff, one change update to parent commit one
change

Time

B Watchman on ® Watchman off

17-214 41

3b. Version control

* Solution: redesign version control
— Sparse checkouts??? (remember, gitis a distributed VCS)

= Institute F(|
17-214 42 SOt

3b. Version control

* Solution: redesign version control
— Sparse checkouts:

— Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

— When a user performs an operation that needs the contents of files (such
as checkout), download the file contents on demand using existing
memcache infrastructure

2 Institute F(I
17-214 43 sormunse

3b. Version control

* Solution: redesign version control
— Sparse checkouts = 10x faster clones and pulls

— Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

— When a user performs an operation that needs the contents of files (such
as checkout), download the file contents on demand using existing
memcache infrastructure

" remotefilelog
“ Basic Hg
17-214 large rebase large pull clone S é?;iﬂ“:‘@'{“ﬁ

4. Monolithic repository

-
Institute for
17-214 as SOt

Monolithic repository — no major use of branches for
development

Trunk-based development

» Piper users work at “head”, a consistent view of the codebase

» All changes are made to the repository in a single, serial ordering
e There is no significant use of branching for development

» Release branches are cut from a specific revision of the repository

trunk / mainline
cherry pick

release branch

-
institute for
SOFTWARE
46 RESEARCH

Did it work? Yes. Sustained productivity at Facebook

Lines Committed Per Developer Per Day
200

150

100

50 hd
I
Y
0

yun 2045 20321 2003, 200 1 2032162017 59 2037 203

-« +Android
e [O 1

Growth of the size of the
Android and iOS dev teams

N N 2 1 > > Y S S ©
o \ o Y ,Lg‘\ ,("LQ\' q,LQ'\' \‘..LQ\' clg‘\ ‘\,Lg‘\ (\,LQ\ \,LQ'\ ‘07’0‘»
Y W <@ oo e oe® X W0 W ¢ W V' W <©

= institute for
17-214 47 SOttt

MONOREPO VS MANY REPOS

= Institute F(I
17-214 a8 sormuase

A recent history of code organization

* Asingle team with a monolithic application in a single
repository

* Multiple teams with many separate applications in many
separate repositories

* Multiple teams with many separate-applications

microservices in many separate repositories
* Asingle team with many microservices in many repositories

* Many teams with many applications in one big Monorepo

2 Institute F« I
17-214 49 sormunse

What is a Monolithic Repository (monorepo)?

A single version control repository containing multiple

> projects
» applications
> libraries,

often using a common build system.

passion for soffware quality
Copyright Qafoo GmbH; All Rights Reserved

17-214 2015 talk by Benjamin Eberlei 50 Sortingt

RESEARCH

Monorepos in industry

Google (computer science version

17-214

ACM About Communications ACM Resources Alerts & Feeds

COMMUNICATIONS

OF THE

ACM

HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE

Home / Magazine Archive / July 2016 (Vol. 59, No. 7) / Why Google Stores Billions of Lines of Code in a Single... / Full Text

CONTRIBUTED ARTICLES

SIGN IN

Search r

CAREERS ARCHIVE VIDEOS

Why Google Stores Billions of Lines of Code in a Single

Repository

By Rachel Potvin, Josh Levenberg

Communications of the ACM, Vol. 59 No. 7, Pages 78-87
10.1145/2854146

Comments (3)

VIEWAs:-ng .@..ﬂ .SHARE: .L']“@ .@-@- 3 .

Early Google employees decided to work with a shared codebase
managed through a centralized source control system. This
approach has served Google well for more than 16 years, and
today the vast majority of Google's software assets continues to
be stored in a single, shared repository. Meanwhile, the number
of Google software developers has steadily increased, and the size
of the Google codebase has grown exponentially (see Figure 1). As
a result, the technology used to host the codebase has also
evolved significantly.

Back to Top

IZ Ave haninkda

SIGN IN for Full Access

» Forgot Password?
» Create an ACM Web Account

SIGN IN

ARTICLE CONTENTS:
Introduction

Key Insights
Google-Scale
Background
Analysis

Altarnativae

institute for
52 i SOFTWARE
RESEARCH

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

Advantages and Disadvantages of a Monolithic Repository
A case study at Google

Ciera Jaspan, Matthew Jorde,
Andrea Knight, Caitlin Sadowski,

Edward K. Smith, Collin Winter
Google
ciera,majorde,aknight,supertri,edwardsmith,
collinwinter@google.com

ABSTRACT

Monolithic source code repositories (repos) are used by sev-
eral large tech companies, but little is known about their
advantages or disadvantages compared to multiple per-project
repos. This paper investigates the relative tradeoffs by utiliz-
ing a mixed-methods approach. Our primary contribution is a
survey of engineers who have experience with both monolithic
repos and multiple, per-project repos. This paper also backs
up the claims made by these engineers with a large-scale anal-
ysis of developer tool logs. Our study finds that the visibility
of the codebase is a significant advantage of a monolithic repo:
it enables engineers to discover APIs to reuse, find examples
for using an API, and automatically have dependent code
updated as an API migrates to a new version. Engineers
also appreciate the centralization of dependency management
in the repo. In contrast, multiple-repository (multi-repo)
systems afford engineers more flexibility to select their own
toolchains and provide significant access control and stability
benefits. In both cases, the related tooling is also a significant
factor; engineers favor particular tools and are drawn to repo
management systems that support their desired toolchain.

CCS CONCEPTS

« Software and its engineering — Software configu-
ration management and version control systems;

1 INTRODUCTION

Companies today are producing more source code than ever
before. Given the increasingly large codebases involved, it
is worth examining the software engineering experience pro-

Emerson Murphy-Hill*
NC State University
emerson@csc.ncsu.edu

the organization. Successfully organizing these dependencies
and frameworks is crucial for development velocity.

One approach to scaling development practices is the
monolithic repo, a model of source code organization where
engineers have broad access to source code, a shared set
of tooling, and a single set of common dependencies. This
standardization and level of access is enabled by having a
single, shared repo that stores the source code for all the
projects in an organization. Several large software companies
have already moved to this organizational model, including
Facebook, Google, and Microsoft [10, 12, 17, 21]; however,
there is little research addressing the possible advantages
or disadvantages of such a model. Does broad access to
source code let software engineers better understand APIs
and libraries, or overwhelm engineers with use cases that
aren’t theirs? Do projects benefit from shared dependency
versioning, or would engineers prefer more stability for their
dependencies? How often do engineers take advantage of
the workflows that monolithic repos enable? Do engineers
prefer having consistent, shared toolchains or the flexibility
of selecting a toolchain for their project?

In this paper, we investigate the experience of engineers
working within a monolithic repo and the tradeoffs between
using a monolithic repo and a multi-repo codebase. Specifi-
cally, this paper seeks to answer two research questions:

(1) What do developers perceive as the benefits and
drawbacks to working in a monolithic versus multi-
repo environment?

(2) To what extent do developers make use of the unique
advantages that monolithic repos provide?

53

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Scaling Mercurial at Facebook

17-214

n Code

Open Source Platforms v Infrastructure Systems v Hardware Infrastructure v Video & VR v Artificial Intelligence v

@® 7 January 2014 ¥ INFRA - OPEN SOURCE - PERFORMANCE - OPTIMIZATION

Scaling Mercurial at Facebook
* Durham Goode . Siddharth P Agarwal

With thousands of commits a week across hundreds of thousands of files, Facebook's main source
repository is enormous--many times larger than even the Linux kernel, which checked in at 17 million
lines of code and 44,000 files in 2013. Given our size and complexity—and Facebook's practice of
shipping code twice a day--improving our source control is one way we help our engineers move fast.

Choosing a source control system

Two years ago, as we saw our repository continue to grow at a staggering rate, we sat down and
extrapolated our growth forward a few years. Based on those projections, it appeared likely that our
then-current technology, a Subversion server with a Git mirror, would become a productivity
bottleneck very soon. We looked at the available options and found none that were both fast and
easy to use at scale.

Our code base has grown organically and its internal dependencies are very complex. We could have
spent a lot of time making it more modular in a way that would be friendly to a source control tool, but
there are a number of benefits to using a single repository. Even at our current scale, we often make

large changes throughout our code base, and having a single repository is useful for continuous

Recommended

Scaling memcached at Facebook

Flashcache at Facebook: From
2010 to 2013 and beyond

54

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Microsoft claim the largest git repo on the planet

17-214

Server & Tools Blogs > Developer Tools Blogs > Brian Harrys blog

Languages .NET Platform

Executive Bloggers

Visual Studio DevOps

Development

Brian Harrys blog

Everything you want to know about Visual Studio ALM and Farming

The largest Git repo on the planet

05/24/2017 by Brian Harry MS // 59 Comments

B3 Share 2.2k 3213 _

It's been 3 months since | first wrote about our efforts to scale Git to extremely large projects and teams with an effort we called “Git Virtual
File System”. As a reminder, GVFS, together with a set of enhancements to Git, enables Git to scale to VERY large repos by virtualizing both the
.git folder and the working directory. Rather than download the entire repo and checkout all the files, it dynamically downloads only the
portions you need based on what you use.

A lot has happened and | wanted to give you an update. Three months ago, GVFS was still a dream. | don’t mean it didn't exist — we had a
concrete implementation, but rather, it was unproven. We had validated on some big repos but we hadn't rolled it out to any meaningful
number of engineers so we had only conviction that it was going to work. Now we have proof.

Today, | want to share our results. In addition, we're announcing the next steps in our GVFS journey for customers, including expanded open
sourcing to start taking contributions and improving how it works for us at Microsoft, as well as for partners and customers.

Windows is live on Git
Over the past 3 months, we have largely completed the rollout of Git/GVFS to the Windows team at Microsoft.

As a refresher, the Windows code base is approximately 3.5M files and, when checked in to a Git repo, results in a repo of about 300GB.

Sign in

Data Development

Visual Studio

Download Visual Studio @
Download TFS @
Visual Studio Team Services @

Search

Search MSDN with Bing Jeol

Search this blog ® Search all blogs

Subscribe Blog via Email

Subscribe to this blog and receive
notifications of new posts by email.
Email Address

Subscribe! Unsubscribe
Rack to

-
institute for
SOFTWARE
55 RESEARCH

Monorepos in open-source

foresquare public monorepo

LI foursquare / fsgio

<> Code Issues

20

A monorepo that holds all of Foursquare's opensource projects

pants foursquare

{ 538 commits

monorepo

© Watch ~
Pull requests 0 Projects 0 Wiki Insights
mongodb rogue scala
¥ 1branch © 2 releases 42 16 contributors

Create new file = Upload files = Find file Clone or download ¥

Branch: master v

New pull request

& mateor committed with mateor Upgrade Fsq.io Travis config to use mongodb3.0+ (#780)

il 3rdparty

B build-support
I scripts/fsqio
Il src

i test

[.dockerignore
B .gitignore

B travisyml

[E) BUILD.opensource
&) BUILD.tools
B CLAmd

= CONTRIRUTING.md

17-214

2016 talk by FABIEN POTENCIER

Update the testinfra deployed file (#748)

Monolithic lvy resolve commit (#530)

Add a check for the current file before deleting (#709)

Add installation instructions to pom

Spindle: Make ThriftParserTest actually depend on its input (#735)
Update fsqio/fsqio Dockerfile and add one for fsqio/twofishes
Update upkeep to no longer clobber global variables
Upgrade Fsq.io Travis config to use mongodb3.0+ (#780)
Monolithic Ivy resolve commit (#530)

Drop a BUILD.tools in Fsq.io.

Move deployed files to consolidated directory.

Post a CONTRIBUTING.md

80

W Star | 120 ¥ Fork | 19

&fs Apache-2.0
I |

Latest commit 494b379 on 1 Aug

3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
2 years ago
10 months ago
3 months ago
3 months ago
8 months ago
2 years ago

? vears aan

56

institute for
SOFTWARE
RESEARCH

Monorepos in open-source

The @) Symfony monorepo
43 projects, 25 000 commits, and 400 000 LOC

https://github.com/symfony/symfony

Bridge/
5 sub-projects
Bundle/
5 sub-projects
Component/
33 independent sub-projects like Asset, Cache,

CssSelector, Finder, Form, HttpKernel, Ldap,
Routing, Security, Serializer, Templating,

Translation, Yaml, ...

2016 talk by FABIEN POTENCIER 57

Common build system

Bazel from Google

Documentation Contribute Blog

GET I

Search

Spee

and
Bazel ¢
Getting Started n
disrbe iy Pants: A fast, scalable build system
depenc E Setting Up Pants
executi 9 Tutorial e
increm le

Common Tasks Pants is a build system designed for codebases that:

v Parits Baslcs « Are large and/or growing rapidly.
« Consist of many subprojects that share a significant amount of code.
E Why Use Pants?
« Have complex dependencies on third-party libraries.
Pants Concepts .
« Use a variety of languages, code generators and frameworks.

BUILD files

Target Addresses

Third-Party Dependencies Pants supports Java, Scala, Python, C/C++, Go, Javascript/Node, Thrift, Protobuf and Android

Pants Options code. Adding support for other languages, frameworks and code generators is straightforward.

Invoking Pants Pants is a collaborative open-source project, built and used by Twitter, Foursquare, Square, Medium and other companies.

Reporting Server

IDE Support Getting Started

UM « Installing Pants
JVM Projects with Pants + Setting Up Pants
o Tutorial
JVM 3rdparty Pattern
Scala Support
Publishing Artifacts Cookbook
Pants for Maven Experts The Common Tasks ion is a practical, soluti iented guide to some of the Pants tasks that you're most likely to carry out on a daily basis.

institute for
17'2 14 59 i S SOFTWARE

RESEARCH

Some advantages of monorepos

= Institute F(|
17-214 66 sorm:

High Discoverability For Developers

» Developers can read and explore the whole codebase

» grep, IDEs and other tools can search the whole codebase

» |IDEs can offer auto-completion for the whole codebase

» Code Browsers can links between all artifacts in the codebase

passion for soffware quality
Copyright Qafoo GmbH; All Rights Reserved

-
institute for
17-214 67 softis

Code-Reuse is cheap

Almost zero cost in introducing a new library

» Extract library code into a new directory/component
» Use library in other components

> Profit!
passion for soffware quality

-
institute for
17-214 68 SOt

Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

» Extract Library/Component
» Rename Functions/Methods/Components
» Housekeeping (phpcs-fixer, Namespacing, ...)

%%
=~ Jafoo

passion for software quality

Copyright Qafoo GmbH; All Rights Reserved

-
institute for
17-214 69 softns

Another refactoring example

* Make large backward incompatible changes easily... especially
if they span different parts of the project

* For example, old APIs can be removed with confidence
— Change an APl endpoint code and all its usages in all projects in one
pull request

2 Institute F(I
17-214 70 sormunse

Some more advantages

* Easy continuous integration and code review for changes
spanning several projects

e (Internal) dependency management is a non-issue

* Less context switching for developers

 Code more reusable in other contexts

* Access control is easy

= Institute F(I
17-214 71 sormunse

Some downsides

* Require collective responsibility for team and developers

* Require trunk-based development
— Feature toggles are technical debt (recall financial services example)

* Force you to have only one version of everything

e Scalability requirements for the repository

e Can be hard to deal with updates around things like security
issues

* Build and test bloat without very smart build system

* Slow VCS without very smart system

* Permissions?

2 INSLItLLE F(JY
17-214 72 sormiast

Summary

Software development at scale requires a lot of infrastructure

— Version control, build managers, testing, continuous integration,
deployment, ...

* It’s hard to scale development
— Move towards heavy automation (DevOps)

* Continuous deployment increasingly common

* Opportunities from quick release, testing in production, quick
rollback

2 Institute F(I
17-214 73 sormunse

