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Administrivia

• Final Exam:  Monday, May 6, 2019 05:30 p.m. - 08:30 p.m. 
– LOCATION: GHC 4401
– Review Session Saturday, May 4th, 1-3pm in NSH 3305
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Simple Layers App
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More functionality



617-214

Even more functionality
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Organize our backend
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How to scale?
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Monolith

• What happens when we need 100 
servers?

• What if we don’t use all modules 
equally?

• How can we update individual 
models?

• Do all modules need to use the 
same DB, language, runtime, etc?
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Microservices
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Microservice costs

• Distribution
• Eventual Consistency
• Operational complexity
• Leads to more API design decisions
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Why DevOps?

• Developers and Operations don’t have the same goals
– Devs want to push new features
– Ops wants to keep the system available (stable, tested, etc.)s

• Poor communication between Dev and Ops
• Limited capacity of operations staff
• Want to reduce time to market for new features
• Reduce “Throw it over the fence” syndrome
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DevOps Definition

• “DevOps is a set of practices intended 
to reduce the time between committing 
a change to a system and the change 
being placed into normal production, 
while ensuring high quality.”
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What are implications of DevOps?

• Quality of the code must be high
– Testing

• Quality of the build & delivery mechanism must be high
– Automation & more testing

• Time is split:
– From commit to deployment to production
– From deployment to acceptance into normal production

• Goal-oriented definition
– May use agile methods, continuous deployment (CD), etc. 
– Likely to use tools

• Achieving it starts before committing
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Microservices rely on DevOps
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DevOps Toolchain

• Code — code development and review, source code 
management tools, code merging

• Build — continuous integration tools, build status
• Test — continuous testing tools that provide feedback on 

business risks
• Package — artifact repository, application pre-deployment 

staging
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DevOps Toolchain continued

• Release — change management, release approvals, release 
automation

• Configure — infrastructure configuration and 
management, Infrastructure as Code tools

• Monitor — applications performance monitoring, end–user 
experience
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DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging
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DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging

More on Code Review in 17-313
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DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging
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DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging
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DevOps Toolchain - Build

• Continuous integration tools
• Build status
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Example

Create Pull Request
GitHub tells Travis CI 

build is mergeable
It builds and passes tests
Travis updates PR 
PR is merged
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Findings
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Experiences
Do developers on projects with CI give (more/similar/less) value to 
automated tests?

(B)road (F)ocused

2
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Experiences
Do developers on projects with CI give (more/similar/less) value to 
automated tests?
Do projects with CI have (higher/similar/lower) test quality? 

(B)road (F)ocused

2
7



2817-214

Experiences
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Experiences
Do developers on projects with CI give (more/similar/less) value to 
automated tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

(B)road (F)ocused

2
9
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BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows

https://www.atlassian.com/git/tutorials/comparing-workflows
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1. Centralized workflow

• Central repository to serve as the single point-of-entry for all 
changes to the project

• Default development branch is called master
– all changes are committed into master
– doesn’t require any other branches
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Example
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Example
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Example
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Example

git push origin master
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Example

git push origin master
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git push origin master

error: failed to push some refs to '/path/to/repo.git' hint: 
Updates were rejected because the tip of your current branch is 
behind hint: its remote counterpart. Merge the remote changes 
(e.g. 'git pull') hint: before pushing again. hint: See the 
'Note about fast-forwards' in 'git push --help' for details.
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Example

git pull --rebase 
origin master
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Example



4117-214

Example

git rebase --continue
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Example
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2. Git Feature Branch Workflow

• All feature development should take place in a dedicated branch 
instead of the master branch

• Multiple developers can work on a particular feature without 
disturbing the main codebase
– master branch will never contain broken code (enables CI)
– Enables pull requests (code review)
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Example

git checkout -b marys-feature master

git status 
git add <some-file> 
git commit
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Example

git push -u origin marys-feature
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Example

git push
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Example
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Example
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Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push
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3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– master stores the official release history; tag all commits in 
the master branch with a version number

– develop serves as an integration branch for features
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GitFlow feature branches (from develop)
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GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks
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GitFlow hotfix branches
used to quickly patch 
production releases
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Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control
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DEVELOPMENT AT SCALE
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Releasing at scale in industry

• Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

• Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
– https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-

google.html

• Why Google Stores Billions of Lines of Code in a Single 
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY
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Pre-2017 release management model at Facebook
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Diff lifecycle: local testing
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Diff lifecycle: CI testing (data center)
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Diff lifecycle: diff ends up on master
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Release every two weeks



6217-214

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 
10 pushes/day
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Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can 
run in production about 6 months before being publicly 
announced (“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push 
small changes just to gather metrics, feasibility testing. Large 
changes just slow down the team. Do dark launches, to see 
what performance is in production, can scale up and down. 
"Shadow infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint 
issues.
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Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html
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Issues with feature flags

Feature flags are “technical debt”
Example: financial services company went bankrupt in 45 minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
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Diff lifecycle: in production
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What’s in a weekly branch cut? (The limits of branches)
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Post-2017 release management model at Facebook
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Google: similar story. HUGE code base
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Exponential growth
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Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers
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Google code base vs Linux kernel code base
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How do they do it?
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1. Lots of (automated) testing
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2. Lots of automation
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3. Smarter tooling

• Build system
• Version control
• …
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3a. Build system
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Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?
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Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies 
● Change 2 broke test 1

Google Continuous Build System
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Google Confidential and Proprietary

Continuous Integration Display
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Google Confidential and Proprietary

● Identifies failures sooner

● Identifies culprit change precisely

○ Avoids divide-and-conquer and tribal knowledge

● Lower compute costs using fine grained dependencies 

● Keeps the build green by reducing time to fix breaks

● Accepted enthusiastically by product teams

● Enables teams to ship with fast iteration times

○ Supports submit-to-production times of less than 36 

hours for some projects

Benefits
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Google Confidential and Proprietary

● Requires enormous investment in compute resources (it 
helps to be at Google) grows in proportion to:
○ Submission rate
○ Average build + test time
○ Variants (debug, opt, valgrind, etc.)
○ Increasing dependencies on core libraries
○ Branches

● Requires updating dependencies on each change
○ Takes time to update - delays start of testing

Costs
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Which tests to run?
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 2: a change modifies the youtube_client
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Scenario 2: a change modifies the youtube_client
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3b. Version control

• Problem: even git can get slow at Facebook scale
– 1M+ source control commands run per day
– 100K+ commits per week
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3b. Version control

• Solution: redesign version control 
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed à 5x faster “status” command
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts??? (remember,  git is a distributed VCS)
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts:
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts à 10x faster clones and pulls
– Change the clone and pull commands to download only the commit 

metadata, while omitting all file changes (the bulk of the download) 
– When a user performs an operation that needs the contents of files (such 

as checkout), download the file contents on demand using existing 
memcache infrastructure
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4. Monolithic repository
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Monolithic repository – no major use of branches for 
development



9917-214

Did it work? Yes. Sustained productivity at Facebook
Lines Committed Per Developer Per Day 

Growth of the size of the 
Android and iOS dev teams 
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MONOREPO VS MANY REPOS
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A recent history of code organization

• A single team with a monolithic application in a single repository 
…
• Multiple teams with many separate applications in many 

separate repositories 
• Multiple teams with many separate applications microservices in 

many separate repositories 
• A single team with many microservices in many repositories
…
• Many teams with many applications in one big Monorepo
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What is a monolithic repository (monorepo)?

• A single version control repository containing multiple 
– Projects
– Applications
– Libraries

• often using a common build system. 

2015 talk by Benjamin Eberlei
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History of Version Control

Before Git/Mercurial we all used Subversion and
monorepos where widespread.
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What is a Monolithic Repository (monorepo)?

A single version control repository containing multiple

I projects
I applications
I libraries,

often using a common build system.
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Monorepos in industry

Google (computer science version)
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Monorepos in industry

Scaling Mercurial at Facebook
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Monorepos in industry

Microsoft claim the largest git repo on the planet
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Monorepos in open-source

2016 talk by FABIEN POTENCIER 

foresquare public monorepo
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The                              monorepo

https://github.com/symfony/symfony

Bridge/ 

   5 sub-projects 

Bundle/ 

   5 sub-projects 

Component/ 

   33 independent sub-projects like Asset, Cache, 

    CssSelector, Finder, Form, HttpKernel, Ldap, 

    Routing, Security, Serializer, Templating, 

    Translation, Yaml, ...

43 projects, 25 000 commits, and 400 000 LOC

Monorepos in open-source

2016 talk by FABIEN POTENCIER 
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Common build system

Bazel from Google

Buck from Facebook

Pants from Twitter
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Some advantages of monorepos
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High Discoverability For Developers

I Developers can read and explore the whole codebase
I grep, IDEs and other tools can search the whole codebase
I IDEs can offer auto-completion for the whole codebase
I Code Browsers can links between all artifacts in the codebase
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Code-Reuse is cheap

Almost zero cost in introducing a new library

I Extract library code into a new directory/component
I Use library in other components
I Profit!
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Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

I Extract Library/Component
I Rename Functions/Methods/Components
I Housekeeping (phpcs-fixer, Namespacing, ...)
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Another refactoring example

• Make large backward incompatible changes easily... especially if 
they span different parts of the project 

• For example, old APIs can be removed with confidence 
– Change an API endpoint code and all its usages in all projects in one pull 

request 
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Some more advantages

• Easy continuous integration and code review for changes 
spanning several projects 

• (Internal) dependency management is a non-issue 
• Less context switching for developers
• Code more reusable in other contexts 
• Access control is easy 
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Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)

• Force you to have only one version of everything 
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security 

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?
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Summary

• Configuration management
– Treat infrastructure as code
– Git is powerful

• Release management: versioning, branching, …
• Software development at scale requires a lot of infrastructure

– Version control, build managers, testing, continuous integration, 
deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick 

rollback
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