
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps continued and Ethics

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• Final Exam: Monday, May 6, 2019 05:30 p.m. - 08:30 p.m.
– LOCATION: GHC 4401
– Review Session Saturday, May 4th, 1-3pm in NSH 3305

317-214

417-214

Simple Layers App

517-214

More functionality

617-214

Even more functionality

717-214

Organize our backend

817-214

How to scale?

917-214

Monolith

• What happens when we need 100
servers?

• What if we don’t use all modules
equally?

• How can we update individual
models?

• Do all modules need to use the
same DB, language, runtime, etc?

1017-214

Microservices

1117-214

Microservice costs

• Distribution
• Eventual Consistency
• Operational complexity
• Leads to more API design decisions

1217-214

1317-214

Why DevOps?

• Developers and Operations don’t have the same goals
– Devs want to push new features
– Ops wants to keep the system available (stable, tested, etc.)s

• Poor communication between Dev and Ops
• Limited capacity of operations staff
• Want to reduce time to market for new features
• Reduce “Throw it over the fence” syndrome

1417-214

DevOps Definition

• “DevOps is a set of practices intended
to reduce the time between committing
a change to a system and the change
being placed into normal production,
while ensuring high quality.”

1517-214

What are implications of DevOps?

• Quality of the code must be high
– Testing

• Quality of the build & delivery mechanism must be high
– Automation & more testing

• Time is split:
– From commit to deployment to production
– From deployment to acceptance into normal production

• Goal-oriented definition
– May use agile methods, continuous deployment (CD), etc.
– Likely to use tools

• Achieving it starts before committing

1617-214

Microservices rely on DevOps

1717-214

DevOps Toolchain

• Code — code development and review, source code
management tools, code merging

• Build — continuous integration tools, build status
• Test — continuous testing tools that provide feedback on

business risks
• Package — artifact repository, application pre-deployment

staging

1817-214

DevOps Toolchain continued

• Release — change management, release approvals, release
automation

• Configure — infrastructure configuration and
management, Infrastructure as Code tools

• Monitor — applications performance monitoring, end–user
experience

1917-214

DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging

2017-214

DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging

More on Code Review in 17-313

2117-214

DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging

2217-214

DevOps Toolchain - Code

• Code development and review
• Source code management tools
• Code merging

2317-214

DevOps Toolchain - Build

• Continuous integration tools
• Build status

2417-214

Example

Create Pull Request
GitHub tells Travis CI

build is mergeable
It builds and passes tests
Travis updates PR
PR is merged

2517-214

Findings

Speed

Certainty

Flexibility

Simplicity
Access

Information Security

Speed

Certainty

Flexibility

Simplicity
Access

Information Security

2617-214

Experiences
Do developers on projects with CI give (more/similar/less) value to
automated tests?

(B)road (F)ocused

2
6

2717-214

Experiences
Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?

(B)road (F)ocused

2
7

2817-214

Experiences
Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?

(B)road (F)ocused

2
8

2917-214

Experiences
Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

(B)road (F)ocused

2
9

3017-214

BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows

https://www.atlassian.com/git/tutorials/comparing-workflows

3117-214

1. Centralized workflow

• Central repository to serve as the single point-of-entry for all
changes to the project

• Default development branch is called master
– all changes are committed into master
– doesn’t require any other branches

3217-214

Example

3317-214

Example

3417-214

Example

3517-214

Example

git push origin master

3617-214

Example

git push origin master

3717-214

git push origin master

error: failed to push some refs to '/path/to/repo.git' hint:
Updates were rejected because the tip of your current branch is
behind hint: its remote counterpart. Merge the remote changes
(e.g. 'git pull') hint: before pushing again. hint: See the
'Note about fast-forwards' in 'git push --help' for details.

3817-214

Example

git pull --rebase
origin master

3917-214

4017-214

Example

4117-214

Example

git rebase --continue

4217-214

Example

4317-214

2. Git Feature Branch Workflow

• All feature development should take place in a dedicated branch
instead of the master branch

• Multiple developers can work on a particular feature without
disturbing the main codebase
– master branch will never contain broken code (enables CI)
– Enables pull requests (code review)

4417-214

Example

git checkout -b marys-feature master

git status
git add <some-file>
git commit

4517-214

Example

git push -u origin marys-feature

4617-214

Example

git push

4717-214

Example

4817-214

Example

4917-214

Example - Merge pull request

git checkout master
git pull
git pull origin marys-feature
git push

5017-214

3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– master stores the official release history; tag all commits in
the master branch with a version number

– develop serves as an integration branch for features

5117-214

GitFlow feature branches (from develop)

5217-214

GitFlow release branches (eventually into master)

no new features after this
point—only bug fixes, docs,
and other release tasks

5317-214

GitFlow hotfix branches
used to quickly patch
production releases

5417-214

Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control

5517-214

DEVELOPMENT AT SCALE

5617-214

Releasing at scale in industry

• Facebook: https://atscaleconference.com/videos/rapid-release-
at-massive-scale/

• Google: https://www.slideshare.net/JohnMicco1/2016-0425-
continuous-integration-at-google-scale
– https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-

google.html

• Why Google Stores Billions of Lines of Code in a Single
Repository: https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

5717-214

Pre-2017 release management model at Facebook

5817-214

Diff lifecycle: local testing

5917-214

Diff lifecycle: CI testing (data center)

6017-214

Diff lifecycle: diff ends up on master

6117-214

Release every two weeks

6217-214

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day);
10 pushes/day

6317-214

Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can
run in production about 6 months before being publicly
announced (“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push
small changes just to gather metrics, feasibility testing. Large
changes just slow down the team. Do dark launches, to see
what performance is in production, can scale up and down.
"Shadow infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint
issues.

6417-214

Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html

6517-214

Issues with feature flags

Feature flags are “technical debt”
Example: financial services company went bankrupt in 45 minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-
cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

6617-214

Diff lifecycle: in production

6717-214

What’s in a weekly branch cut? (The limits of branches)

6817-214

Post-2017 release management model at Facebook

6917-214

Google: similar story. HUGE code base

7017-214

Exponential growth

7117-214

Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers

7217-214

Google code base vs Linux kernel code base

7317-214

How do they do it?

7417-214

1. Lots of (automated) testing

7517-214

2. Lots of automation

7617-214

3. Smarter tooling

• Build system
• Version control
• …

7717-214

3a. Build system

7817-214

Google Confidential and Proprietary

Standard Continuous Build System
● Triggers builds in continuous cycle
● Cycle time = longest build + test cycle
● Tests many changes together
● Which change broke the build?

7917-214

Google Confidential and Proprietary

● Triggers tests on every change
● Uses fine-grained dependencies
● Change 2 broke test 1

Google Continuous Build System

8017-214

Google Confidential and Proprietary

Continuous Integration Display

8117-214

Google Confidential and Proprietary

● Identifies failures sooner

● Identifies culprit change precisely

○ Avoids divide-and-conquer and tribal knowledge

● Lower compute costs using fine grained dependencies

● Keeps the build green by reducing time to fix breaks

● Accepted enthusiastically by product teams

● Enables teams to ship with fast iteration times

○ Supports submit-to-production times of less than 36

hours for some projects

Benefits

8217-214

Google Confidential and Proprietary

● Requires enormous investment in compute resources (it
helps to be at Google) grows in proportion to:
○ Submission rate
○ Average build + test time
○ Variants (debug, opt, valgrind, etc.)
○ Increasing dependencies on core libraries
○ Branches

● Requires updating dependencies on each change
○ Takes time to update - delays start of testing

Costs

8317-214

Which tests to run?

8417-214

Scenario 1: a change modifies common_collections_util

8517-214

Scenario 1: a change modifies common_collections_util

8617-214

Scenario 1: a change modifies common_collections_util

8717-214

Scenario 1: a change modifies common_collections_util

8817-214

Scenario 2: a change modifies the youtube_client

8917-214

Scenario 2: a change modifies the youtube_client

9017-214

3b. Version control

• Problem: even git can get slow at Facebook scale
– 1M+ source control commands run per day
– 100K+ commits per week

9117-214

3b. Version control

• Solution: redesign version control

9217-214

3b. Version control
• Solution: redesign version control

– Query build system's file monitor, Watchman, to see which files have
changed

9317-214

3b. Version control
• Solution: redesign version control

– Query build system's file monitor, Watchman, to see which files have
changed à 5x faster “status” command

9417-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts??? (remember, git is a distributed VCS)

9517-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts:
– Change the clone and pull commands to download only the commit

metadata, while omitting all file changes (the bulk of the download)
– When a user performs an operation that needs the contents of files (such

as checkout), download the file contents on demand using existing
memcache infrastructure

9617-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts à 10x faster clones and pulls
– Change the clone and pull commands to download only the commit

metadata, while omitting all file changes (the bulk of the download)
– When a user performs an operation that needs the contents of files (such

as checkout), download the file contents on demand using existing
memcache infrastructure

9717-214

4. Monolithic repository

9817-214

Monolithic repository – no major use of branches for
development

9917-214

Did it work? Yes. Sustained productivity at Facebook
Lines Committed Per Developer Per Day

Growth of the size of the
Android and iOS dev teams

10017-214

MONOREPO VS MANY REPOS

10117-214

A recent history of code organization

• A single team with a monolithic application in a single repository
…
• Multiple teams with many separate applications in many

separate repositories
• Multiple teams with many separate applications microservices in

many separate repositories
• A single team with many microservices in many repositories
…
• Many teams with many applications in one big Monorepo

10217-214

What is a monolithic repository (monorepo)?

• A single version control repository containing multiple
– Projects
– Applications
– Libraries

• often using a common build system.

2015 talk by Benjamin Eberlei

10317-214

History of Version Control

Before Git/Mercurial we all used Subversion and
monorepos where widespread.

10417-214 2015 talk by Benjamin Eberlei

What is a Monolithic Repository (monorepo)?

A single version control repository containing multiple

I projects
I applications
I libraries,

often using a common build system.

10517-214

Monorepos in industry

Google (computer science version)

10617-214

Monorepos in industry

Scaling Mercurial at Facebook

10717-214

Monorepos in industry

Microsoft claim the largest git repo on the planet

10817-214

Monorepos in open-source

2016 talk by FABIEN POTENCIER

foresquare public monorepo

10917-214

The monorepo

https://github.com/symfony/symfony

Bridge/

 5 sub-projects

Bundle/

 5 sub-projects

Component/

 33 independent sub-projects like Asset, Cache,

 CssSelector, Finder, Form, HttpKernel, Ldap,

 Routing, Security, Serializer, Templating,

 Translation, Yaml, ...

43 projects, 25 000 commits, and 400 000 LOC

Monorepos in open-source

2016 talk by FABIEN POTENCIER

11017-214

Common build system

Bazel from Google

Buck from Facebook

Pants from Twitter

11117-214

Some advantages of monorepos

11217-214

High Discoverability For Developers

I Developers can read and explore the whole codebase
I grep, IDEs and other tools can search the whole codebase
I IDEs can offer auto-completion for the whole codebase
I Code Browsers can links between all artifacts in the codebase

11317-214

Code-Reuse is cheap

Almost zero cost in introducing a new library

I Extract library code into a new directory/component
I Use library in other components
I Profit!

11417-214

Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

I Extract Library/Component
I Rename Functions/Methods/Components
I Housekeeping (phpcs-fixer, Namespacing, ...)

11517-214

Another refactoring example

• Make large backward incompatible changes easily... especially if
they span different parts of the project

• For example, old APIs can be removed with confidence
– Change an API endpoint code and all its usages in all projects in one pull

request

11617-214

Some more advantages

• Easy continuous integration and code review for changes
spanning several projects

• (Internal) dependency management is a non-issue
• Less context switching for developers
• Code more reusable in other contexts
• Access control is easy

11717-214

Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)

• Force you to have only one version of everything
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?

11817-214

Summary

• Configuration management
– Treat infrastructure as code
– Git is powerful

• Release management: versioning, branching, …
• Software development at scale requires a lot of infrastructure

– Version control, build managers, testing, continuous integration,
deployment, …

• It’s hard to scale development
– Move towards heavy automation (DevOps)

• Continuous deployment increasingly common
• Opportunities from quick release, testing in production, quick

rollback

11917-214

