
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency Part III:
Structuring Applications
(“Design Patterns for Parallel Computation”)

Michael Hilton Bogdan Vasilescu

217-214

Learning Goals

• Reuse established libraries
• Apply common strategies to parallelize computations
• Use the Executor services to effectively schedule tasks

317-214

Administrivia

417-214

Last Tuesday

517-214

Guarded methods

• What to do on a method if the precondition is not fulfilled (e.g.,
transfer money from bank account with insufficient funds)
• throw exception (balking)
• wait until precondition is fulfilled (guarded suspension)
• wait and timeout (combination of balking and guarded

suspension)

617-214

Monitor Mechanics in Java (Recitation)

• Object.wait() – suspends the current thread’s execution,
releasing locks

• Object.wait(timeout) – suspends the current thread’s execution
for up to timeout milliseconds

• Object.notify() – resumes one of the waiting threads

• See documentation for exact semantics

717-214

Monitor Example

class SimpleBoundedCounter {
protected long count = MIN;
public synchronized long count() { return count; }
public synchronized void inc() throws InterruptedException {

awaitUnderMax(); setCount(count + 1);
}
public synchronized void dec() throws InterruptedException {

awaitOverMin(); setCount(count - 1);
}
protected void setCount(long newValue) { // PRE: lock held

count = newValue;
notifyAll(); // wake up any thread depending on new value

}
protected void awaitUnderMax() throws InterruptedException {

while (count == MAX) wait();
}
protected void awaitOverMin() throws InterruptedException {

while (count == MIN) wait();
}

}

817-214

THREAD SAFETY:
DESIGN TRADEOFFS

917-214

Synchronization

• Thread-safe objects vs guarded:
– Thread-safe objects perform synchronization internally (clients can

always call safely)
– Guarded objects require clients to acquire lock for safe calls

• Thread-safe objects are easier to use (harder to misuse), but
guarded objects can be more flexible

1017-214

Designing Thread-Safe Objects

• Identify variables that represent the object’s state
– may be distributed across multiple objects

• Identify invariants that constraint the state variables
– important to understand invariants to ensure atomicity of operations

• Establish a policy for managing concurrent access to state

1117-214

Coarse-Grained Thread-Safety

• Synchronize all access to all state with the object
@ThreadSafe
public class PersonSet {

@GuardedBy("this")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);

}

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);

}

public synchronized void setLast(Person p) {
this.last = p;

}
}

1217-214

Fine-Grained Thread-Safety
• “Lock splitting”: Separate state into independent regions with

different locks
@ThreadSafe
public class PersonSet {

@GuardedBy(“myset")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {

mySet.add(p);
}

}

public boolean containsPerson(Person p) {
synchronized (mySet) {

return mySet.contains(p);
}

}

public synchronized void setLast(Person p) {
this.last = p;

}
}

1317-214

Over vs Undersynchronization

• Undersynchronization -> safety hazard
• Oversynchronization -> liveness hazard and reduced

performance

1417-214

Tradeoffs

• Strategies:
– Don't share the state variable across threads;
– Make the state variable immutable; or
– Use synchronization whenever accessing the state variable.

• Thread-safe vs guarded
• Coarse-grained vs fine-grained synchronization

• When to choose which strategy?
– Avoid synchronization if possible
– Choose simplicity over performance where possible

1517-214

Today

• Design patterns for concurrency
• The Executor framework
• Concurrency libraries

1617-214

THE PRODUCER-CONSUMER
DESIGN PATTERN

1717-214

Pattern Idea

• Decouple dependency of concurrent producer and consumer of
some data

• Effects:
– Removes code dependencies between producers and consumers
– Decouples activities that may produce or consume data at different rates

1817-214

Blocking Queues

• Provide blocking: put and take methods
– If queue full, put blocks until space becomes available
– If queue empty, take blocks until element is available

• Can also be bounded: throttle activities that threaten to
produce more work than can be handled

• See https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html

1917-214

Example: Desktop Search (1)

public class FileCrawler implements Runnable {
private final BlockingQueue<File> fileQueue;
private final FileFilter fileFilter;
private final File root;

...
public void run() {

try {
crawl(root);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
}

private void crawl(File root) throws InterruptedException {
File[] entries = root.listFiles(fileFilter);
if (entries != null) {

for (File entry : entries)
if (entry.isDirectory())

crawl(entry);
else if (!alreadyIndexed(entry))

fileQueue.put(entry);
}

}
}

The producer

2017-214

Example: Desktop Search (2)

public class Indexer implements Runnable {
private final BlockingQueue<File> queue;

public Indexer(BlockingQueue<File> queue) {
this.queue = queue;

}

public void run() {
try {

while (true)
indexFile(queue.take());

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
}

public void indexFile(File file) {
// Index the file...

};
}

The consumer

2117-214

THE FORK-JOIN DESIGN PATTERN

2217-214

Pattern Idea

• Pseudocode (parallel version of the divide and conquer paradigm)

if (my portion of the work is small enough)
do the work directly

else
split my work into two pieces
invoke the two pieces and wait for the results

Image from: Wikipedia

2317-214

THE MEMBRANE DESIGN PATTERN

2417-214

Pattern Idea

Image from: Wikipedia

Multiple rounds of fork-join that need to wait
for previous round to complete.

2517-214

TASKS AND THREADS

2617-214

Executing tasks in threads

• Common abstraction for server applications
– Typical requirements:

• Good throughput
• Good responsiveness
• Graceful degradation

• Organize program around task execution
– Identify task boundaries; ideally, tasks are independent

• Natural choice of task boundary: individual client requests
– Set a sensible task execution policy

2717-214

Example: Server executing tasks sequentially

• Can only handle one request at a time
• Main thread alternates between accepting connections and

processing the requests

public class SingleThreadWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

Socket connection = socket.accept();
handleRequest(connection);

}
}

private static void handleRequest(Socket connection) {
// request-handling logic here

}
}

2817-214

Better: Explicitly creating threads for tasks

• Main thread still alternates bt accepting connections and dispatching requests
• But each request is processed in a separate thread (higher throughput)
• And new connections can be accepted before previous requests complete (higher

responsiveness)

public class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() { handleRequest(connection); }
};
new Thread(task).start();

}
}
private static void handleRequest(Socket connection) {

// request-handling logic here
}

}

2917-214

Still, what’s wrong?

public class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() { handleRequest(connection); }
};
new Thread(task).start();

}
}
private static void handleRequest(Socket connection) {

// request-handling logic here
}

}

3017-214

Disadvantages of unbounded thread creation

• Thread lifecycle overhead
– Thread creation and teardown are not free

• Resource consumption
– When there are more runnable threads than available processors, threads

sit idle
– Many idle threads can tie up a lot of memory

• Stability
– There is a limit to how many threads can be created (varies by platform)

• OutOfMemory error

3117-214

THE THREAD POOL
DESIGN PATTERN

3217-214

Pattern Idea

• A thread pool maintains multiple threads waiting
for tasks to be allocated for concurrent execution by
the supervising program
– Tightly bound to a work queue

• Advantages:
– Reusing an existing thread instead of creating a new one

• Amortizes thread creation/teardown over multiple requests
• Thread creation latency does not delay task execution

– Tune size of thread pool
• Enough threads to keep processors busy while not having too many to

run out of memory

3317-214

EXECUTOR SERVICES

3417-214

The Executor framework

• Recall: bounded queues prevent an overloaded application
from running out of memory

• Thread pools offer the same benefit for thread management
– Thread pool implementation part of the Executor framework in

java.util.concurrent
– Primary abstraction is Executor, not Thread

– Using an Executor is usually the easiest way to implement a
producer-consumer design

public interface Executor {
void execute(Runnable command);

}

3517-214

Executors – your one-stop shop for executor services

• Executors.newSingleThreadExecutor()
– A single background thread

• newFixedThreadPool(int nThreads)
– A fixed number of background threads

• Executors.newCachedThreadPool()
– Grows in response to demand

3617-214

Web server using Executor

public class TaskExecutionWebServer {
private static final int NTHREADS = 100;
private static final Executor exec

= Executors.newFixedThreadPool(NTHREADS);

public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};
exec.execute(task);

}
}

private static void handleRequest(Socket connection) {
// request-handling logic here

}
}

3717-214

Easy to specify / change execution policy

• Thread-per-task server:

• Single thread server:

public class ThreadPerTaskExecutor implements Executor {
public void execute(Runnable r) {

new Thread(r).start();
};

}

public class WithinThreadExecutor implements Executor {
public void execute(Runnable r) {

r.run();
};

}

3817-214

Execution policies

• Decoupling submission from execution

• Specify:

– In what thread will tasks be executed?

– In what order (FIFO, LIFO, …)?

– How many tasks may execute concurrently?

– How many tasks may be queued pending execution?

– …

• Notice the strategy/template method pattern: general

mechanism but highly customizable

3917-214

Design goals (and tradeoffs): Task granularity and structure

• Maximize parallelism

– The smaller the task, the more opportunities for parallelism à better

CPU utilization, load balancing, locality, scalability; greater throughput

• Minimize overhead

– Intrinsically more costly to create and use task objects than stack-frames

à coarse-grained tasks

• Minimize contention

– Maintain as much independence as possible between tasks à ideally, no

shared resources, global (static) variables, locks

– Some synchronization is unavoidable in fork/join designs

• Maximize locality

– When parallel tasks all access different parts of a data set (e.g., different

regions of a matrix), use partitioning strategies that reduce the need to

coordinate across

4017-214

Finding exploitable parallelism

• Executor framework makes it easy to specify an execution
policy if you can describe your task as a Runnable
– A single client request is a natural task boundary in server applications

• Task boundaries are not always obvious (see next slide)

4117-214

Example: HTML page renderer

• Issues:
– Underutilize CPU while waiting for I/O
– User waits long time for page to finish loading

void renderPage(CharSequence source) {
renderText(source);

List<ImageData> imageData = new ArrayList<ImageData>();

for (ImageInfo imageInfo : scanForImageInfo(source))
imageData.add(imageInfo.downloadImage());

for (ImageData data : imageData)
renderImage(data);

}

4217-214

Result bearing tasks: Callable and Future

• Runnable.run cannot return value or throw checked
exceptions (although it can have side effects)

• Many tasks are deferred computations (e.g., fetching a
resource over a network) à Callable is a better abstraction
– Callable.call will return a value and anticipates that it might throw

an exception

• Runnable and Callable describe abstract computational
tasks

• Future represents the lifecycle of a task (created, submitted,
started, completed)

4317-214

Callable and Future interfaces

public interface Callable<V> {
V call() throws Exception;

}

public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException,

ExecutionException, CancellationException;
V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException,
CancellationException, TimeoutException;

}

4417-214

Creating a Future to describe a task

• Process:
– submit a Runnable or Callable to an executor and get back a Future

that can be used to retrieve the result or cancel the task
– Or explicitly instantiate a FutureTask for a given Runnable or Callable

4517-214

Example: Page renderer with Future

• Divide into two tasks
– Render text (CPU-bound)
– Download all images (I/O-bound)

• Steps (also go to recitation):
– Create a Callable for download subtask
– Submit Callable to ExecutorService
– ExecutorService returns Future describing the task’s execution
– When main task reaches point where it needs the images, it waits for

the result by calling Future.get
• If lucky, images already downloaded
• If not, at least we got a head start

1
2
3
4

4617-214

Future renderer (1)

public abstract class FutureRenderer {
private final ExecutorService executor = ...;

void renderPage(CharSequence source) {
final List<ImageInfo> imageInfos = scanForImageInfo(source);
Callable<List<ImageData>> task =

new Callable<List<ImageData>>() {
public List<ImageData> call() {

List<ImageData> result = new ArrayList<ImageData>();
for (ImageInfo imageInfo : imageInfos)

result.add(imageInfo.downloadImage());
return result;

}
};

Future<List<ImageData>> future = executor.submit(task);
renderText(source);

// Continued below

1

23

4717-214

Future renderer (2)

public abstract class FutureRenderer {
...

try {
List<ImageData> imageData = future.get();
for (ImageData data : imageData)

renderImage(data);

} catch (InterruptedException e) {
// Re-assert the thread's interrupted status
Thread.currentThread().interrupt();
// We don't need the result, so cancel the task too
future.cancel(true);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}

}

4

4817-214

Future renderer analysis

• Allows text to be rendered concurrently with downloading data
• When all images are downloaded, they are rendered onto the

page

• Can we do better?

4917-214

Limitations of parallelizing heterogeneous tasks

• We tried to execute two different types of tasks in parallel—
downloading images, rendering page

• Does not scale well
– How can we use more than two threads?

– Tasks may have disparate sizes

• If rendering text is much faster than downloading images,
performance is not much different from sequential version

• Lesson: real performance payoff of dividing a program’s
workload into tasks comes when there are many
independent, homogeneous tasks that can be processed
concurrently

5017-214

• CompletionService combines the functionality of an
Executor and a BlockingQueue
– submit Callable tasks to CompletionService
– use queue-like methods take and poll to retrieve completed results,

packaged as Futures, as they become available

Example: Page renderer with CompletionService

5117-214

Page renderer with CompletionService
Download images in parallel (1)
public abstract class Renderer {

private final ExecutorService executor;

...

void renderPage(CharSequence source) {
final List<ImageInfo> info = scanForImageInfo(source);

CompletionService<ImageData> completionService =
new ExecutorCompletionService<ImageData>(executor);

for (final ImageInfo imageInfo : info)
completionService.submit(new Callable<ImageData>() {

public ImageData call() {
return imageInfo.downloadImage();

}
});

renderText(source);
// Continued below

5217-214

public abstract class Renderer {
...

try {
for (int t = 0, n = info.size(); t < n; t++) {

Future<ImageData> f = completionService.take();
ImageData imageData = f.get();
renderImage(imageData);

}

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}

}

Page renderer with CompletionService
Download images in parallel (2)

5317-214

Summary

• Structuring applications around the execution of tasks can
simplify development and facilitate concurrency

• The Executor framework permits you to decouple task
submission from execution policy

• To maximize benefit of decomposing an application into tasks,
identify sensible task boundaries
– Not always obvious

5417-214

Recommended Readings

• Goetz et al. Java Concurrency In Practice. Pearson Education,
2006, Chapters 5 (Building blocks) and 6 (Task executions)

• Lea, Douglas. Concurrent programming in Java: design principles
and patterns. Addison-Wesley Professional, 2000, Chapter 4.4
(Parallel decoposition)

5517-214

REUSE RATHER THAN BUILD:
KNOW THE LIBRARIES

5617-214

Synchronized Collections

• Are thread safe:
– Vector
– Hashtable
– Collections.synchronizedXXX

• But still require client-side locking to guard compound actions:
– Iteration: repeatedly fetch elements until collection is exhausted
– Navigation: find next element after this one according to some order
– Conditional ops (put-if-absent)

5717-214

Example

• Both methods are thread safe

• Unlucky interleaving that throws ArrayIndexOutOfBoundsException

public static Object getLast(Vector list) {
int lastIndex = list.size() - 1;
return list.get(lastIndex);

}

public static void deleteLast(Vector list) {
int lastIndex = list.size() - 1;
list.remove(lastIndex);

}

sizeà10 get(9) boom

sizeà10 remove(9)

A

B

5817-214

Solution: Compound actions on Vector using client-side
locking

• Synchronized collections guard methods with the lock on the
collection object itself

public static Object getLast(Vector list) {
synchronized (list) {

int lastIndex = list.size() - 1;
return list.get(lastIndex);

}
}

public static void deleteLast(Vector list) {
synchronized (list) {

int lastIndex = list.size() - 1;
list.remove(lastIndex);

}
}

5917-214

Another Example

• The size of the list might change between a call to size
and a corresponding call to get
– Will throw ArrayIndexOutOfBoundsException

• Note: Vector is still thread safe:
– State is valid
– Exception conforms with specification

for (int i = 0; i < vector.size(); i++)
doSomething(vector.get(i));

6017-214

Solution: Client-side locking

• Hold the Vector lock for the duration of iteration:
– No other threads can modify (+)
– No other threads can access (-)

synchronized (vector) {
for (int i = 0; i < vector.size(); i++)

doSomething(vector.get(i));
}

6117-214

Iterators and
ConcurrentModificationException

• Iterators returned by the synchronized collections are not
designed to deal with concurrent modification à fail-fast

• Implementation:
– Each collection has a modification count
– If it changes, hasNext or next throws

ConcurrentModificationException

• Prevent by locking the collection:
– Other threads that need to access the collection will block until

iteration is complete à starvation
– Risk factor for deadlock
– Hurts scalability (remember lock contention in reading)

6217-214

Alternative to locking the collection during iteration?

6317-214

Yet Another Example: Is this safe?

public class HiddenIterator {
@GuardedBy("this")
private final Set<Integer> set = new HashSet<Integer>();

public synchronized void add(Integer i) { set.add(i); }

public synchronized void remove(Integer i) { set.remove(i); }

public void addTenThings() {
Random r = new Random();
for (int i = 0; i < 10; i++)

add(r.nextInt());
System.out.println("DEBUG: added ten elements to " + set);

}
}

6417-214

Hidden Iterator

public class HiddenIterator {
@GuardedBy("this")
private final Set<Integer> set = new HashSet<Integer>();

public synchronized void add(Integer i) { set.add(i); }

public synchronized void remove(Integer i) { set.remove(i); }

public void addTenThings() {
Random r = new Random();
for (int i = 0; i < 10; i++)

add(r.nextInt());
System.out.println("DEBUG: added ten elements to " + set);

}
}

• Locking can prevent ConcurrentModificationException
• But must remember to lock everywhere a shared collection

might be iterated

6517-214

Hidden Iterator

• String concatenation
à StringBuilder.append(Object)
à Set.toString()
à Iterates the collection; calls toString() on each element
à addTenThings() may throw ConcurrentModificationException

• Lesson: Just as encapsulating an object’s state makes
it easier to preserve its invariants, encapsulating its
synchronization makes it easier to enforce its
synchronization policy

System.out.println("DEBUG: added ten elements to " + set);

6617-214

Concurrent Collections

• Synchronized collections: thread safety by serializing
all access to state
– Cost: poor concurrency

• Concurrent collections are designed for concurrent
access from multiple threads
– Dramatic scalability improvements

Unsynchronized Concurrent
HashMap ConcurrentHashMap
HashSet ConcurrentHashSet
TreeMap ConcurrentSkipListMap
TreeSet ConcurrentSkipListSet

6717-214

ConcurrentHashMap

• HashMap.get: traversing a hash bucket to find a specific
object à calling equals on a number of candidate objects
– Can take a long time if hash function is poor and elements are

unevenly distributed

• ConcurrentHashMap uses lock striping (recall reading)
– Arbitrarily many reading threads can access concurrently
– Readers can access map concurrently with writers
– Limited number of writers can modify concurrently

• Tradeoffs:
– size only an estimate
– Can’t lock for exclusive access

6817-214

You can’t exclude concurrent activity from a concurrent
collection

• This works for synchronized collections…
Map<String, String> syncMap =

Collections.synchronizedMap(new HashMap<>());
synchronized(syncMap) {

if (!syncMap.containsKey("foo"))
syncMap.put("foo", "bar");

}
• But not for concurrent collections

– They do their own internal synchronization
– Never synchronize on a concurrent collection!

6917-214

Concurrent collections have prepackaged
read-modify-write methods

• V putIfAbsent(K key, V value)
• boolean remove,(Object key, Object value)
• V replace(K key, V value)
• boolean replace(K key, V oldValue, V newValue)
• V compute(K key, BiFunction<...> remappingFn);
• V computeIfAbsent(K key, Function<...> mappingFn)
• V computeIfPresent(K key, BiFunction<...> remapFn)
• V merge(K key, V value, BiFunction<...> remapFn)

7017-214

Summary

• Design patterns for concurrency
• The Executor framework
• Concurrency libraries

