
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency Part II:
Safety

Michael Hilton Bogdan Vasilescu

317-214

Administrivia

• HW 5b due tonight
– Submit by 9am tomorrow (Wednesday) for “Best Framework”

consideration

• No class on Thursday
– Happy Carnival!

417-214

Last Tuesday

• Concurrency hazards:
– Safety
– Liveness
– Performance

• Java primitives for ensuring visibility and atomicity
– Synchronized access
– jcip annotations: @ThreadSafe, @NotThreadSafe, @GuardedBy
– Stateless objects are always thread safe

517-214

Enforcing atomicity: Intrinsic locks

• synchronized(lock) { … } synchronizes entire code
block on object lock; cannot forget to unlock

• The synchronized modifier on a method is equivalent to
synchronized(this) { … } around the entire method
body

• Every Java object can serve as a lock
• At most one thread may own the lock (mutual exclusion)

– synchronized blocks guarded by the same lock execute atomically
w.r.t. one another

617-214

Non atomicity and thread (un)safety

• Stateful factorizer
– Susceptible to lost updates
– The ++count operation is not atomic (read-modify-write)

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

717-214

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public long getCount() {
synchronized(this){

return count;
}

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

817-214

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public synchronized long getCount() {
return count;

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

917-214

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public synchronized long getCount() {
return count;

}

public synchronized void service(
ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);

++count;
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

1017-214

What’s the difference?

public synchronized void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);

++count;
encodeIntoResponse(resp, factors);

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}

1117-214

Private locks

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
private final Object lock = new Object();
@GuardedBy(“lock”)
private long count = 0;

public long getCount() {
synchronized(lock){

return count;
}

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(lock) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

1217-214

Could this deadlock?

public class Widget {
public synchronized void doSomething() {

...
}

}

public class LoggingWidget extends Widget {
public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");
super.doSomething();

}
}

1317-214

No: Intrinsic locks are reentrant

• A thread can lock the same object again while already holding
a lock on that object

public class Widget {
public synchronized void doSomething() {...}

}

public class LoggingWidget extends Widget {
public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");
super.doSomething();

}
}

1417-214

Cooperative thread termination
How long would you expect this to run?

public class StopThread {

private static boolean stopRequested;

public static void main(String[] args) throws Exception {

Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});

backgroundThread.start();

TimeUnit.SECONDS.sleep(1);

stopRequested = true;
}

}

1517-214

What could have gone wrong?

• In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another!

• VMs can and do perform this optimization (“hoisting”):
while (!done)

/* do something */ ;

becomes:
if (!done)

while (true)
/* do something */ ;

1617-214

How do you fix it?

public class StopThread {
@GuardedBy(“StopThread.class”)
private static boolean stopRequested;

private static synchronized void requestStop() {
stopRequested = true;

}

private static synchronized boolean stopRequested() {
return stopRequested;

}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

}
}

1717-214

You can do better (?)
volatile is synchronization without mutual exclusion

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
} forces all accesses (read or write) to the volatile

variable to occur in main memory, effectively
keeping the volatile variable out of CPU caches.
https://stackoverflow.com/questions/3519664/difference-
between-volatile-and-synchronized-in-java

1817-214

Volatile keyword

• Tells compiler and runtime that variable is shared and operations
on it should not be reordered with other memory ops
– A read of a volatile variable always returns the most recent write by any

thread

• Volatile is not a substitute for synchronization
– Volatile variables can only guarantee visibility
– Locking can guarantee both visibility and atomicity

1917-214

Summary: Synchronization

• Ideally, avoid shared mutable state

• If you can’t avoid it, synchronize properly
– Failure to do so causes safety and liveness failures

– If you don’t sync properly, your program won’t work

• Even atomic operations require synchronization
– e.g., stopRequested = true

– And some things that look atomic aren’t (e.g., val++)

2017-214

JAVA PRIMITIVES:
WAIT, NOTIFY, AND TERMINATION

2117-214

Guarded methods

• What to do on a method if the precondition is not fulfilled (e.g.,
transfer money from bank account with insufficient funds)
• throw exception (balking)
• wait until precondition is fulfilled (guarded suspension)
• wait and timeout (combination of balking and guarded

suspension)

2217-214

Example: Balking

• If there are multiple calls to the job method, only one will
proceed while the other calls will return with nothing.

public class BalkingExample {
private boolean jobInProgress = false;

public void job() {
synchronized (this) {

if (jobInProgress) { return; }
jobInProgress = true;

}
// Code to execute job goes here

}

void jobCompleted() {
synchronized (this) {

jobInProgress = false;
}

}
}

2317-214

Guarded suspension

• Block execution until a given condition is true
• For example,

– pull element from queue, but wait on an empty queue
– transfer money from bank account as soon sufficient funds are there

• Blocking as (often simpler) alternative to callback

2417-214

Monitor Mechanics in Java

• Object.wait() – suspends the current thread’s execution,
releasing locks

• Object.wait(timeout) – suspends the current thread’s execution
for up to timeout milliseconds

• Object.notify() – resumes one of the waiting threads
• See documentation for exact semantics

2517-214

Example: Guarded Suspension

public void guardedJoy() {
// Simple loop guard. Wastes
// processor time. Don't do this!
while (!joy) {
}
System.out.println("Joy has been achieved!");

}

• Loop until condition is satisfied
– wasteful, since it executes continuously while waiting

2617-214

public synchronized guardedJoy() {
while(!joy) {

try {
wait();

} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");

}

public synchronized notifyJoy() {
joy = true;
notifyAll();

}

Example: Guarded Suspension

• More efficient: invoke Object.wait to suspend current thread

• When wait is invoked, the thread releases the lock and suspends execution.
The invocation of wait does not return until another thread has issued a
notification

2717-214

Never invoke wait outside a loop!

• Loop tests condition before and after waiting

• Test before skips wait if condition already holds

– Necessary to ensure liveness
– Without it, thread can wait forever!

• Testing after wait ensures safety
– Condition may not be true when thread wakens
– If thread proceeds with action, it can destroy invariants!

2817-214

All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {

obj.wait();
}

... // Perform action appropriate to condition
}

2917-214

Why can a thread wake from a wait when condition
does not hold?

• Another thread can slip in between notify& wake
• Another thread can invoke notify accidentally or maliciously

when condition does not hold
– This is a flaw in java locking design!
– Can work around flaw by using private lock object

• Notifier can be liberal in waking threads
– Using notifyAll is good practice, but causes this

• Waiting thread can wake up without a notify(!)
– Known as a spurious wakeup

3017-214

Guarded Suspension vs Balking

• Guarded suspension:
– Typically only when you know that a method call will be suspended for

a finite and reasonable period of time
– If suspended for too long, the overall program will slow down

• Balking:
– Typically only when you know that the method call suspension will be

indefinite or for an unacceptably long period

3117-214

Monitor Example

class SimpleBoundedCounter {
protected long count = MIN;
public synchronized long count() { return count; }
public synchronized void inc() throws InterruptedException {

awaitUnderMax(); setCount(count + 1);
}
public synchronized void dec() throws InterruptedException {

awaitOverMin(); setCount(count - 1);
}
protected void setCount(long newValue) { // PRE: lock held

count = newValue;
notifyAll(); // wake up any thread depending on new value

}
protected void awaitUnderMax() throws InterruptedException {

while (count == MAX) wait();
}
protected void awaitOverMin() throws InterruptedException {

while (count == MIN) wait();
}

}

3217-214

Interruption

• Difficult to kill threads once started, but may politely ask to stop
(thread.interrupt())

• Long-running threads should regularly check whether they have
been interrupted

• Threads waiting with wait() throw exceptions if interrupted
• Read documentation

public class Thread {
public void interrupt() { ... }
public boolean isInterrupted() { ... }
...

}

3317-214

Interruption Example

For details, see Java Concurrency In Practice, Chapter 7

class PrimeProducer extends Thread {
private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {

this.queue = queue;
}
public void run() {

try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().isInterrupted())

queue.put(p = p.nextProbablePrime());
} catch (InterruptedException consumed) {

/* Allow thread to exit */
}

}
public void cancel() { interrupt(); }

}

3417-214

BUILDING HIGHER LEVEL
CONCURRENCY MECHANISMS

3517-214

Beyond Java Primitives

• Java Primitives (synchronized, wait, notify) are low level
mechanisms

• For most tasks better higher-level abstractions exist
• Writing own abstractions is possible, but potentially dangerous –

use libraries written by experts

3617-214

Example: read-write locks (API)
Also known as shared/exclusive mode locks

private final RwLock lock = new RwLock();

lock.readLock();
try {

// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();
try {

// Do stuff that requires write (exclusive) lock
} finally {

lock.unlock();
}

3717-214

Example: read-write locks (Impl. 1/2)

public class RwLock {
// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
private int numReaders = 0;

/** Whether lock is held for write. */
private boolean writeLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writeLocked) {

wait();
}
numReaders++;

}

3817-214

Example: read-write locks (Impl. 2/2)

public synchronized void writeLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {

wait();
}
writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {

numReaders--;
} else if (writeLocked) {

writeLocked = false;
} else {

throw new IllegalStateException("Lock not held");
}
notifyAll(); // Wake any waiters

}
}

3917-214

Caveat: RwLock is just a toy!

• It has poor fairness properties
– Readers can starve writers!

• java.util.concurrent provides an industrial strength
ReadWriteLock

• More generally, avoid wait/notify
– In the early days it was all you had
– Nowadays, higher level concurrency utils are better

4017-214

Summary

• Concurrency for exploiting multiple processors, simplifying
modeling, simplifying asynchronous events

• Safety, liveness and performance hazards matter
• Synchronization on any Java object; volatile ensures visibility
• Wait/notify for guards, interruption for cancelation – building

blocks for higher level abstractions

4117-214

THREAD SAFETY:
DESIGN TRADEOFFS

4217-214

Recall: Synchronization for Safety

• If multiple threads access the same mutable state
variable without appropriate synchronization, the
program is broken.

• There are three ways to fix it:
– Don't share the state variable across threads;
– Make the state variable immutable; or
– Use synchronization whenever accessing the state variable.

4317-214

Thread Confinement

• Ensure variables are not shared across threads (concurrency
version of encapsulation)

• Stack confinement:
– Object only reachable through local variables (never

leaves method) à accessible only by one thread
– Primitive local variables always thread-local

• Confinement across methods/in classes needs to be done
carefully (see immutability)

4417-214

Example: Thread Confinement

public int loadTheArk(Collection<Animal> candidates) {
SortedSet<Animal> animals;
int numPairs = 0;
Animal candidate = null;
// animals confined to method, don't let them escape!
animals = new TreeSet<Animal>(new SpeciesGenderComparator());
animals.addAll(candidates);
for (Animal a : animals) {

if (candidate == null || !candidate.isPotentialMate(a))
candidate = a;

else {
ark.load(new AnimalPair(candidate, a));
++numPairs;
candidate = null;

}
}
return numPairs;

}

• Shared ark object
• TreeSet is not thread safe but it’s local à can’t leak
• Defensive copying on AnimalPair

4517-214

Confinement with ThreadLocal

• ThreadLocal holds a separate value for each cache (essentially
Map<Thread,T>)
– create variables that can only be read and written by the same thread
– if two threads are executing the same code, and the code has a reference

to a ThreadLocal variable, then the two threads cannot see each other's
ThreadLocal variables

4617-214

Example: ThreadLocal

public static class MyRunnable implements Runnable {
private ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>();

@Override
public void run() {

threadLocal.set((int) (Math.random() * 100D));

System.out.println(threadLocal.get());
}

}

public static void main(String[] args) throws InterruptedException {
MyRunnable sharedRunnableInstance = new MyRunnable();

Thread thread1 = new Thread(sharedRunnableInstance);
Thread thread2 = new Thread(sharedRunnableInstance);

thread1.start();
thread2.start();

thread1.join(); // wait for thread 1 to terminate
thread2.join(); // wait for thread 2 to terminate

}

From: http://tutorials.jenkov.com/java-concurrency/threadlocal.html

4717-214

Immutable Objects

• Immutable objects can be shared freely
• Remember:

– Fields initialized in constructor
– Fields final
– Defensive copying if mutable objects used internally

4817-214

Synchronization

• Thread-safe objects vs guarded:
– Thread-safe objects perform synchronization internally (clients can

always call safely)
– Guarded objects require clients to acquire lock for safe calls

• Thread-safe objects are easier to use (harder to misuse), but
guarded objects can be more flexible

4917-214

Designing Thread-Safe Objects

• Identify variables that represent the object’s state
– may be distributed across multiple objects

• Identify invariants that constraint the state variables
– important to understand invariants to ensure atomicity of operations

• Establish a policy for managing concurrent access to state

5017-214

What would you change here?

@ThreadSafe
public class PersonSet {

@GuardedBy("this")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);

}

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);

}

public synchronized void setLast(Person p) {
this.last = p;

}
}

5117-214

Coarse-Grained Thread-Safety

• Synchronize all access to all state with the object
@ThreadSafe
public class PersonSet {

@GuardedBy("this")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public synchronized void addPerson(Person p) {
mySet.add(p);

}

public synchronized boolean containsPerson(Person p) {
return mySet.contains(p);

}

public synchronized void setLast(Person p) {
this.last = p;

}
}

5217-214

Fine-Grained Thread-Safety
• “Lock splitting”: Separate state into independent regions with

different locks
@ThreadSafe
public class PersonSet {

@GuardedBy(“myset")
private final Set<Person> mySet = new HashSet<Person>();

@GuardedBy("this")
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {

mySet.add(p);
}

}

public boolean containsPerson(Person p) {
synchronized (mySet) {

return mySet.contains(p);
}

}

public synchronized void setLast(Person p) {
this.last = p;

}
}

5317-214

Private Locks: Any object can serve as lock
@ThreadSafe
public class PersonSet {

@GuardedBy(“myset")
private final Set<Person> mySet = new HashSet<Person>();

private final Object myLock = new Object();
@GuardedBy(“myLock")
private Person last = null;

public void addPerson(Person p) {
synchronized (mySet) {

mySet.add(p);
}

}

public synchronized boolean containsPerson(Person p) {
synchronized (mySet) {

return mySet.contains(p);
}

}

public void setLast(Person p) {
synchronized (myLock) {

this.last = p;
}

}
}

5417-214

Delegating thread-safety to well designed classes

• Recall previous CountingFactorizer

@NotThreadSafe
public class CountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

5517-214

Delegating thread-safety to well designed classes

• Replace long counter with an AtomicLong

@ThreadSafe
public class CountingFactorizer implements Servlet {

private final AtomicLong count = new AtomicLong(0);

public long getCount() { return count.get(); }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
count.incrementAndGet();
encodeIntoResponse(resp, factors);

}
}

5617-214

Synchronize only relevant method parts
• Design heuristic:

– Get in, get done, and get out
• Obtain lock
• Examine shared data
• Transform as necessary
• Drop lock

– If you must do something slow, move it outside synchronized region

5717-214

Example: What to synchronize?

@ThreadSafe
public class AttributeStore {

@GuardedBy("this")
private final Map<String, String>

attributes = new HashMap<String, String>();

public synchronized boolean userLocationMatches(String name,
String regexp) {

String key = "users." + name + ".location";
String location = attributes.get(key);
if (location == null)

return false;
else

return Pattern.matches(regexp, location);
}

}

5817-214

Narrowing lock scope

@ThreadSafe
public class BetterAttributeStore {

@GuardedBy("this")
private final Map<String, String>

attributes = new HashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;
synchronized (this) {

location = attributes.get(key);
}
if (location == null)

return false;
else

return Pattern.matches(regexp, location);
}

}

5917-214

Fine-Grained vs Coarse-Grained Tradeoffs

• Coarse-Grained is simpler

• Fine-Grained allows concurrent access to different parts of the
state

• When invariants span multiple variants, fine-grained locking
needs to ensure that all relevant parts are using the same lock or
are locked together

• Acquiring multiple locks requires care to avoid deadlocks

6017-214

Over vs Undersynchronization

• Undersynchronization -> safety hazard
• Oversynchronization -> liveness hazard and reduced

performance

6317-214

Avoiding deadlock
• Deadlock caused by a cycle in waits-for graph

– T1: synchronized(a){ synchronized(b){ … } }
– T2: synchronized(b){ synchronized(a){ … } }

• To avoid these deadlocks:
– When threads have to hold multiple locks at the same time, all threads

obtain locks in same order

T1 T2
b

a

6417-214

Summary of policies:

• Thread-confined. A thread-confined object is owned exclusively by and
confined to one thread, and can be modified by its owning thread.

• Shared read-only. A shared read-only object can be accessed
concurrently by multiple threads without additional
synchronization, but cannot be modified by any thread. Shared
read-only objects include immutable and effectively immutable
objects.

• Shared thread-safe. A thread-safe object performs synchronization
internally, so multiple threads can freely access it through its public
interface without further synchronization.

• Guarded. A guarded object can be accessed only with a specific
lock held. Guarded objects include those that are encapsulated
within other thread-safe objects and published objects that are known
to be guarded by a specific lock.

6517-214

Tradeoffs

• Strategies:
– Don't share the state variable across threads;
– Make the state variable immutable; or
– Use synchronization whenever accessing the state variable.

• Thread-safe vs guarded
• Coarse-grained vs fine-grained synchronization

• When to choose which strategy?
– Avoid synchronization if possible
– Choose simplicity over performance where possible

6617-214

Documentation

• Document a class's thread safety guarantees for its clients
• Document its synchronization policy for its maintainers.
• @ThreadSafe, @GuardedBy annotations not standard but useful

6717-214

Recommended Readings

• Goetz et al. Java Concurrency In Practice. Pearson Education,
2006, Chapters 2-5, 11

• Lea, Douglas. Concurrent programming in Java: design principles
and patterns. Addison-Wesley Professional, 2000.

