
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency Part I:
Primitives

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• HW 5b due Tuesday April 9th

• No class on Thursday next week

317-214

Last Tuesday

417-214

1. Centralized workflow

• Central repository to serve as
the single point-of-entry for all
changes to the project

• Default development branch is
called master
– all changes are committed into

master
– doesn’t require any other

branches

517-214

2. Git Feature Branch Workflow

• All feature development should take place in a dedicated
branch instead of the master branch

• Multiple developers can work on a particular feature without
disturbing the main codebase
– master branch will never contain broken code (enables CI)
– Enables pull requests (code review)

617-214

3. GitFlow release branches

no new features after this
point—only bug fixes, docs,
and other release tasks

717-214

Today: Concurrency, motivation and primitives

• The backstory
– Motivation, goals, problems, …

• Basic concurrency in Java
• Later (probably not today):

– Higher-level abstractions for concurrency
– Program structure for concurrency
– Frameworks for concurrent computation

817-214

Power requirements of a CPU

• Approx.: Capacitance * Voltage2 * Frequency

• To increase performance:

– More transistors, thinner wires

• More power leakage: increase V
– Increase clock frequency F

• Change electrical state faster: increase V
• Dennard scaling: As transistors get smaller, power density is

approximately constant…

– …until early 2000s

• Heat output is proportional to power input

917-214

One option: fix the symptom

• Dissipate the heat

1017-214

One option: fix the symptom

• Better: Dissipate the heat with liquid nitrogen
– Overclocking by Tom's Hardware's 5 GHz project

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

1117-214

Processor characteristics over time

1217-214

Concurrency then and now

• In the past, multi-threading just a convenient abstraction
– GUI design: event dispatch thread

– Server design: isolate each client's work

– Workflow design: isolate producers and consumers

• Now: required for scalability and performance

1417-214

Aside: Concurrency vs. parallelism, visualized

• Concurrency without parallelism:

• Concurrency with parallelism:

1717-214

Basic concurrency in Java

• An interface representing a task
public interface Runnable {

void run();
}

• A class to execute a task in a thread
public class Thread {

public Thread(Runnable task);
public void start();
public void join();
…

}
makes sure that thread is terminated
before the next instruction is executed
by the program

1817-214

A simple threads example
public interface Runnable { // java.lang.Runnable

public void run();
}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

Runnable greeter = new Runnable() {
public void run() {

System.out.println("Hi mom!");
}

};
for (int i = 0; i < n; i++) {

new Thread(greeter).start();
}

}

1917-214

A simple threads example
public interface Runnable { // java.lang.Runnable

public void run();
}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi mom!");
for (int i = 0; i < n; i++) {

new Thread(greeter).start();
}

}

2017-214

A simple threads example
public interface Runnable { // java.lang.Runnable

public void run();
}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

for (int i = 0; i < n; i++) {
new Thread(() -> System.out.println("Hi mom!")).start();

}
}

2217-214

Another example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}
static void transferFrom(BankAccount source,

BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

}
public long balance() {

return balance;
}

}

2317-214

Another example: Money-grab (2)

public static void main(String[] args) throws InterruptedException {
BankAccount bugs = new BankAccount(1_000_000);
BankAccount daffy = new BankAccount(1_000_000);

Thread bugsThread = new Thread(()-> {
for (int i = 0; i < 1_000_000; i++)

transferFrom(daffy, bugs, 1);
});

Thread daffyThread = new Thread(()-> {
for (int i = 0; i < 1_000_000; i++)

transferFrom(bugs, daffy, 1);
});

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() - daffy.balance());

}

2417-214

What went wrong?

• Daffy & Bugs threads had a race condition for shared data
– Transfers did not happen in sequence

• Reads and writes interleaved randomly
– Random results ensued

2517-214

CONCURRENCY HAZARDS
Safety, Liveness, Performance

2617-214

1. Safety Hazard

• The ordering of operations in multiple threads is unpredictable.

• Unlucky execution of UnsafeSequence.getNext

@NotThreadSafe
public class UnsafeSequence {

private int value;

public int getNext() {
return value++;

}
}

valueà9 9+1à10 valueà10

valueà9 9+1à10 valueà10

A

B

Not atomic

2717-214

Aside: Atomicity

• An action is atomic if it is indivisible
– Effectively, it happens all at once

• No effects of the action are visible until it is complete
• No other actions have an effect during the action

• In Java, integer increment is not atomic

i++;
1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually

2817-214

Thread Safety

A class is thread safe if it behaves correctly when accessed from
multiple threads, regardless of the scheduling or interleaving of the
execution of those threads by the runtime environment, and with
no additional synchronization or other coordination on the part of
the calling code.

2917-214

2. Liveness Hazard

• Safety: “nothing bad ever happens”
• Liveness: “something good eventually happens”

• Deadlock
– Infinite loop in sequential programs
– Thread A waits for a resource that thread B holds exclusively, and B

never releases it à A will wait forever
• E.g., Dining philosophers

• Elusive: depend on relative timing of events in different threads

3017-214

Deadlock example

class Account {
double balance;

void withdraw(double amount){ balance -= amount; }

void deposit(double amount){ balance += amount; }

void transfer(Account from, Account to, double amount){
synchronized(from) {

from.withdraw(amount);
synchronized(to) {

to.deposit(amount);
}

}
}

}

• Two threads:
– A does transfer(a, b, 10);
– B does transfer(b, a, 10)

Execution
trace:
A: lock a (v)
B: lock b (v)
A: lock b (x)
B: lock a (x)
A: wait
B: wait

Deadlock!

3117-214

3. Performance Hazard

• Liveness: “something good eventually happens”
• Performance: we want something good to happen quickly

• Multi-threading involves runtime overhead:
– Coordinating between threads (locking, signaling, memory sync)
– Context switches
– Thread creation & teardown
– Scheduling

• Not all problems can be solved faster with more resources
– One mother delivers a baby in 9 months

3217-214

Amdahl’s law

• The speedup is
limited by the
serial part of
the program.

3317-214

How fast can this run?

public class WorkerThread extends Thread {
...

public void run() {
while (true) {

try {
Runnable task = queue.take();
task.run();

} catch (InterruptedException e) {
break; /* Allow thread to exit */

}
}

}
}

• N threads fetch independent tasks from a shared work queue

3417-214

JAVA PRIMITIVES: ENSURING
VISIBILITY AND ATOMICITY

3517-214

Synchronization for Safety

• If multiple threads access the same mutable state variable
without appropriate synchronization, the program is broken.

• There are three ways to fix it:
– Don't share the state variable across threads;
– Make the state variable immutable; or
– Use synchronization whenever accessing the state variable.

3617-214

An easy fix: Synchronized access (visibility)

@ThreadSafe
public class BankAccount {

@GuardedBy(“this”)
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {

source.balance -= amount;
dest.balance += amount;

}

public synchronized long balance() {
return balance;

}
}

3717-214

Exclusion

Synchronization allows parallelism while
ensuring that certain segments are
executed in isolation. Threads wait to
acquire lock, may reduce performance.

3817-214

Stateless objects are always
thread safe
• Example: stateless factorizer
– No fields
– No references to fields from other classes
– Threads sharing it cannot influence each other

@ThreadSafe
public class StatelessFactorizer implements Servlet {

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
encodeIntoResponse(resp, factors);

}
}

3917-214

Is this thread safe?

public class CountingFactorizer implements Servlet {
private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

4017-214

Is this thread safe?

@NotThreadSafe
public class CountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

4117-214

Non atomicity and thread (un)safety

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

valueà9 9+1à10 valueà10

valueà9 9+1à10 valueà10

A

B

4217-214

Non atomicity and thread (un)safety

• Stateful factorizer
– Susceptible to lost updates
– The ++count operation is not atomic (read-modify-write)

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

4317-214

Enforcing atomicity: Intrinsic locks

• synchronized(lock) { … } synchronizes entire code
block on object lock; cannot forget to unlock

• The synchronized modifier on a method is equivalent to
synchronized(this) { … } around the entire method
body

• Every Java object can serve as a lock
• At most one thread may own the lock (mutual exclusion)

– synchronized blocks guarded by the same lock execute atomically
w.r.t. one another

4417-214

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public long getCount() {
synchronized(this){

return count;
}

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

4517-214

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public synchronized long getCount() {
return count;

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

4617-214

Fixing the stateful factorizer

@ThreadSafe
public class UnsafeCountingFactorizer

implements Servlet {
@GuardedBy(“this”)
private long count = 0;

public synchronized long getCount() {
return count;

}

public synchronized void service(
ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);

++count;
encodeIntoResponse(resp, factors);

}
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held.
In this case, we say
that the variable is
guarded by that lock.

4717-214

What’s the difference?

public synchronized void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);

++count;
encodeIntoResponse(resp, factors);

}

public void service(ServletRequest req,
ServletResponse resp) {

BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
synchronized(this) {

++count;
}
encodeIntoResponse(resp, factors);

}

4817-214

To be continued …

