
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Git workflows
(and maybe concurrency primitives)

Michael Hilton Bogdan Vasilescu



417-214

Administrivia

• HW 5a presentations in Recitation in front of your classmates

– Goal: illustrate how you achieve reuse in a domain 

– Describe domain, examples of plugins, decisions regarding generality vs 

specificity, overall project structure (e.g., how are plugins loaded), plugin 

interfaces

– Similar to design review sessions

• Compete for “best framework”?



517-214

Administrivia (2)

• Commit messages are (one of) your primary means of 
communication with the rest of the team.
– This will become more obvious in HW5.



617-214

Last week Tuesday



717-214

1) git merge bugFix (into master)
Three ways to move work around between branches



817-214

2) git rebase master
Move work from bugFix directly onto master



917-214

3) git cherry-pick C2 C4
Copy a series of commits below current location



1017-214

git reset HEAD~1
HEAD is the symbolic 
name for the currently 
checked out commit

Ways to undo work (1)



1117-214

git revert HEAD
git reset does not work 
for remote branches

Ways to undo work (2)



1217-214

SYNCING LOCAL <--> REMOTE



1317-214

Git Every computer is a server and version 
control happens locally.



1417-214

Git

git commit

How do you share code with collaborators if 
commits are local?



1517-214

Git

git push git pull

git push

… But requires host names / IP addresses

You push your commits into their 
repositories / They pull your commits into 
their repositories



1617-214

GitHub typical workflow

GitHub

Public repository where you make your changes public



1717-214

GitHub typical workflow

GitHub

git commit



1817-214

GitHub typical workflow

GitHub

git commit



1917-214

GitHub typical workflow

GitHub

git push

push your local changes into a remote repository. 



2017-214

GitHub typical workflow

GitHub

git push

Collaborators can push too if they have access rights.



2117-214

git push <remote> <branch>: upload local 
repository content to a remote repository

https://www.atlassian.com/git/tutorials/syncing/git-push



2217-214

GitHub typical workflow

GitHub

git pull

Without access rights, “don’t call us, we’ll call you” (pull from 
trusted sources) … But again requires host names / IP addresses.



2317-214

git pull <remote>: Fetch the specified remote’s copy of the 
current branch and immediately merge it into the local copy

Equivalent to:
git fetch origin HEAD + git merge HEAD
Also possible: git pull --rebase origin



2417-214

GitHub typical workflow

GitHub

git push

“Main” “Forks”

Instead, people maintain public remote “forks” of “main” 
repository on GitHub and push local changes.



2517-214

GitHub typical workflow

GitHub

Pull 
Request

“Main” “Forks”

Availability of new changes is signaled via ”Pull Request”.



2617-214

GitHub typical workflow

GitHub

git pull
“Main” “Forks”

Changes are pulled into main if PR accepted.



2717-214

BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows

https://www.atlassian.com/git/tutorials/comparing-workflows


2817-214

1. Centralized workflow

• Central repository to serve as 
the single point-of-entry for all 
changes to the project

• Default development branch is 
called master
– all changes are committed into 

master
– doesn’t require any other 

branches



2917-214

Example



3017-214

Example



3117-214

Example



3217-214

Example

git push origin master



3317-214

Example

git push origin master



3417-214

git push origin master

error: failed to push some refs to '/path/to/repo.git’ 
hint: Updates were rejected because the tip of your current 
branch is behind its remote counterpart. Merge the remote 
changes (e.g. 'git pull') before pushing again. See the 'Note 
about fast-forwards' in 'git push --help' for details.



3517-214

Example

git pull --rebase 
origin master



3617-214



3717-214

Example



3817-214

Example

git rebase --continue



3917-214

Example



4017-214

2. Git Feature Branch Workflow

• All feature development should take place in a dedicated 
branch instead of the master branch

• Multiple developers can work on a particular feature without 
disturbing the main codebase
– master branch will never contain broken code (enables CI)
– Enables pull requests (code review)



4117-214

Example

git checkout -b marys-feature master

git status 
git add <some-file> 
git commit



4217-214

Example

git push -u origin marys-feature



4317-214

Example

git push



4417-214

Example



4517-214

Example



4617-214

Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push



4717-214

3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– master stores the official release history; tag all commits in 
the master branch with a version number

– develop serves as an integration branch for features



4817-214

GitFlow feature branches (from develop)



4917-214

GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks



5017-214

GitFlow hotfix branches
used to quickly patch 
production releases



5117-214

Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Collaboration with branches
– Different workflows


