Principles of Software Construction:
Objects, Design, and Concurrency

Version control with git

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

[
17-214 1 SOFTWARE
RESEARCH

Administrivia

* Midterm 2 Thursday March 28t"
— Midterm Review March 27 6 pm in NSH 3305

e Form teams for HW 5

17-214 > e
RESEARCH

Intro to Java

Git, Cl

UML GUIs

Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem
Responsibility Assignment,
Design Patterns,

GUI vs Core,

Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

17-214

. . -
institute for

3 SOFTWARE
RESEARCH

Last week Thursday recap

[)
17-214 5 e
RESEARCH

Characteristics of a Good API

Review
* Easy to learn

* Easy to use, even if you take away the documentation
* Hard to misuse

* Easy to read and maintain code that uses it

e Sufficiently powerful to satisfy requirements

* Easy to evolve

* Appropriate to audience

[J
_
17-214 s [Hios
RRRRRRR H

Try APl on at least 3 use cases before release

* If you write one, it probably won’t support another
* If you write two, it will support more with difficulty
* If you write three, it will probably work fine

* Ideally, get different people to write the use cases
— This will test documentation & give you different perspectives

* This is even more important for plug-in APls

* Will Tracz calls this “The Rule of Threes”
(Confessions of a Used Program Salesman, Addison-Wesley, 1995)

[)
17-214 7 e
RESEARCH

Names Matter — APl is a little language
Naming is perhaps the single most important factor in APl usability

* Primary goals
— Client code should read like prose (“easy to read”)

— Client code should mean what it says (“hard to misread”)
— Client code should flow naturally (“easy to write”)

 To that end, names should:
— be largely self-explanatory

— leverage existing knowledge
— interact harmoniously with language and each other

institute for
8 I S SOFTWARE
RESEARCH

17-214

Aside: Software engineering research on names
[Vasilescu et al, ESEC/FSE 2017]

var geom2d = function() { var geom2d = function() {

var |t = numeric.sum; var |sum = numeric.sum;

functionir(n, r)| { function|Vector2d(x, y) {
this.x = n; this.x = X;
this.y = r; this.y = y;

} ey

u(r, { mix(Vector2d, {
P: functionje(n) |{ P: functionl%¥tProduct(vector) {

return t([this.x * n.x, return sum([this.x * vector.x,
this.y * n.y 1); this.y * vector.y]);

} }

})s })s

functionju(n, r)l{ function|mix(dest, src)| {
for (var t in r) n[t] = r[t]; for (var k in src) dest[k] = src[k];
return n; return dest;

} }

return { return {
V:r V: Vectorad

}s }s

30)s 10

[J
17-214 8 BSEA
RESEARCH

VERSION CONTROL WITH GIT

[)
institute for
17-214 10 SOrTvAlE

Versioning entire projects

° B BB
" | [_.rj;i‘;
N

N

[)
institute ror
17-214 11 Y § sormae

GIT BASICS

Graphics by https://learngitbranching.js.org

institute for
17-214 12 [SY§ sormwace

git commit

[)
institute ror
17-214 13 |SYf o

git branch newImage

O

UP

O

Lem

°
institute for
17-214 14 o

git commit

O

Lem

O:QJ

OﬁQ

°
institute for
17-214 15 o

git checkout newlImage; git commit

newImage*

°
institute for
17-214 16 o

Activity: Make a new branch named bugFix and switch
to that branch

O O

O,:QJ

=)

=3

°
institute for
17-214 17 o

Three ways to move work around between branches
1) git merge bugFix (intomaster)

O O
O

O

°
institute ror
17-214 18 [o

git checkout bugfix; git merge master (into bugFix)

O O
O

O
= oo

L] - .
17-214 10 [B

Activity:

°
institute for
17-214 20 SO

Move work from bugFix directly onto master

2) git rebase master

°
institute for
17-214 21 o

But master hasn't been updated, so:

git checkout master; git rebase bugFix

O

°
-I S institute for
SOFTWARE

22 RESEARCH

Activity:

O

C}/‘Q

Copy a series of commits below current location

3) git cherry-pick C2 C4

Ways to undo work (1) HEAD is the symbolic

. name for the currently
g1t reset HEAD~1 checked out commit

O O

o s

CF

°
institute for
17-214 26 o

Ways to undo work (2) git reset does not work

git revert HEAD for remote branches

O O

O
O

O

' Es

°
institute for
17-214 27 o

Highly recommended

SECOND EDITION

 (second) most useful life skill
you will have learned in 214

Pro

(it

EVERYTHING YOU NEED TO
KNOW ABOUT GIT

Scott Chacon and Ben Straub

Apress

https://git-scm.com/book/en/v2

[)
institute for
17-214 29 oAt

Summary

* Version control has many advantages
— History, traceability, versioning
— Collaborative and parallel development

e Collaboration with branches
— Different workflows

* From local to central to distributed version control

institute for
17-214 81 SO

