
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Version control with git

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• Midterm 2 Thursday March 28th

– Midterm Review March 27 6 pm in NSH 3305
• Form teams for HW 5

317-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

517-214

Last week Thursday recap

617-214

Characteristics of a Good API

• Easy to learn
• Easy to use, even if you take away the documentation
• Hard to misuse
• Easy to read and maintain code that uses it
• Sufficiently powerful to satisfy requirements
• Easy to evolve
• Appropriate to audience

Review

717-214

Try API on at least 3 use cases before release

• If you write one, it probably won’t support another
• If you write two, it will support more with difficulty
• If you write three, it will probably work fine
• Ideally, get different people to write the use cases

– This will test documentation & give you different perspectives
• This is even more important for plug-in APIs
• Will Tracz calls this “The Rule of Threes”

(Confessions of a Used Program Salesman, Addison-Wesley, 1995)

817-214

Names Matter – API is a little language

• Primary goals
– Client code should read like prose (“easy to read”)

– Client code should mean what it says (“hard to misread”)

– Client code should flow naturally (“easy to write”)

• To that end, names should:
– be largely self-explanatory

– leverage existing knowledge

– interact harmoniously with language and each other

Naming is perhaps the single most important factor in API usability

917-214

var geom2d = function() {
var t = numeric.sum;
function r(n, r) {

this.x = n;
this.y = r;

}
u(r, {

P: function e(n) {
return t([this.x * n.x,

this.y * n.y]);
}

});
function u(n, r) {

for (var t in r) n[t] = r[t];
return n;

}
return {

V: r
};

}();

var geom2d = function() {
var sum = numeric.sum;
function Vector2d(x, y) {

this.x = x;
this.y = y;

}
mix(Vector2d, {

P: function dotProduct(vector) {
return sum([this.x * vector.x,

this.y * vector.y]);
}

});
function mix(dest, src) {

for (var k in src) dest[k] = src[k];
return dest;

}
return {

V: Vector2d
};

}();

Aside: Software engineering research on names
[Vasilescu et al, ESEC/FSE 2017]

1017-214

VERSION CONTROL WITH GIT
Today:

1117-214

Versioning entire projects

1217-214

GIT BASICS

Graphics by https://learngitbranching.js.org

1317-214

git commit

1417-214

git branch newImage

1517-214

git commit

1617-214

git checkout newImage; git commit

1717-214

Activity: Make a new branch named bugFix and switch
to that branch

1817-214

1) git merge bugFix (into master)
Three ways to move work around between branches

1917-214

git checkout bugfix; git merge master (into bugFix)

2017-214

Activity:

2117-214

2) git rebase master
Move work from bugFix directly onto master

2217-214

git checkout master; git rebase bugFix
But master hasn't been updated, so:

2317-214

Activity:

2417-214

3) git cherry-pick C2 C4
Copy a series of commits below current location

2517-214

Activity:

2617-214

git reset HEAD~1
HEAD is the symbolic
name for the currently
checked out commit

Ways to undo work (1)

2717-214

git revert HEAD
git reset does not work
for remote branches

Ways to undo work (2)

2817-214

Activity:

2917-214

Highly recommended

https://git-scm.com/book/en/v2

• (second) most useful life skill
you will have learned in 214

8117-214

Summary

• Version control has many advantages
– History, traceability, versioning
– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control

