Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Designing (Sub)systems

Introduction to concurrency and GUIs

Michael Hilton Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

= Institute F(|
17-214 1 SOt

Administrivia

* Homework 4b due Thursday, March 7th
— Homework 4a feedback coming soon

 Reading due Tuesday: UML and Patterns Chapters 26.1 and 26.4
— Adapter pattern
— Factory pattern

e Still need Midterm 1°?

1tute F(o

17-214 > [v

Intro to Java

Git, Cl

UML GUIs

Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design
GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

17-214

institute for
3 I S SOFTWARE
RESEARCH

Key concepts from Thursday

= Institute F(I
17-214 4 sormuase

Key concepts from Thursday

* Revise, revise, revise: Refactoring and anti-patterns
e Test driven development

-
INstitute F(|
17-214 5 SOt

Key concepts from last recitation

* Discovering design patterns
* Observer design pattern

-
Institute F(|
17-214 6 SOt

Observer pattern (a.k.a. publish/subscribe)

* Problem: Must notify other objects (observers) without
becoming dependent on the objects receiving the notification

e Solution: Define a small interface to define how observers
receive a notification, and only depend on the interface

* Consequences:
— Loose coupling between observers and the source of the notifications

— Notifications can cause a cascade effect

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmListener...

-
institute for
17-214 8 ot

Today

* Observer pattern
* Introduction to concurrency
* Introduction to GUIs

Institute F(|
17-214 9 SOt

MULTITHREADED PROGRAMMING
BASICS

X institute for
17-214 13 B0 e

What is a thread?

* Short for thread of execution
* Multiple threads can run in the same program concurrently

* Threads share the same address space
— Changes made by one thread may be read by others

* Multithreaded programming

— Also known as shared-memory multiprocessing

= INstitute F(|
17-214 14 SOt

Threads vs. processes

* Threads are lightweight; processes heavyweight
* Threads share address space; processes have their own

* Threads require synchronization; processes don’t
— Threads hold locks while mutating objects

* It’s unsafe to kill threads; safe to kill processes

2 Institute F(I
17-214 15 sormunse

Reasons to use threads

* Performance needed for blocking activities

* Performance on multi-core processors

* Natural concurrency in the real-world

* Existing multi-threaded, managed run-time environments

— In Java threads are a fact of life
* Example: garbage collector runs in its own thread

2 Institute F(I
17-214 16 sormunse

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

Runnable greeter = new Runnable() {
public void run() {
System.out.println("Hi mom!");

}
¥
for (int 1 =0; i < n; i++) {
new Thread(greeter).start();
}

= Institute F(I
17-214 17 sormuase

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi mom!");
for (int 1 = 0; 1 < n; i++) {

new Thread(greeter).start();
}

= Institute F(|
17-214 18 SOt

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

for (int 1 =0; 1 < n; i++) {

new Thread(() -> System.out.println("Hi mom!")).start();
}

= Institute F(I
17-214 19 sormuase

Aside: Anonymous inner class scope in Java

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

for (int 1 =0; 1 < n; i++) {
new Thread(() -> System.out.println("T" + 1i)).start();

}
} \
won't compile
because i mutates

= Institute F(I
17-214 20 sormuase

Aside: Anonymous inner class scope in Java

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

for (int 1 =0; 1 < n; i++) {

int j = 1i; // j unchanging within each loop
new Thread(() -> System.out.println("T" + j)).start();

. .

j is effectively final

= Institute F(I
17-214 21 sormuase

Threads for performance

* Generating cryptarithms from a 344-word corpus
— Test all consecutive 3-word sequences: A+ B=C (342 possibilities)

1 22.0
2 13.5
3 11.7
4 10.8

. institute for
17-214 22 SO

Shared mutable state requires synchronization

* If not properly synchronized, all bets are off!

 Three basic choices:
1. Don't mutate: share only immutable state

2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: synchronize properly

2 Institute F(I
17-214 23 sormunse

The challenge of synchronization

* Not enough synchronization: safety failure
— Incorrect computation
* Changes aren’t guaranteed to propagate thread to thread
* Program can observe inconsistencies

* Critical invariants can be corrupted

* Too much synchronization: liveness failure
— No computation at all
* Deadlock or other liveness failure

2 INSLItLLE F(JY
17-214 24 sormiast

Today

* Observer pattern
* Introduction to concurrency
* Introduction to GUIs

Institute F(|
17-214 25 SOt

EVENT-BASED PROGRAMMING

o INstitute F« |
17-214 26 so:

Event-based programming

* Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

4 B 100%EA Wed11:03PM Charles Garrod Q=

& PowerPoint File Edit View Insert Format Amange Tools SideShow Window $ Help M6 @ & 3 O
oce “1-introduction-to-concurrency-and-guis pix
erenuss o mmHE . B8 e W @ Q-

A Home | Themes Tables | Chats | SmanArt Transitions Ammations SideShow | Review

= B W

s 0w
Event-based programming

+ Style of programming where control-flow is driven by (usually

external) events

fschas.a.pdf

public void performAction(ActionEvent e) {
bigBloatedPowerPointFunction (e) ;
withANameSoLongIMadeItTwoMethods (e); (—— erebuss
yesIKnowJavaDoesntWorkLikeThat (e) ;

Gk o acd notes

Side 01 20 0% ® =

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (40)

Institute F(I
17-214 27 SO

Examples of events in GUIs

* User clicks a button, presses a key

e User selects an item from a list, an item from a menu
* Mouse hovers over a widget, focus changes

e Scrolling, mouse wheel turned

* Resizing a window, hiding a window

 Dragand drop

* A packet arrives from a web service, connection drops, ...

e System shutdown, ...

2 Institute F« I
17-214 28 sormunse

Blocking interaction with command-line interfaces

Terminal N

File Edit View Search Terminal Help
scripts/kconfig/conf arch/x86/Kconfig

*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Local version - append to kernel release (LOCALVERSION) []

Automatically append version information to the version string (LOCALVERSION_AUT
0) [N/y/?2] y

Kernel compression mode

> 1. Gzip (KERNEL_GZIP)

2. Bzip2 (KERNEL_BZIP2 . .
3.11M2(KHmEkj2W0)Scanner input = new Scanner(System.in);

h4.L%O(K?WEkJ10) while (questions.hasNext()) {
choice[1-47]: 3 . .

e e e T Question q = question.next();
System V IPC (SYSVIPC) [V System.out.println(g.toString());

POSIX M POS : i i
e String answer = input.nextLine();

BSD Process Accounting (B
Export task/process stati q.r-espond(answer‘);

1y }
Enable per-task delay a

Institute F(|
17-214 29 SOt

Blocking interactions with users

Player

newGame

getAction
|

action

blocking
execution

[action==iI1it] addCard

Cr J__vyYy_v __ ______._

institute for
SOFTWARE
RESEARCH

- __¥

17-214

Interactions with users through events

* Do not block waiting for user response
* Instead, react to user events

Game Dealer Player
newGame : : :
p | |
: addCards : :
| > |
: addCards :
| | |
| | g
hit	I
P | |
: addCard :
i i

institute for
31 SOFTWARE
RESEARCH

17-2)4

An event-based GUI with a GUI framework

e Setup phase
— Describe how the GUI window should look
— Register observers to handle events

* Execution
— Framework gets events from OS, processes events
* Your code is mostly just event handlers

Application

event—
mouse, key,
redraw, ...

drawing
commands

GUI
Framework

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow...

17-214

?(s)titute for
FTWARE
3 2 RESEARCH

GUI PROGRAMMING

17-214 3 [H s

GUI frameworks in Java

* AWT — obsolete except as a part of Swing
* Swing —the most widely used, by far
 SWT — Little used outside of Eclipse

* JavaFX —Billed as a replacement for Swing
— Released 2008 — has yet to gain traction

* A bunch of modern (web & mobile) frameworks
— e.g., Android

= Institute F(|
17-214 34 SOt

GUI programming is inherently multi-threaded

Event-driven programming

Swing Event dispatch thread (EDT) handles all GUI events
— Mouse events, keyboard events, timer events, etc.

Program registers observers (“listeners”)

No other time-consuming activity allowed on the EDT

— Violating this rule can cause liveness failures

2 Institute F« I
17-214 35 sormunse

Ensuring all GUI activity is on the EDT

* Violating this rule can cause safety failures
— Never make a Swing call from any other thread
e "Swing calls" include Swing constructors

* If not on EDT, make Swing calls with invokeLater()

2 Institute F(I
17-214 36 sormunse

Aside: invokeLater

public void actionPerformed(ActionEvent e)

{

new Thread(new Runnable()

{
final String text = readHugeFile();

SwingUtilities.invokeLater(new Runnable()

{

public void run()

{

textArea.setText (text);

}
});
}).start();

}

https://alvinalexander.com/java/java-swingutilities-invoke-later-example-edt

. institute for
17-214 37 [F1

Ensuring all GUI activity is on the EDT

* Violating this rule can cause safety failures
— Never make a Swing call from any other thread
e "Swing calls" include Swing constructors

* If not on EDT, make Swing calls with invokeLater()

 The code that initialises our GUI must also take place in an
invokelLater()

public static void main(String[] args) {
SwingUtilities.invokelLater(() -> new Test().setVisible(true));

}

2 Institute F(I
17-214 38 sormunse

Callbacks execute on the EDT

* You are a guest on the Event Dispatch Thread!
— Don’t abuse the privilege

* If you have more than a few ms of work to do, do it off the EDT
— Jjavax.swing.SwingWorker designed for this purpose

* Typical scenario:
— long running task in a background thread
— provide updates to the Ul either when done, or while processing.

2 Institute F(I
17-214 39 sormunse

SwingWorker sample usage

final JLabel label;

class MeaningOfLifeFinder extends SwingWorker<String, Object> {
@Override

public String doInBackground() {
return findTheMeaningOfLife();
}

@Override
protected void done() {
try {
label.setText(get());
} catch (Exception ignore) {

}
}

(new MeaningOfLifeFinder()).execute();

https://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html

= Institute F< I
17-214 a0 [BYN sorrva

Components of a Swing application

JFrame

JPanel

JButton
JTextField

17-214

MenuWidgetl MenuWidget2

ToolbarButton [v] ToolbarCheckBox

PanelCaption
Panel [‘SelectedTab | OtherTab
Item 1 ® RadioButtonl [] UncheckedCheckBox
tem 2 C RadioButton2 CheckedCheckBox
Item 3 —~ .
) RadioButton3 -
Item 4 . -] InactiveCheckBox
Item 5 .} InactiveRadio
Button o
N
TextField | FextArea
|............. |
Item 1 —

41

-
@
1

institute for
SOF TWARE
RESEARCH

Swing has many widgets

« JLabel e JTextField
 JButton * JTextArea
 JCheckBox e JList

« JChoice e JScrollBar
« JRadioButton e ...and more

e JFrame is the Swing Window

e JPanel (a.k.a. a pane) is the container to which you add your components
(or other containers)

. institute for
17-214 2 [H ok

To create a simple Swing application

 Make a window (a JFrame)
 Make a container (a JPanel)
— Putitin the window

 Add components (buttons, boxes, etc.) to the container
— Use layouts to control positioning
— Set up observers (a.k.a. listeners) to respond to events
— Optionally, write custom widgets with application-specific display logic

e Set up the window to display the container

e Then wait for events to arrive...

2 Institute F« I
17-214 43 sormunse

E.g., creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionlListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

System.out.println(“Button clicked”);

}
O
panel.add(button);

window.setVisible(true);

= institute for
17-214 a4

E.g., creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener((e) -> {
System.out.println(“Button clicked");

1)
panel.add(button);

window.setVisible(true);

X PPJ institute for
17-214 as [Hl s

The javax.swing.ActionListener

* Listeners are objects with callback functions
— Can be registered to handle events on widgets
— All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

¥

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

= Institute F< I
17-214 as YN s

Button design discussion

e Button implementation should be reusable but
customizable
— Different button label, different event-handling

 Must decouple button's action from the button itself
* Listeners are separate independent objects

— A single button can have multiple listeners
— Multiple buttons can share the same listener

e for

17-214 a7 [v

Swing has many event listener interfaces

e ActionlListener e Mouselistener

* AdjustmentListener * TreeExpansionListener
e FocuslListener e TextListener

e ItemListener e WindowListener

« KeyListener .

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

interface ActionListener {

void actionPerformed(ActionEvent e);

}

= Institute F(I
17-214 as [HYN o

Summary: Swing constraints

* Time-consuming tasks should not be run on the Event Dispatch
Thread. Otherwise the application becomes unresponsive.

* Swing components should be accessed on the Event Dispatch
Thread only.

* Helpers: invokeLater, SwinghWorker

2 INSLItLLE F(JY
17-214 49 sormiast

For help writing Swing code

* Sun wrote a good tutorial

— http://docs.oracle.com/javase/tutorial/uiswing/

 The many components shown with examples

— http://docs.oracle.com/javase/tutorial/uiswing /components/componentlist.ntml

* Listeners supported by each component

— http://docs.oracle.com/javase/tutorial/uiswing /events/eventsandcomponents.html

institute for

17-214 50 [I]) sorvate

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/components/componentlist.html
http://docs.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html

Summary

* Use the observer pattern to decouple two-way dependencies

* Multi-threaded programming is genuinely hard
— Neither under- nor over-synchronize
— Immutable types are your friend

* GUI programming is inherently multi-threaded

— Swing calls must be made on the event dispatch thread
— No other significant work should be done on the EDT

2 Institute F(I
17-214 51 sormunse

