
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Incremental Improvements

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• HW 4a due tonight
• Midterms returned Tuesday (leftovers are here)

317-214

CODE SMELLS

417-214

Code Smells

• A code smell is a hint that something has
gone wrong somewhere in your code.
• A smell is sniffable, or

something that is quick
to spot.
• A smell doesn’t always

indicate a problem

517-214

Bad Smells: Classification

• Most Common: code duplication
• Class / method organization
– Large class, Long Method, Long Parameter List, Lazy Class,

Data Class, ...

• Lack of loose coupling or cohesion
– Inappropriate Intimacy, Feature Envy, Data Clumps, ...

• Too much or too little delegation
– Message Chains, Middle Man, ...

• Non Object-Oriented control or data structures
– Switch Statements, Primitive Obsession, ...

• Other: Comments

617-214

Code duplication (1)

code

code

code

code

Class

Method 1

Method 2

Method 3

code

Class

Method 1

Method 2

Method X

MethodX();

Method 3
MethodX();

MethodX();
MethodX();

• Extract
method

• Rename
method

717-214

Code duplication (2)

code

Subclass A

Method codeMethod

Subclass B
Class

Same expression in two sibling classes:

• Same code: Extract method + Pull up field

• Similar code: Extract method + Form Template Method

• Different algorithm: Substitute algorithm

817-214

Code duplication (3)

code

ClassA

MethodA codeMethodB

ClassB

917-214

Code duplication (3)

ClassA

MethodA MethodB

ClassB

Same expression in two unrelated classes:

• Extract class

• If the method really belongs in one of the two classes,
keep it there and invoke it from the other class

code

ClassX

MethodX

ClassX.MethodX(); ClassX.MethodX();

1017-214

Long method
//700LOC
public boolean foo() {

try {
synchronized () {

if () {
} else {
}
for () {

if () {
if () {

if () {
if ()?
{

if () {
for () {
}

}
}

} else {
if () {

for () {
if () {
} else {
}
if () {
} else {

if () {
}

}
if () {

if () {
if () {

for () {
}

}
}

} else {
}

}
} else {
}

}
}

}
}

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

• Remember this?

1117-214

Solution: Refactoring

• Refactoring is a change to a program that doesn’t change the
behavior, but improves a non-functional attribute of the code
(not reworking).

• Examples:
– Improve readability
– Reduce complexity

• Benefits include increased maintainability, and easier
extensibility

• Fearlessly refactor when you have good unit tests

1217-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;
// Print banner
System.out.println(“******************“);
System.out.println(“***** Customer *****“);
System.out.println(“******************“);
// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

1317-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;
// Print banner
System.out.println(“******************“);
System.out.println(“***** Customer *****“);
System.out.println(“******************“);
// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

1417-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

void printBanner(){
System.out.println(“******************“);
System.out.println(“***** Customer *****“);
System.out.println(“******************“);

}

Extract method

Compile and test to see whether I've broken anything

1517-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}
void printBanner(){…}

1617-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
printDetails(outstanding);

}
void printBanner(){…}
void printDetails(outstanding){

System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

Extract method
using local variables

Compile and test to see whether I've broken anything

1717-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
printDetails(outstanding);

}
void printBanner(){…}
void printDetails(outstanding){

System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

1817-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = getOutstanding();
printBanner();
printDetails(outstanding);

}
void printBanner(){…}
void printDetails(outstanding){…}

double getOutstanding() {
Enumeration e = _orders.elements();
double result = 0.0;
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
result += each.getAmount();

}
return result;

}

Extract method
reassigning a local
variable

Compile and test to see whether I've broken anything

1917-214

Many More Bad Smells and Suggested
Refactorings

• Top crime: code duplication
• Class / method organization
– Large class, Long Method, Long Parameter List, Lazy Class,

Data Class, ...
• Lack of loose coupling or cohesion
– Inappropriate Intimacy, Feature Envy, Data Clumps, ...

• Too much or too little delegation
– Message Chains, Middle Man, ...

• Non Object-Oriented control or data structures
– Switch Statements, Primitive Obsession, ...

• Other: Comments

2017-214

ANTI-PATTERNS

2117-214

Anti-patterns

• “Anti”-pattern
• Patterns of things you should NOT do
• Often have memorable names.

2217-214

Common anti-patterns

• Spaghetti code

2317-214

Common anti-patterns

• Spaghetti code
• The Blob

2417-214

Common anti-patterns

• Spaghetti code
• The Blob
• Golden Hammer

2517-214

Common anti-patterns

• Spaghetti code
• The Blob
• Golden Hammer
• Lava Flow

2617-214

Common anti-patterns

• Spaghetti code
• The Blob
• Golden Hammer
• Lava Flow
• Swiss Army Knife

2717-214

EVALUATING FUNCTIONAL
CORRECTNESS

2817-214

Reminder: Functional Correctness

• The compiler ensures that the types are correct (type checking)
– Prevents “Method Not Found” and “Cannot add Boolean to Int” errors at

runtime

• Static analysis tools (e.g., FindBugs) recognize certain common
problems
– Warns on possible NullPointerExceptions or forgetting to close files

• How to ensure functional correctness of contracts beyond?

2917-214

Formal Verification

• Proving the correctness of an implementation with respect to a
formal specification, using formal methods of mathematics.

• Formally prove that all possible executions of an implementation
fulfill the specification

• Manual effort; partial automation; not automatically decidable

3017-214

Testing

• Executing the program with selected inputs in a controlled
environment (dynamic analysis)

• Goals:
– Reveal bugs (main goal)
– Assess quality (hard to quantify)
– Clarify the specification, documentation
– Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

3117-214

Testing Decisions

• Who tests?
– Developers
– Other Developers
– Separate Quality Assurance Team
– Customers

• When to test?
– Before development
– During development
– After milestones
– Before shipping

• When to stop testing?

(More in 15-313)

3217-214

TEST COVERAGE

3317-214

How much testing?

• You generally cannot test all inputs
– too many, usually infinite

• But when it works, exhaustive testing is best!

• When to stop testing?
– in practice, when you run out of money

3417-214

What makes a good test suite?

• Provides high confidence that code is correct
• Short, clear, and non-repetitious

– More difficult for test suites than regular code
– Realistically, test suites will look worse

• Can be fun to write if approached in this spirit

3517-214

• Also know as fuzz testing, torture testing
• Try “random” inputs, as many as you can
– Choose inputs to tickle interesting cases

– Knowledge of implementation helps here

• Seed random number generator so tests repeatable

• Successful in some domains (parsers, network issues, …)

– But, many tests execute similar paths

– But, often finds only superficial errors

Blackbox: Random Inputs
Next best thing to exhaustive testing

3617-214

Blackbox testingBlackbox: Covering Specifications

• Looking at specifications, not code:

• Test representative case
• Test boundary condition
• Test exception conditions
• (Test invalid case)

3717-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An attempt
is made to read as many as len bytes, but a smaller number may be read. The number
of bytes actually read is returned as an integer. This method blocks until input data is
available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt
to read at least one byte. If no byte is available because the stream is at end of file,
the value -1 is returned; otherwise, at least one byte is read and stored into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so on.
The number of bytes read is, at most, equal to len. Let k be the number of bytes
actually read; these bytes will be stored in elements b[off] through b[off+k-1], leaving
elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file, or if

the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

3817-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

3917-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

Will this statement get executed in a test?

Does it return the correct result?

4017-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

Could this array index be out of bounds?

Will this statement get executed in a test?

Does it return the correct result?

4117-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

Could this array index be out of bounds?

Does this return statement ever get reached?

Will this statement get executed in a test?

Does it return the correct result?

4217-214

Code coverage metrics

• Method coverage – coarse
• Branch coverage – fine
• Path coverage – too fine

– Cost is high, value is low
– (Related to cyclomatic complexity)

4317-214

Method Coverage

• Trying to execute each method as part of at least one test

• Does this guarantee correctness?

4417-214

Statement Coverage

• Trying to test all parts of the implementation
• Execute every statement in at least one test

• Does this guarantee correctness?

4517-214

Structure of Code Fragment to Test

Flow chart diagram for
junit.samples.money.Money.equals

4617-214

Statement Coverage

• Statement coverage
– What portion of program statements

(nodes) are touched by test cases
• Advantages

– Test suite size linear in size of code
– Coverage easily assessed

• Issues
– Dead code is not reached
– May require some sophistication to

select input sets
– Fault-tolerant error-handling code

may be difficult to “touch”
– Metric: Could create incentive to

remove error handlers!

4717-214

Branch Coverage

• Branch coverage
– What portion of condition branches are

covered by test cases?
– Or: What portion of relational expressions

and values are covered by test cases?
• Condition testing (Tai)

– Multicondition coverage – all boolean
combinations of tests are covered

• Advantages
– Test suite size and content derived

from structure of boolean expressions
– Coverage easily assessed

• Issues
– Dead code is not reached
– Fault-tolerant error-handling code

may be difficult to “touch”

4817-214

Path Coverage

• Path coverage
– What portion of all possible paths through the

program are covered by tests?
– Loop testing: Consider representative and edge

cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
– Better coverage of logical flows

• Disadvantages
– Infinite number of paths
– Not all paths are possible, or necessary

• What are the significant paths?
– Combinatorial explosion in cases unless

careful choices are made
• E.g., sequence of n if tests can yield

up to 2^n possible paths
– Assumption that program structure is basically

sound

5017-214

5117-214

Check your understanding

• Write test cases to achieve 100% line coverage but not 100%
branch coverage

int foo(int a, int b) {
if (a == b)

a = a * 2;
if (a + b > 10)

return a - b;
return a + b;

}

5217-214

Check your understanding

• Write test cases to achieve 100% line coverage and also 100%
branch coverage

int foo(int a, int b) {
if (a == b)

a = a * 2;
if (a + b > 10)

return a - b;
return a + b;

}

5317-214

Check your understanding

• Write test cases to achieve 100% line coverage and 100% branch
coverage and 100% path coverage

int foo(int a, int b) {
if (a == b)

a = a * 2;
if (a + b > 10)

return a - b;
return a + b;

}

5417-214

Coverage metrics: useful but dangerous
• Can give false sense of security
• Examples of what coverage analysis could miss

– Data values
– Concurrency issues – race conditions etc.
– Usability problems
– Customer requirements issues

• High branch coverage is not sufficient

5517-214

Test suites – ideal vs. real

• Ideal test suites
– Uncover all errors in code
– Test “non-functional” attributes such as performance and security
– Minimum size and complexity

• Real test Suites
– Uncover some portion of errors in code
– Have errors of their own
– Are nonetheless priceless

5617-214

STATIC ANALYSIS

5717-214

Stupid Bugs

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
public boolean equals(CartesianPoint that) {

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

5817-214

S
p
o
tB
u
g
s

5917-214

Stupid Subtle Bugs

public class Object {
public boolean equals(Object other) { … }

// other methods…
}

public class CartesianPoint extends Object {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
public boolean equals(CartesianPoint that) {

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

classes with no
explicit superclass
implicitly extend
Object

can’t change
argument type
when overriding

This defines a
different equals
method, rather
than overriding
Object.equals()

6017-214

Fixing the Bug

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }

@Override
public boolean equals(Object o) {

if (!(o instanceof CartesianPoint)
return false;

CartesianPoint that = (CartesianPoint) o;

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

Declare our intent
to override;
Compiler checks
that we did it

Use the same
argument type as
the method we
are overriding

Check if the
argument is a
CartesianPoint.
Correctly returns
false if o is null

Create a variable
of the right type,
initializing it with
a cast

6117-214

S
p
o
tB
u
g
s

6217-214

S
p
o
tB
u
g
s

6317-214

C
h
ec
kS
ty
le

6417-214

Static Analysis

• Analyzing code without executing it (automated inspection)
• Looks for bug patterns
• Attempts to formally verify specific aspects
• Point out typical bugs or style violations

– NullPointerExceptions
– Incorrect API use
– Forgetting to close a file/connection
– Concurrency issues
– And many, many more (over 250 in FindBugs)

• Integrated into IDE or build process
• FindBugs and CheckStyle open source, many commercial

products exist

6517-214

Example SpotBugs Bug Patterns

• Correct equals()
• Use of ==
• Closing streams
• Illegal casts
• Null pointer dereference
• Infinite loops
• Encapsulation problems
• Inconsistent synchronization
• Inefficient String use
• Dead store to variable

6617-214

Bug finding

6717-214

Can you find the bug?

if (listeners == null)

listeners.remove(listener);

JDK1.6.0, b105, sun.awt.x11.XMSelection

6817-214

Wrong boolean operator

if (listeners != null)

listeners.remove(listener);

JDK1.6.0, b105, sun.awt.x11.XMSelection

6917-214

Can you find the bug?

public String sendMessage (User user, String body, Date time) {

return sendMessage(user, body, null);

}

public String sendMessage (User user, String body, Date time,
List attachments) {

String xml = buildXML (body, attachments);

String response = sendMessage(user, xml);

return response;

}

7017-214

Infinite recursive loop

public String sendMessage (User user, String body, Date time) {

return sendMessage(user, body, null);

}

public String sendMessage (User user, String body, Date time,
List attachments) {

String xml = buildXML (body, attachments);

String response = sendMessage(user, xml);

return response;

}

7117-214

Can you find the bug?

String b = "bob";

b.replace('b', 'p');

if(b.equals("pop")){…}

7217-214

Method ignores return value

String b= "bob";

b = b.replace('b', 'p');

if(b.equals("pop")){…}

7317-214

What does this print?

Integer one = 1;
Long addressTypeCode = 1L;

if (addressTypeCode.equals(one)) {
System.out.println("equals");

} else {
System.out.println("not equals");

}

7417-214

What does this print?

Integer one = 1;
Long addressTypeCode = 1L;

if (addressTypeCode.equals(one)) {
System.out.println("equals");

} else {
System.out.println("not equals");

}

7517-214

TEST DRIVEN DEVELOPMENT (TDD)

7617-214

Three simple rules

1. You are not allowed to write any
production code unless it is to make a
failing unit test pass.

2. You are not allowed to write any more of a
unit test than is sufficient to fail; and
compilation failures are failures.

3. You are not allowed to write any more
production code than is sufficient to pass
the one failing unit test.

7717-214

TDD Cycle

7817-214

Why TDD?

“The act of writing a unit test is more an act of
design than of verification.

It is also more an act of documentation than of
verification.

The act of writing a unit test closes a remarkable
number of feedback loops, the least of which is
the one pertaining to verification of function”.

7917-214

Advantages of TDD

•Clear place to start
•Much less code thrown

away, less wasted effort
• Less Fear
• Side Effect: Robust test suite

8017-214

CODE KATA

A programming exercise that you repeat many many times, looking to
make small, incremental improvements.

8117-214

Diamond Kata

• Given a letter, print a diamond starting with ‘A’ with the supplied
letter at the widest point.

• For example: ‘C’ prints

A
B B

C C
B B
A

8217-214

TDD Demo

8317-214

IMPRESSIONS?

8417-214

TDD Research

• Hilton et al.: Students learn better when
forced to write tests first

• Bhat et al.: At Microsoft, projects using TDD
had greater than two times code quality,
but 15% more upfront setup time

• George et al.: TDD passed 18% more test cases, but took 16%
more time

• Scanniello et al.: Perceptions of TDD include: novices believe
TDD improves productivity at the expense of internal quality

8517-214

More TDD Research

• Fucci et al.: Results: The Kruskal-Wallis tests did not show any
significant difference between TDD and TLD in terms of testing
effort (p-value = .27), external code quality (p-value = .82), and
developers' productivity (p-value = .83).

• Fucci et al.: Conclusion: The claimed benefits of TDD may not be
due to its distinctive test-first dynamic, but rather due to the fact
that TDD-like processes encourage fine-grained, steady steps
that improve focus and flow.

8617-214

WHY IS THIS HARD?

