
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Object Oriented Design- responsibility assignment

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• HW 4a design review meetings ongoing
• Midterms returned today

317-214

Midterm

• Mean 54/74

• SD 10

• Max 71

• NOTE: This course does not have a fixed letter grade policy; i.e.
the final letter grades will not be A=90-100%, B=80-90%, etc.

417-214

Exam Review

• Node Iterator

517-214

Design Pattern Question

• Strategy vs Template Method Patterns

617-214

Representational gap

• Real-world concepts:

• Software concepts:

PineTree
age
height
harvest()

Forest
-trees

…

Ranger
…

surveyForest(…)

717-214

Problem
Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

• Real-world concepts
• Requirements, concepts
• Relationships among concepts
• Solving a problem
• Building a vocabulary

• System implementation
• Classes, objects
• References among objects and

inheritance hierarchies
• Computing a result
• Finding a solution

817-214

Design Process

Modeling
objects

Describing
interaction

Understanding
the Problem
(Problem Level)

Domain Model System
Sequence
Diagram

Defining a
Solution
(Code Level)

Object Model Object
Interaction
Diagrams

917-214

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

1017-214

One domain model for the library system

1117-214

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its rental period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

1217-214

A system behavioral contract for the library system

Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
Item is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the newly-borrowed
item, or the member is warned she has an outstanding late fee.
The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

1317-214

Distinguishing domain vs. implementation concepts

• Domain-level concepts:
– Almost anything with a real-world analogue

• Implementation-level concepts:
– Implementation-like method names
– Programming types
– Visibility modifiers
– Helper methods or classes
– Artifacts of design patterns

1417-214

Summary: Understanding the problem domain

• Know your tools to build domain-level representations

– Domain models

– System sequence diagrams

– System behavioral contracts

• Be fast and (sometimes) loose

– Elide obvious(?) details

– Iterate, iterate, iterate, …

• Get feedback from domain experts

– Use only domain-level concepts

1517-214

Artifacts of our design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

Understanding
the problem

Defining a
solution

1617-214

Object-oriented programming

• Programming based on structures
that contain both data and methods
public class Bicycle {

private int speed;
private final Wheel frontWheel, rearWheel;
private final Seat seat;
…

public Bicycle(…) { … }

public void accelerate() {
speed++;

}

public int speed() { return speed; }
}

1717-214

Responsibility in object-oriented programming

• Data:
– Private or otherwise encapsulated data
– Data in closely related objects

• Methods:
– Private or otherwise encapsulated operations
– Object creation, of itself or other objects
– Initiating actions in other objects
– Coordinating activities among objects

1817-214

Using interaction diagrams to assign object responsibility

• For a given system-level operation, create an object interaction
diagram at the implementation-level of abstraction
– Implementation-level concepts:

• Implementation-like method names
• Programming types
• Helper methods or classes
• Artifacts of design patterns

1917-214

Example interaction diagram #1

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and …

2017-214

Example interaction diagram #2

Use case scenario: …and borrow a book. After confirming that the member has
no unpaid late fees, the library system should determine the book’s due date by
adding its loan period to the current day, and record the book and its due date as
a borrowed item in the member’s library account.

2117-214

Example interaction diagram #2

Use case scenario: …and borrow a book. After confirming that the member has
no unpaid late fees, the library system should determine the book’s due date by
adding its loan period to the current day, and record the book and its due date as
a borrowed item in the member’s library account.

2217-214

Heuristics for responsibility assignment

• Controller heuristic
• Information expert heuristic
• Creator heuristic

Goals

Heuristics Patterns

Principles

2317-214

The controller heuristic

• Assign responsibility for all system-level behaviors to a single
system-level object that coordinates and delegates work to other
objects
– Also consider specific sub-controllers for complex use-case scenarios

• Design process: Extract interface from system sequence diagrams
– Key principles: Low representational gap and high cohesion

2417-214

Information expert heuristic

• Assign responsibility to the class that has the information
needed to fulfill the responsibility
– Initialization, transformation, and views of private data
– Creation of closely related or derived objects

2517-214

Responsibility in object-oriented programming

• Data:
– Private or otherwise encapsulated data
– Data in closely related objects

• Methods:
– Private or otherwise encapsulated operations
– Object creation, of itself or other objects
– Initiating actions in other objects
– Coordinating activities among objects

2617-214

Information expert heuristic

• Assign responsibility to the class that has the information
needed to fulfill the responsibility
– Initialization, transformation, and views of private data
– Creation of closely related or derived objects

• Design process: Assignment from domain model
– Key principles: Low representational gap and low coupling

2717-214

Another design principle: Minimize conceptual weight

• Label the concepts for a proposed object
– Related to representational gap and cohesion

2817-214

Creator heuristic: Who creates an object Foo?

• Assign responsibility of creating an object Foo to a class that:
– Has the data necessary for initializing instances of Foo
– Contains, aggregates, or records instances of Foo
– Closely uses or manipulates instances of Foo

• Design process: Extract from domain model, interaction diagrams
– Key principles: Low coupling and low representational gap

2917-214

Object-level artifacts of this design process

• Object interaction diagrams add methods to objects
– Can infer additional data responsibilities
– Can infer additional data types and architectural patterns

• Object model aggregates important design decisions
– Is an implementation guide

3017-214

Creating an object model

• Extract data, method names, and types from interaction diagrams
– Include implementation details such as visibilities

3117-214

3217-214

Summary:

• Object-level interaction diagrams and object model
systematically guide the design process
– Convert domain model, system sequence diagram, and contracts to

object-level responsibilities

• Use heuristics to guide, but not define, design decisions
• Iterate, iterate, iterate…

