
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Designing (sub-) systems

A formal design process

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• HW 3 deadline Today instead of Thu, Feb 7
• Reading Today: UML and Patterns, Ch. 14, 15, and 16
• Midterm 1 on Thu, Feb 14

– Review meeting: Wed, Feb 13, 6-8pm, Scaife Hall 125

• Recitation tomorrow: Review the rules of blackjack the card
game

317-214

Key concepts from last Tuesday

• Template Method Pattern
• Strategy Pattern
• Iterator Pattern
• Decorator Pattern

417-214

Inspired by Design Patterns

517-214

Inspired by Design Patterns

617-214

Today

• Design goals and design principles

717-214

Metrics of software quality, i.e., design goals

Functional
correctness Adherence of implementation to the specifications

Robustness Ability to handle anomalous events

Flexibility Ability to accommodate changes in specifications

Reusability Ability to be reused in another application

Efficiency Satisfaction of speed and storage requirements

Scalability Ability to serve as the basis of a larger version of the application

Security Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

817-214

Design principles: heuristics to achieve design goals

• Low coupling
• Low representational gap
• High cohesion

917-214

A design principle for reuse: low coupling

• Each component should depend on as few other components as
possible

• Benefits of low coupling:
– Enhances understandability
– Reduces cost of change
– Eases reuse

1017-214

Law of Demeter

• "Only talk to your immediate friends"

foo.bar().baz().quz(42)

1117-214

Representational gap

• Real-world concepts:

• Software concepts:

?
…

…

?
…

…
…

1217-214

Representational gap

• Real-world concepts:

• Software concepts:

Obj1
a
h
k()

Obj2
objs

…

Actor42
…

op12

1317-214

Representational gap

• Real-world concepts:

• Software concepts:

PineTree
age
height
harvest()

Forest
-trees

…

Ranger
…

surveyForest(…)

1417-214

Benefits of low representational gap

• Facilitates understanding of design and implementation
• Facilitates traceability from problem to solution
• Facilitates evolution

1517-214

A related design principle: high cohesion

• Each component should have a small set of closely-related
responsibilities

• Benefits:
– Facilitates understandability
– Facilitates reuse
– Eases maintenance

PineTree
age
height
harvest()

Forest
-trees

…

Ranger
…

surveyForest(…)

1617-214

Coupling vs. cohesion

• All code in one component?
– Low cohesion, low coupling

• Every statement / method in a separate component?
– High cohesion, high coupling

1817-214

Visualizing dynamic behavior: Interaction diagrams

• An interaction diagram is a picture that shows, for a single
scenario of use, the events that occur across the system’s
boundary or between subsystems

• Clarifies interactions:
– Between the program and its environment
– Between major parts of the program

• For this course, you should know:
– Communication diagrams
– Sequence diagrams

1917-214

Creating a communication diagram

2017-214

An example communication diagram

2117-214

(Communication diagram with notation annotations)

2217-214

Constructing a sequence diagram

2317-214

An example sequence diagram

2417-214

(Sequence diagram with notation annotations)

2617-214

Sequence vs. communication diagrams

• Relative advantages and disadvantages?

2817-214

DESIGN PROCESS

2917-214

Tactical Data Radios

3017-214

Coast Guard SAFE Boats

3117-214

Loan Management Systems

3217-214

Problem
Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

• Real-world concepts
• Requirements, concepts
• Relationships among concepts
• Solving a problem
• Building a vocabulary

• System implementation
• Classes, objects
• References among objects and

inheritance hierarchies
• Computing a result
• Finding a solution

3317-214

A high-level software design process

• Project inception
• Gather requirements
• Define actors, and use cases
• Model / diagram the problem, define objects
• Define system behaviors
• Assign object responsibilities
• Define object interactions
• Model / diagram a potential solution
• Implement and test the solution
• Maintenance, evolution, …

17-313

17-214

…

3417-214

Artifacts of this design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

3517-214

Artifacts of this design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

Understanding
the problem

Defining a
solution

3617-214

Design Process

Modeling
objects

Describing
interaction

Understanding
the Problem
(Problem Level)

Domain Model System
Sequence
Diagram

Defining a
Solution
(Code Level)

Object Model Object
Interaction
Diagrams

3717-214

Input to the design process: Requirements and use cases

• Typically prose:

3817-214

Modeling a problem domain

• Identify key concepts of the domain description
– Identify nouns, verbs, and relationships between concepts
– Avoid non-specific vocabulary, e.g. "system"
– Distinguish operations and concepts
– Brainstorm with a domain expert

3917-214

Modeling a problem domain

• Identify key concepts of the domain description
– Identify nouns, verbs, and relationships between concepts
– Avoid non-specific vocabulary, e.g. "system"
– Distinguish operations and concepts
– Brainstorm with a domain expert

• Visualize as a UML class diagram, a domain model
– Show class and attribute concepts

• Real-world concepts only
• No operations/methods
• Distinguish class concepts from attribute concepts

– Show relationships and cardinalities

4017-214

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

4117-214

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

4217-214

One domain model for the library system

4317-214

Notes on the library domain model

• All concepts are accessible to a non-programmer

• The UML is somewhat informal

– Relationships are often described with words

• Real-world "is-a" relationships are appropriate for a domain model

• Real-word abstractions are appropriate for a domain model

• Iteration is important

– This example is a first draft. Some terms (e.g. Item vs. LibraryItem, Account

vs. LibraryAccount) would likely be revised in a real design.

• Aggregate types are usually modeled as classes

• Primitive types (numbers, strings) are usually modeled as attributes

4417-214

Build a domain model for Monopoly

4517-214

Build a domain model for Monopoly

Monopoly is a game in which each player has a piece that moves around a game
board, with the piece’s change in location determined by rolling a pair of dice.
The game board consists of a set of properties (initially owned by a bank) that
may be purchased by the players.

When a piece lands on a property that is not owned, the player may use money
to buy the property from the bank for that property’s price. If a player lands on a
property she already owns, she may build houses and hotels on the property;
each house and hotel costs some price specific for the property. When a player’s
piece lands on a property owned by another player, the owner collects money
(rent) from the player whose piece landed on the property; the rent depends on
the number of houses and hotels built on the property.

The game is played until only one remaining player has money and property, with
all the other players being bankrupt.

4617-214

Understanding system behavior with sequence diagrams

• A system sequence diagram is a model that shows, for one
scenario of use, the sequence of events that occur on the
system’s boundary

• Design goal: Identify and define the interface of the system
– Two components: A user and the overall system

4717-214

Understanding system behavior with sequence diagrams

• A system sequence diagram is a model that shows, for one
scenario of use, the sequence of events that occur on the
system’s boundary

• Design goal: Identify and define the interface of the system
– Two components: A user and the overall system

• Input: Domain description and one use case
• Output: A sequence diagram of system-level operations

– Include only domain-level concepts and operations

4817-214

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its rental period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

4917-214

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its rental period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

5017-214

Build one system sequence diagram for Monopoly

Use case scenario: When a player lands on an unowned property and has
enough money to buy the property, she should be able to buy the property for
the property’s price. The property should no longer be purchasable from the
bank by other players, and money should be moved from the player to the bank.

5117-214

Formalize system behavior with behavioral contracts

• A system behavioral contract describes the pre-conditions and
post-conditions for some operation identified in the system
sequence diagrams
– System-level textual specifications, like software specifications

5217-214

A system behavioral contract for the library system

Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
Item is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the newly-borrowed
item, or the member is warned she has an outstanding late fee.
The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

5317-214

Distinguishing domain vs. implementation concepts

• Domain-level concepts:
– Almost anything with a real-world analogue

• Implementation-level concepts:
– Implementation-like method names
– Programming types
– Visibility modifiers
– Helper methods or classes
– Artifacts of design patterns

5417-214

Summary: Understanding the problem domain

• Know your tools to build domain-level representations

– Domain models

– System sequence diagrams

– System behavioral contracts

• Be fast and (sometimes) loose

– Elide obvious(?) details

– Iterate, iterate, iterate, …

• Get feedback from domain experts

– Use only domain-level concepts

5517-214

Artifacts of our design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

Understanding
the problem

Defining a
solution

5617-214

Object-oriented programming

• Programming based on structures
that contain both data and methods
public class Bicycle {

private int speed;
private final Wheel frontWheel, rearWheel;
private final Seat seat;
…

public Bicycle(…) { … }

public void accelerate() {
speed++;

}

public int speed() { return speed; }
}

5717-214

Responsibility in object-oriented programming

• Data:
– Private or otherwise encapsulated data
– Data in closely related objects

• Methods:
– Private or otherwise encapsulated operations
– Object creation, of itself or other objects
– Initiating actions in other objects
– Coordinating activities among objects

5817-214

Using interaction diagrams to assign object responsibility

• For a given system-level operation, create an object interaction
diagram at the implementation-level of abstraction
– Implementation-level concepts:

• Implementation-like method names
• Programming types
• Helper methods or classes
• Artifacts of design patterns

5917-214

Example interaction diagram #1

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and …

6017-214

Example interaction diagram #2

Use case scenario: …and borrow a book. After confirming that the member has
no unpaid late fees, the library system should determine the book’s due date by
adding its loan period to the current day, and record the book and its due date as
a borrowed item in the member’s library account.

6217-214

Heuristics for responsibility assignment

• Controller heuristic
• Information expert heuristic
• Creator heuristic

Goals

Heuristics Patterns

Principles

6317-214

The controller heuristic

• Assign responsibility for all system-level behaviors to a single
system-level object that coordinates and delegates work to other
objects
– Also consider specific sub-controllers for complex use-case scenarios

• Design process: Extract interface from system sequence diagrams
– Key principles: Low representational gap and high cohesion

6417-214

Information expert heuristic

• Assign responsibility to the class that has the information
needed to fulfill the responsibility
– Initialization, transformation, and views of private data
– Creation of closely related or derived objects

6517-214

Responsibility in object-oriented programming

• Data:
– Private or otherwise encapsulated data
– Data in closely related objects

• Methods:
– Private or otherwise encapsulated operations
– Object creation, of itself or other objects
– Initiating actions in other objects
– Coordinating activities among objects

6617-214

Information expert heuristic

• Assign responsibility to the class that has the information
needed to fulfill the responsibility
– Initialization, transformation, and views of private data
– Creation of closely related or derived objects

• Design process: Assignment from domain model
– Key principles: Low representational gap and low coupling

6717-214

Another design principle: Minimize conceptual weight

• Label the concepts for a proposed object
– Related to representational gap and cohesion

6817-214

Creator heuristic: Who creates an object Foo?

• Assign responsibility of creating an object Foo to a class that:
– Has the data necessary for initializing instances of Foo
– Contains, aggregates, or records instances of Foo
– Closely uses or manipulates instances of Foo

• Design process: Extract from domain model, interaction diagrams
– Key principles: Low coupling and low representational gap

6917-214

Object-level artifacts of this design process

• Object interaction diagrams add methods to objects
– Can infer additional data responsibilities
– Can infer additional data types and architectural patterns

• Object model aggregates important design decisions
– Is an implementation guide

7017-214

Creating an object model

• Extract data, method names, and types from interaction diagrams
– Include implementation details such as visibilities

7117-214

7217-214

Create an object model for your sudoku solver

7317-214

Summary:

• Object-level interaction diagrams and object model
systematically guide the design process
– Convert domain model, system sequence diagram, and contracts to

object-level responsibilities

• Use heuristics to guide, but not define, design decisions
• Iterate, iterate, iterate…

