Principles of Software Construction:
Objects, Design, and Concurrency

Designing (sub-) systems
A formal design process

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

[
17-214 1 SOFTWARE
RESEARCH

Administrivia

e HW 3 deadline Today instead of Thu, Feb 7
 Reading Today: UML and Patterns, Ch. 14, 15, and 16

e Midterm 1 on Thu, Feb 14
— Review meeting: Wed, Feb 13, 6-8pm, Scaife Hall 125

* Recitation tomorrow: Review the rules of blackjack the card
game

[)
17-214 > s
RESEARCH

Key concepts from last Tuesday

 Template Method Pattern
* Strategy Pattern

* |terator Pattern

* Decorator Pattern

17-214

TemplatePatternDemo
uses

Client
context Interface
-strategy
<

+algorithm()

I

ImplementationOne
+algorithm()

<<abstract>> Game
+initialize() : void
+startPlay() : void
+endPlay() : void
+playl) : void
extends T
extends
Cricket Football
+initialize() : void +initialize{) : void
+istartPlay() : void +startPlay() : void
+endPlay() : void +endPlay() : void
+play() : void +play() : void
ImplementationTwo
+algorithm()

3

+main() : void

. . .
institute for

I S SOFTWARE
RESEARCH

Inspired by Design Patterns

TS
! 5
cdu’

ol
Y
-
-
11
11
-
-
) -
-

[J
institute f
17-214 4 SOFTWARE
RESEARCH

Inspired by Design Patterns

L]

SIM CITY

IETHRT HMEWK CITY | LOARAD A CITY

IEELEET SCEMARIO

°
institute for
5 | S SOFTWARE
RESEARCH

Today

* Design goals and design principles

17-214 6 s
RESEARCH

Metrics of software quality, i.e., design goals

Functional
correctness

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214

Adherence of implementation to the specifications

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

°
institute for
7 I S SOFTWARE
RESEARCH

Design principles: heuristics to achieve design goals

* Low coupling
* Low representational gap

* High cohesion

[)
17-214 8 s
RESEARCH

A design principle for reuse: low coupling

* Each component should depend on as few other components as
possible

* Benefits of low coupling:
— Enhances understandability
— Reduces cost of change
— Eases reuse

[J
institute f
17-214 9 SOFTWARE
RESEARCH

Law of Demeter

* "Only talk to your immediate friends"

°
institute for
17-214 10 SO

Representational gap

e Real-world

concepts:

e Software concepts:

17-214

.-_—/—?'""_\
S a—

L~)

11

institute for
SOFTWARE
RESEARCH

Representational gap

* Real-world concepts:

e Software concepts:

—) —) —)
Obj1 Obj2 Actor4?2
s E——
ﬂ objs
k() . op12
| J | J [

[J
institute for
17-214 12 SO

Representational gap

* Real-world concepts:

e Software concepts:

PineTree

age
height

p—

17-214

Forest

-trees

harvest() J

anger

—Ranger |
Ranger

;u rveyForest(..ﬂ

°
- S institute for
SOFTWARE

1 3 RESEARCH

Benefits of low representational gap

* Facilitates understanding of design and implementation

* Facilitates traceability from problem to solution

 Facilitates evolution

°
institute for
17-214 14 SO

A related design principle: high cohesion

* Each component should have a small set of closely-related
responsibilities

e Benefits:

— Facilitates understandability
— Facilitates reuse
— Eases maintenance

17-214

age
height

—PineTree |
" PineTree |

|

harvest()

Forest
-trees

J

—Ranger |
~Ranger)

anger

-;urveyForesd")

institute for
SOFTWARE
1 5 RESEARCH

Coupling vs. cohesion

* All code in one component?

— Low cohesion, low coupling

* Every statement / method in a separate component?
— High cohesion, high coupling

institute for
17-214 16 SO

Visualizing dynamic behavior: Interaction diagrams

* Aninteraction diagram is a picture that shows, for a single
scenario of use, the events that occur across the system’s
boundary or between subsystems

* Clarifies interactions:
— Between the program and its environment
— Between major parts of the program

* For this course, you should know:

— Communication diagrams
— Sequence diagrams

institute for
17-214 18 SO

Creating a communication diagram

: Order Entry Window
: Order
Macallan line : Order Line Macallan stock : Stock Item
livery Item : Reorder Item

institute for
17-214 19 SO

An example communication diagram

Order Window

1: prepare()

l : Order
|

Macallan line : Order Line

2*[for all order lines]: prepare()

5: needsReorder := needToReorder()

3: hasStock := check ()
4: [hasStock]: remove() m

l 7 [hasStock]: new

livery Item

17-214

s

Macallan stock : Stock Item

lﬁ [needsReorder]: new

: Reorder Item

°
institute for
SOFTWARE

20 RESEARCH

(Communication diagram with notation annotations)

: Order Entry Window [<#——— Object

1: prepare() <#———— Message

2*[for all order lines]: prepare() 5. needsReorder := needToReorder()

3: hasStock := check () Self-Delegation
4: [hasStock]: remove() T ﬂ

Macallan line : Order Line Macallan stock : Stock Item
-

: Order Sequence Number

l 7 [hasStock]: new

lﬁ [needsReorder]: new

livery Item : Reorder Item

[)
institute For
17-214 21 SO

Constructing a sequence diagram

an Order Entry .
ndow an Order an Order Line a Stock [tem

°
institute for
17-214 22 SO

An example sequence diagram

17-214

|
i
" prepare () | |
-
hasStock := !
check () I
[hasStock] I
remove() = | needsReorder=
- needsToReorder()
[needsReorder]
new
—® a Reorder
Item
—_—— — — — L
|
[hasStock] new! i
> a Delivery

23

institute for
SOFTWARE
RESEARCH

(Sequence diagram with notation annotations)

an Order Entry .
. dow an Order an Order Line a Stock [tem
[I | [
— prepare () |
H— * prepare () |
Object | |
hasStock := !
Message check () |
‘ | l Condition
lteration
[hasStock]
remove() | needsReorder:=
> needsToReorder()
-a— Self-Call
Return
[needsReorder]
new
aReorder
Item
- — — — L :
| |
[hasStock] new! I a Delivery
T | | '
- | | | ./ l
Creation
| | | 1 | I
I I [I [
A
Deletion

°
institute for
17-214 24 SO

Sequence vs. communication diagrams

* Relative advantages and disadvantages?

an Order L'uuj a Stk Jem
|

l . . |
netan | ot
I

prepare {) ' | ;
i * prepare {} | . i
I [| E=—TmT g
Ladl hasStock <=
check () |
L > l 1: prepare()
! hasStock] |
- — sToReorder({ : Order
2*[for all order lines]: prepare() 5. needsReorder := needToReorder()
3: hasStock := check () /'\
4: [hasStock): remove()
! Macallan line : Order Line }———;—i Macallan stock : Stock Item
‘ e —— 6 [needsReorder]: new
| : : * 7 [hasStock]: new
[[hasStock] new | M
? : | ltem ’ . : I f R
| T : Delivery Item ! l : Reorder Item
|
i L
| | |
' | [

L]
i
|
|
|

°
institute for
17-214 26 SO

DESIGN PROCESS

17-214 Y| S rESE

RRRRRRRR

Tactical Data Radios

[J
institute for
17-214 29 SO

Coast Guard SAFE Boats

[J
institute for
17-214 30 SO

Loan Management Systems

‘Nortridge Loan System vA.10.8 - Nortridge Software - kelhwebinar_4108 (xdmintkell_webinar_4106msidev3) ==
File Edit View Acions CashDrawer Help
SRB| +-HoX|BR|F|KrM|e-a Type a loan to find -2 &
[kelli_webinar_4108 —
® Portfolio - Branch -
Loan Ref# Class 1 - Loan Status -
Loan Number Class 2 - Status Codes -
Contact Number - Officer -
- Col Officer -
System Setup Date
Branch CONFIGURATION DEFAULT VALUE | CURRENTVALUE | SortBy o haser .
Comment Category Binary Version Updater | Disabled |Disabled | .-
Communication Disabled Enabled
Customer Binaries LoanType ad
Dacimect: Tenplates Contact and Loan Mixed ... Disabled Enabled = Int Type >
E’;:“‘”" Keys Database Report Server None Curr Rate -
& Scipc Email/SMS History 30 5 B s -
Ng’:;‘y Email/SMS Interval Process |60 1 E Lo Tii) e =
LS Service Email/SMS Servicer Disabled NLS Client Application SAC Exp/Ineligible
Pt Catoviey: Encrypt SQL Connection | Disabled Disabled — —————
Report Manager Global Report Company .. None
Reports Autolnstal Last five passwords unigue |Disabled Disabled ed Fees
System Defauks Launch Excel Outside NLS Outside NLS oo
Contact Setup Lockout Period 24 24 '
Loan Setup NLS Inactivity Timeout |0 0 RRsE (R Due Date.
Task Setup Oracle Case Insensitive Se... Disabled Disabled yment
Collector Setup Print PDF NLS native NLS native el iing
/- Disbursement/Trust Setup Spell Checker Enabled Enabled
Cash Drawer Setup SQL Application Role Name - frest Biling
Payment
Description: s
pund Biling
Cash drawer support will alow NLS users to track and manage—the balances and the accounting and
cas ? specific, physical cash dr i v bils, I Biling
coins, and checks on hand.
pent.
Due Days Past Due
Due
Advanced Query)
Processing
Disbursement
Reports —
 seanrty | Lists
For Help, press Fi Cash Drawer: (closed) (0:0) Loan - Query Mode CAP NUM SCRL
| e . E—
®

17-214

institute for
SOFTWARE
RESEARCH

Our path toward a more formal design process

Problem
Space

\ Domain Model A4

* Real-world concepts

* Requirements, concepts

* Relationships among concepts
* Solving a problem

* Building a vocabulary

17-214

Solution
Space

\ Object Model 4

System implementation
Classes, objects

References among objects and
inheritance hierarchies

Computing a result
Finding a solution

°
- S institute for
SOFTWARE

32 RESEARCH

A high-level software design process

* Project inception
* Gather requirements — 17-313
* Define actors, and use cases
* Model / diagram the problem, define objects N
* Define system behaviors

* Assign object responsibilities

* Define object interactions p 17-214
 Model / diagram a potential solution

* Implement and test the solution

* Maintenance, evolution, ... j,,

°
institute for
17-214 33 SO

Artifacts of this design process

* Model / diagram the problem, define objects

— Domain model (a.k.a. conceptual model)

* Define system behaviors

— System sequence diagram
— System behavioral contracts

* Assign object responsibilities, define interactions
— Object interaction diagrams

 Model / diagram a potential solution
— Object model

°
institute for
17-214 34 SO

Artifacts of this design process

* Model / diagram the problem, define objects -

— Domain model (a.k.a. conceptual model)

* Define system behaviors

— System sequence diagram
— System behavioral contracts

—

* Assign object responsibilities, define interactions —

— Object interaction diagrams

 Model / diagram a potential solution
— Object model

S—

17-214

Understanding

— the problem

Defining a
solution

[J
institute for
SOFTWARE
3 5 RESEARCH

Design Process

Modeling Describing
objects interaction

SLGEEENE 488 Domain Model System
the Problem » Sequence
(Problem Level) Diagram

Defining a Object Model Object

Solution . Interaction

(Code Level) Diagrams

v

[
institute for
17-214 36 [NYN o

Input to the design process: Requirements and use cases

* Typically prose:

A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library. A member’s library account records which items the member has
borrowed and the due date for each borrowed item. Each type of item has

a default rept=t—=== al .odeiole debomeci;an dloa demala e dade ideae bloa idam.

is borrowed| Use case scenario: A library member should be able to use her library card
member muU to log in at a library system kiosk and borrow a book. After confirming that
member’s li the member has no unpaid late fees, the library system should determine
the book’s due date by adding its rental period to the current day, and
record the book and its due date as a borrowed item in the member’s
library account.

institute for
17-214 37 SO

Modeling a problem domain

* Identify key concepts of the domain description
— ldentify nouns, verbs, and relationships between concepts
— Avoid non-specific vocabulary, e.g. "system"
— Distinguish operations and concepts
— Brainstorm with a domain expert

institute for
17-214 38 SO

Modeling a problem domain

* Identify key concepts of the domain description
— ldentify nouns, verbs, and relationships between concepts
— Avoid non-specific vocabulary, e.g. "system"
— Distinguish operations and concepts
— Brainstorm with a domain expert

* Visualize as a UML class diagram, a domain model
— Show class and attribute concepts
e Real-world concepts only
* No operations/methods
 Distinguish class concepts from attribute concepts
— Show relationships and cardinalities

institute for
17-214 39 SO

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

institute for
17-214 a0 SO

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

institute for
17-214 a1 SO

One domain model for the library system

Them |

re(\‘\‘ﬁl peﬁba(J
la'\L{ Fee
e
]

0 _
L/_J_J_ \ | ibeas A oot

Ov L,_,,“M’ZEF'
! e
i

B J,L_,____P -

i

- , \
s Jorac O |
E‘;L__fj——»/"—\" stmJ«M v/A/\\

Vi Neohe |

°
institute for
17-214 a2 SO

Notes on the library domain model

All concepts are accessible to a non-programmer

e The UML is somewhat informal

— Relationships are often described with words
* Real-world "is-a" relationships are appropriate for a domain model
* Real-word abstractions are appropriate for a domain model

* |[teration is important

— This example is a first draft. Some terms (e.g. Item vs. Libraryltem, Account
vs. LibraryAccount) would likely be revised in a real design.

* Aggregate types are usually modeled as classes
* Primitive types (numbers, strings) are usually modeled as attributes

°
institute for
17-214 a3 SO

Build a domain model for Monopoly

17-214

QD
§
%)
Q)
s

.b»
S

3
z 28
8 &3
5
X

.8

22

a8

3
3 Aw
8 g2

g %8

09I
3NNIAY
ARWNHLION

ANYIWOD
ORI

033w . 033w
133418
ANVAULS 13314
IONVHD

Oraw 003w
VNOS ﬂ
YVOIVIVIL
NOULVIS
‘IS HOUNHONE

JAYNOS
LEINERER]

13341

0SLw

083

ATNAQVId

The MONORCLY i 303109 the it ncve s f the b e o comer suaes,he W MONOROU rame s churate el 1 xch o e
i s rt o o 0 P e B Ao o o 1 oA i e S a1 At € 157, SO0R s AL RS eeres

CHANCE

VISITING

PENTONVILLE EUSTON
ROAD ROAD

M120 #100 .

KINGS CROSS
STATION
THE ANGEL,
ISLINGTON H
M100 M200

INCOME
TAX

PAY M200

44

institute for
SOFTWARE
RESEARCH

Build a domain model for Monopoly

Monopoly is a game in which each player has a piece that moves around a game
board, with the piece’s change in location determined by rolling a pair of dice.
The game board consists of a set of properties (initially owned by a bank) that
may be purchased by the players.

When a piece lands on a property that is not owned, the player may use money
to buy the property from the bank for that property’s price. If a player lands on a
property she already owns, she may build houses and hotels on the property;
each house and hotel costs some price specific for the property. When a player’s
piece lands on a property owned by another player, the owner collects money
(rent) from the player whose piece landed on the property; the rent depends on
the number of houses and hotels built on the property.

The game is played until only one remaining player has money and property, with
all the other players being bankrupt.

institute for
17-214 a5 SO

Understanding system behavior with sequence diagrams

* A system sequence diagram is a model that shows, for one

scenario of use, the sequence of events that occur on the
system’s boundary

* Design goal: Identify and define the interface of the system
— Two components: A user and the overall system

°
institute for
17-214 a6 SO

Understanding system behavior with sequence diagrams

* Asystem sequence diagram is a model that shows, for one
scenario of use, the sequence of events that occur on the
system’s boundary

* Design goal: Identify and define the interface of the system
— Two components: A user and the overall system

* Input: Domain description and one use case

 Qutput: A sequence diagram of system-level operations
— Include only domain-level concepts and operations

°
institute for
17-214 a7 SO

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its rental period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

institute for
17-214 a8 SO

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its rental period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

/ Cl> K . L{bmff\/
Uge case: ,_A—, L S}/Qlfﬂ’\
|odm‘r\ 2

barow a boeok

JognMembe(Lbracy an/)?

- = =

bsrow (‘Ew%n*evx\\

AN
7
e e e e T T

S \'(ceSS’.’) 01uqu~’-c

institute for
17-214 a9 SO

Build one system sequence diagram for Monopoly

Use case scenario: When a player lands on an unowned property and has
enough money to buy the property, she should be able to buy the property for
the property’s price. The property should no longer be purchasable from the
bank by other players, and money should be moved from the player to the bank.

institute for
17-214 50 SO

Formalize system behavior with behavioral contracts

* A system behavioral contract describes the pre-conditions and
post-conditions for some operation identified in the system
sequence diagrams

— System-level textual specifications, like software specifications

[)
institute for
17-214 51 SOrTvAlE

A system behavioral contract for the library system

Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
ltem is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the newly-borrowed
item, or the member is warned she has an outstanding late fee.

The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

institute for
17-214 52 SO

Distinguishing domain vs. implementation concepts

 Domain-level concepts:
— Almost anything with a real-world analogue

* Implementation-level concepts:
— Implementation-like method names
— Programming types
— Visibility modifiers
— Helper methods or classes
— Artifacts of design patterns

institute for
17-214 53 SO

Summary: Understanding the problem domain

* Know your tools to build domain-level representations
— Domain models
— System sequence diagrams
— System behavioral contracts
* Be fast and (sometimes) loose
— Elide obvious(?) details

— lterate, iterate, iterate, ...

* Get feedback from domain experts
— Use only domain-level concepts

institute for
17-214 54 SO

Artifacts of our design process

* Model / diagram the problem, define objects -

— Domain model (a.k.a. conceptual model)
Understanding

* Define system behaviors -
the problem

— System sequence diagram
— System behavioral contracts

—

* Assign object responsibilities, define interactions —

— Object interaction diagrams ..
) ° Defining a

solution

S—

 Model / diagram a potential solution
— Object model

°
institute for
17-214 55 SO

Object-oriented programming

* Programming based on structures
that contain both data and methods

public class Bicycle {
private int speed;
private final Wheel frontWheel, rearWheel;
private final Seat seat;

public Bicycle(..) { .. }

public void accelerate() {
speed++;

¥

public int speed() { return speed; }
}

°
institute for
17-214 56 SO

Responsibility in object-oriented programming

* Data:
— Private or otherwise encapsulated data
— Data in closely related objects

* Methods:
— Private or otherwise encapsulated operations
— Object creation, of itself or other objects
— Initiating actions in other objects
— Coordinating activities among objects

institute for
17-214 57 SO

Using interaction diagrams to assign object responsibility

* For a given system-level operation, create an object interaction
diagram at the implementation-level of abstraction
— Implementation-level concepts:
* Implementation-like method names
* Programming types
* Helper methods or classes
 Artifacts of design patterns

°
institute for
17-214 58 SO

Example interaction diagram #1

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and ...

: L;bfc\fj S'y e L Sessn
f i
)

Lo JfﬁM‘m\:((ll‘l’“ﬁ/ C“'d\ " “ | |

A
“'m;ﬂcly;Zf'}

& =

7
Q (‘Qj\'r;eveA(‘com* (“br‘;ﬁy ngyl‘ ;‘d N\M\L{(\‘\ ’

QCCM‘\' |

[

Se'}‘ Chf‘fm‘\' gass l};ﬂ(Gc (ow!\“\‘s

“— - - i} _ _ 1

&L - = = ,j” &

institute for
17-214 59 SO

Example interaction diagram #2

Use case scenario: ...and borrow a book. After confirming that the member has
no unpaid late fees, the library system should determine the book’s due date by
adding its loan period to the current day, and record the book and its due date as

a borrowed item in the member’s library account.

;’77 X “ 7 i'] el & 7 x ‘,: 3 TM
(‘:Lw}bm‘v Srv/;’R-"\ N Seseoq}v'[cm 178 i f/*rf(ouﬁf } chC}(,}
| ST R S : j‘a—4~.%4 i
i { 3
l ;
\
DorCow { boe ' | C N h .
‘—”—————_—_)/ 3?_{&;\(?@\“36 s510 “t(; % ’—'_’; 1
,i l ,
< Gt i : (
! { {
() ,
| |
, : ;: ——-7
’ 1 — —— o~ i {
ir L | ceheFeec "JJ . |
A
{

N ‘\
toan Pec M:t s %&Lcc\ﬂ P{r‘w/f _. u
l
i

' institute for
17-214 60 SO

Heuristics for responsibility assignment
Goals

A

Principles

* Information expert heuristic /]\
e Creator heuristic

Heuristics Patterns

e Controller heuristic

°
institute for
17-214 62 SO

The controller heuristic

* Assign responsibility for all system-level behaviors to a single

system-level object that coordinates and delegates work to other
objects

— Also consider specific sub-controllers for complex use-case scenarios

Design process: Extract interface from system sequence diagrams

— Key principles: Low representational gap and high cohesion

institute f
17-214 63

Information expert heuristic

* Assign responsibility to the class that has the information
needed to fulfill the responsibility
— Initialization, transformation, and views of private data
— Creation of closely related or derived objects

°
institute for
17-214 64 SO

Responsibility in object-oriented programming

* Data:
— Private or otherwise encapsulated data
— Data in closely related objects

* Methods:
— Private or otherwise encapsulated operations
— Object creation, of itself or other objects
— Initiating actions in other objects
— Coordinating activities among objects

institute for
17-214 65 SO

Information expert heuristic

* Assign responsibility to the class that has the information
needed to fulfill the responsibility
— Initialization, transformation, and views of private data
— Creation of closely related or derived objects
* Design process: Assignment from domain model
— Key principles: Low representational gap and low coupling

institute for
17-214 66 SO

Another design principle: Minimize conceptual weight

* Label the concepts for a proposed object
— Related to representational gap and cohesion

[)
institute for
17-214 67 SOrTvArE

Creator heuristic: Who creates an object Foo?

* Assign responsibility of creating an object Foo to a class that:
— Has the data necessary for initializing instances of Foo
— Contains, aggregates, or records instances of Foo
— Closely uses or manipulates instances of Foo
* Design process: Extract from domain model, interaction diagrams
— Key principles: Low coupling and low representational gap

institute for
17-214 68 SO

Object-level artifacts of this design process

* Object interaction diagrams add methods to objects
— Caninfer additional data responsibilities
— Can infer additional data types and architectural patterns

* Object model aggregates important design decisions
— Is an implementation guide

°
institute for
17-214 69 SO

Creating an object model

e Extract data, method names, and types from interaction diagrams

— Include implementation details such as visibilities

°
institute for
17-214 70 SO

Ly Gebn

-C'»\(‘f‘eﬁ\)(Se(gl\ohi LfL(«‘y A(co\-m‘\' |

-+)lzj\\ﬂ mem)'e((’i‘bﬁryam/ﬂunld‘:l‘n*)

¢ baoslChen: LT
+)ogow\' Memlzef‘() /

& P“%Lk Fee (cef\,%'\ l\‘\{“) g

,_',/_ﬁs

—e M

3 Libeay %i&f/lm&)

s=bo (‘@W\T:‘\'ﬂ’\g

~ i beacy (eed Number: 4
= 7@04‘9 ate . 9.(\‘,.6/

~ '9:‘}'NG°€.'~ S‘("rs\m
~ lade Fees Owal i o

L 902,“" F)\r A‘N«‘ C) 4 S‘}Y.py.

17-214

0.k

— loan Period

~lade Fee

Bl __[M X;H—a-\
- — due D«"“(. Dc‘)-(3
~ (ehuned + Dale

+ byas Besa Petwned(): oy

boOé M

+ ?\S Ovefal,ue C(‘m‘(‘eﬂ‘“D‘k: D k)

institute for
SOFTWARE
7 1 RESEARCH

Create an object model for your sudoku solver

°
institute for
17-214 72 SO

Summary:

* Object-level interaction diagrams and object model
systematically guide the design process

— Convert domain model, system sequence diagram, and contracts to
object-level responsibilities

e Use heuristics to guide, but not define, design decisions
* |terate, iterate, iterate...

institute for
17-214 73 SO

