
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Design for reuse

Introduction to design patterns

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• HW 2 graded soon

• HW 3 deadline Tue, Feb 12 instead of Thu, Feb 7

• Recitation 3 solutions on Piazza

• Midterm 1 on Thu, Feb 14
– Review meeting: Wed, Feb 13, 6-8pm, Scaife Hall 125

• Reading due today:
– UML and Patterns Ch 9 (Domain Models) and Ch 10 (System Sequence

Diagrams)

• Inheritance: “is a”
– Is a SudokuXVerifier usable anywhere a SudokuVerifier is used?

– Are SudokuXVerifier and SudokuVerifier both Verifiers?

317-214

Key concepts from Tuesday

417-214

Delegation

• Delegation is simply when one object relies on another object
for some subset of its functionality
– e.g. here, the Sorter is delegating functionality to some Order

• Judicious delegation enables code reuse

• Sorter can be reused
with arbitrary sort orders

• Orders can be reused
with arbitrary client code
that needs to compare
integers

Re
vi

ew interface Order {
boolean lessThan(int i, int j);

}

final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

public class Sorter {
static void sort(int[] list, Order cmp) {
...
boolean mustSwap =
cmp.lessThan(list[i], list[j]);

...
}

}

517-214

Using delegation to extend functionality

• One solution:

public class LoggingList<E> implements List<E> {
private final List<E> list;

public LoggingList<E>(List<E> list) { this.list = list; }

public boolean add(E e) {
System.out.println("Adding " + e);
return list.add(e);

}

public E remove(int index) {
System.out.println("Removing at " + index);
return list.remove(index);

}
…

The LoggingList is composed of
a List, and delegates (the non-

logging) functionality to that List

Re
vi

ew

817-214

CheckingAccountImpl

monthlyAdjustment()

getFee() : float

Reuse abstract account code via inheritance

public abstract class AbstractAccount

implements Account {

protected float balance = 0.0;

public float getBalance() {

return balance;

}

abstract public void monthlyAdjustment();

// other methods…
}

public class CheckingAccountImpl

extends AbstractAcount

implements CheckingAccount {

public void monthlyAdjustment() {

balance -= getFee();

}

public float getFee() { /* fee calculation */ }
}

«interface» Account

getBalance() : float

deposit(amount : float)

withdraw(amount : float) : boolean

transfer(amount : float,

target : Account) : boolean

monthlyAdjustment()

AbstractAccount

balance : float

+ getBalance() : float

+ deposit(amount : float)

+ withdraw(amount : float) : boolean

+ transfer(amount : float,

target : Account) : boolean

+ monthlyAdjustment()

«interface» CheckingAccount

getFee() : float

protected elements are

visible in subclasses

an abstract class is missing

the implementation of one

or more methods

an abstract method is left

to be implemented in a

subclass

no need to define getBalance()

– the code is inherited from

AbstractAccount

R
e

v
i
e

w

917-214

Alternatively: Reuse via composition and delegation

«interface» Account

getBalance() : float
deposit(amount : float)
withdraw(amount : float) : boolean
transfer(amount : float,

target : Account) : boolean
monthlyAdjustment()

«interface» CheckingAccount

getFee() : float

CheckingAccountImpl

monthlyAdjustment() { … }
getFee() : float { … }
getBalance() : float
deposit(amount : float)
withdraw(amount : float) : boolean
transfer(amount : float,

target : Account) : boolean

BasicAccountImpl

balance : float

monthlyAdjustment()
getBalance() : float
deposit(amount : float)
withdraw(amount : float) : boolean
transfer(amount : float,

target : Account) : boolean

public class CheckingAccountImpl
implements CheckingAccount {

BasicAccountImpl basicAcct = new(…);
public float getBalance() {

return basicAcct.getBalance();
}
// …

CheckingAccountImpl is
composed of a

BasicAccountImpl

-basicAcct

Re
vi

ew

1017-214

(Almost always) Prefer composition over inheritance

• Tight coupling:
– Changes to superclass à changes to subclass implementation

• Base class breaks encapsulation:
– Exposes implementation details to subclasses (protected members)

• Inherited implementation can't change at runtime
• Inheritance stack may get very deep and confusing

• Inheritance: IS-A
– Can use subclass where superclass is expected
– E.g., Cessna biplane “is a” Airplane

• Composition: HAS-A
– Only want some of the behavior of the superclass
– E.g., Bird could (but shouldn’t) inherit from Airplane, they both fly()

Re
vi

ew

1117-214

JAVA ASIDE: SUPER, THIS, FINAL,
INSTANCEOF

1217-214

Java details: extended reuse with super

public abstract class AbstractAccount implements Account {

protected long balance = 0;

public boolean withdraw(long amount) {

// withdraws money from account (code not shown)

}

}

public class ExpensiveCheckingAccountImpl

extends AbstractAccount implements CheckingAccount {

public boolean withdraw(long amount) {

balance -= HUGE_ATM_FEE;

boolean success = super.withdraw(amount)
if (!success)

balance += HUGE_ATM_FEE;

return success;

}

}

Overrides withdraw but
also uses the superclass
withdraw method

1317-214

Java details: constructors with this and super

public class CheckingAccountImpl
extends AbstractAccount implements CheckingAccount {

private long fee;

public CheckingAccountImpl(long initialBalance, long fee) {
super(initialBalance);
this.fee = fee;

}

public CheckingAccountImpl(long initialBalance) {
this(initialBalance, 500);

}
/* other methods… */ } Invokes another

constructor in
this same class

Invokes a constructor of the
superclass. Must be the

first statement of the
constructor.

1417-214

Java details: final

• A final field: prevents reassignment to the field after
initialization

• A final method: prevents overriding the method

• A final class: prevents extending the class
– e.g., public final class CheckingAccountImpl {…}

1517-214

Note: type-casting in Java

• Sometimes you want a different type than you have
– e.g., double pi = 3.14;

int indianaPi = (int) pi;

• Useful if you know you have a more specific subtype:
– e.g.,
Account acct = …;
CheckingAccount checkingAcct =

(CheckingAccount) acct;
long fee = checkingAcct.getFee();
– Will get a ClassCastException if types are incompatible

• Advice: avoid downcasting types
– Never(?) downcast within superclass to a subclass

1617-214

An aside: instanceof

• Operator that tests whether an object is of a given class
public void doSomething(Account acct) {

long adj = 0;
if (acct instanceof CheckingAccount) {

checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();

} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

}
…

}
• Advice: avoid instanceof if possible

– Never(?) use instanceof in a superclass to check type against subclass

Do not
do this.
This code
is bad.

1717-214

An aside: instanceof

• Operator that tests whether an object is of a given class
public void doSomething(Account acct) {

long adj = 0;
if (acct instanceof CheckingAccount) {

checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();

} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

} else if (acct instanceof InterestCheckingAccount) {
icAccount = (InterestCheckingAccount) acct;
adj = icAccount.getInterest();
adj -= icAccount.getFee();

}
…

}

Do not
do this.
This code
is bad.

2017-214

Use polymorphism to avoid instanceof
public interface Account {

…
public long getMonthlyAdjustment();

}

public class CheckingAccount implements Account {
…
public long getMonthlyAdjustment() {

return getFee();
}

}

public class SavingsAccount implements Account {
…
public long getMonthlyAdjustment() {

return getInterest();
}

}

2117-214

Use polymorphism to avoid instanceof

public void doSomething(Account acct) {
long adj = 0;
if (acct instanceof CheckingAccount) {
checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();

} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

}
…

}

Instead:
public void doSomething(Account acct) {

long adj = acct.getMonthlyAdjustment();
…

}

2217-214

Today

• UML diagrams
• Introduction to design patterns

– Strategy pattern
– Command pattern

• Design patterns for reuse:
– Template method pattern
– Iterator pattern
– Decorator pattern (next lecture)

2317-214

Religious debates…

"Democracy is the worst form of government,
except for all the others…"

-- (allegedly) Winston Churchill

2417-214

UML: Unified Modeling Language

2517-214

UML: Unified Modeling Language

2617-214

UML: Unified Modeling Language

2717-214

UML: Unified Modeling Language

2817-214

UML in this course

• Mostly:
– UML class diagrams (domain models, object models)
– UML interaction diagrams (sequence diagrams)

3117-214

UML you should know

• Interfaces vs. classes

• Fields vs. methods

• Relationships:
– "extends" (inheritance)

– "implements" (realization)

– "has a" (aggregation)

– non-specific association

• Visibility: + (public) - (private) # (protected)

• Basic best practices…

3217-214

• Best used to show the big picture
– Omit unimportant details

• But show they are there: …

• Avoid redundancy
– e.g., bad:

good:

UML advice

3317-214

Today

• UML diagrams
• Introduction to design patterns

– Strategy pattern
– Command pattern

• Design patterns for reuse:
– Template method pattern
– Iterator pattern
– Decorator pattern (next lecture)

3417-214

One design scenario

• Amazon.com processes millions of orders each year, selling in 75
countries, all 50 states, and thousands of cities worldwide.
These countries, states, and cities have hundreds of distinct sales
tax policies and, for any order and destination, Amazon.com
must be able to compute the correct sales tax for the order and
destination.

3517-214

Another design scenario

• A computer vision system must detect lines in an image. For
different applications the line detection requirements vary. E.g.,
for a vision system in a driverless car the system must process 30
images per second, but it's OK to miss some lines in some
images. A face recognition system can spend 3-5 seconds
analyzing an image, but requires accurate detection of subtle
lines on a face.

3617-214

A third design scenario

• Suppose we need to sort a list in different orders…

interface Order {
boolean lessThan(int i, int j);

}

final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order cmp) {
…
boolean mustSwap =
cmp.lessThan(list[i], list[j]);

…
}

3717-214

Design patterns

“Each pattern describes a
problem which occurs over and
over again in our environment,
and then describes the core of
the solution to that problem, in
such a way that you can use
this solution a million times
over, without ever doing it the
same way twice”

– Christopher Alexander,
Architect (1977)

3817-214

How not to discuss design (from Shalloway and Trott)

• Carpentry:
– How do you think we should build these drawers?
– Well, I think we should make the joint by cutting straight down into the

wood, and then cut back up 45 degrees, and then going straight back
down, and then back up the other way 45 degrees, and then going
straight down, and repeating…

3917-214

How not to discuss design (from Shalloway and Trott)

• Carpentry:
– How do you think we should build these drawers?
– Well, I think we should make the joint by cutting straight down into the

wood, and then cut back up 45 degrees, and then going straight back
down, and then back up the other way 45 degrees, and then going
straight down, and repeating…

• Software Engineering:
– How do you think we should write this method?
– I think we should write this if statement to handle … followed by a while

loop … with a break statement so that…

4017-214

Discussion with design patterns

• Carpentry:
– "Is a dovetail joint or a miter joint better here?"

• Software Engineering:
– "Is a strategy pattern or a template method better here?"

4117-214

History: Design Patterns (1994)

4217-214

Elements of a design pattern

• Name
• Abstract description of problem
• Abstract description of solution
• Analysis of consequences

4317-214

Strategy pattern

• Problem: Clients need different variants of an algorithm
• Solution: Create an interface for the algorithm, with an

implementing class for each variant of the algorithm
• Consequences:

– Easily extensible for new algorithm implementations
– Separates algorithm from client context
– Introduces an extra interface and many classes:

• Code can be harder to understand
• Lots of overhead if the strategies are simple

4417-214

UML for strategy pattern

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

4517-214

Update 2/26: Better UML for strategy pattern

Context

algorithm()

<<Interface>>
Strategy

execute()

ConcreteStrA

execute()

ConcreteStrB

execute()

has
1 0...*

implements implements

Note:
Context is simply what the class
represents in this version of the
strategy pattern, when actually
implemented the name should
be specific to the situation. It is
not the official name of the class
that has an instance of the
strategy interface.

4617-214

Strategy pattern example
public interface Strategy {
public int doOperation(int num1, int num2);

}

https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

4717-214

Strategy pattern example
public interface Strategy {
public int doOperation(int num1, int num2);

}

public class OperationAdd implements Strategy {
@Override
public int doOperation(int num1, int num2) {
return num1 + num2;

}
}

public class OperationSubtract implements Strategy { ... }

https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

4817-214

Strategy pattern example
public interface Strategy {
public int doOperation(int num1, int num2);

}

public class OperationAdd implements Strategy {
@Override
public int doOperation(int num1, int num2) {
return num1 + num2;

}
}

public class OperationSubtract implements Strategy { ... }

public class Context {
private Strategy strategy;
public Context(Strategy strategy){ this.strategy = strategy; }
public int algorithm(int num1, int num2){
return strategy.doOperation(num1, num2);

}
}

https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

4917-214

Strategy pattern example
public interface Strategy {
public int doOperation(int num1, int num2);

}

public class OperationAdd implements Strategy {
@Override
public int doOperation(int num1, int num2) {
return num1 + num2;

}
}

public class OperationSubtract implements Strategy { ... }

public class Context {
private Strategy strategy;
public Context(Strategy strategy){ this.strategy = strategy; }
public int algorithm(int num1, int num2){
return strategy.doOperation(num1, num2);

}
}
public static void main(String[] args) {
Context context = new Context(new OperationAdd());
System.out.println("10 + 5 = " + context.algorithm(10, 5));

}

https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

5017-214

Patterns are more than just structure

• Consider: A modern car engine is constantly monitored by a
software system. The monitoring system must obtain data from
many distinct engine sensors, such as an oil temperature sensor,
an oxygen sensor, etc. More sensors may be added in the future.

5117-214

Different patterns can have the same structure

Command pattern:
• Problem: Clients need to execute some (possibly flexible)

operation without knowing the details of the operation
• Solution: Create an interface for the operation, with a class (or

classes) that actually executes the operation
• Consequences:

– Separates operation from client context
– Can specify, queue, and execute commands at different times
– Introduces an extra interface and classes:

• Code can be harder to understand
• Lots of overhead if the commands are simple

5217-214

Example: Strategy pattern vs Command pattern

• How something should be done (Strategy)

• Versus what needs to be done (Command)

public class ConcreteStrategy implements BaseStrategy {
@Override public void execute(Object argument) {
// Work with passed-in argument.

}
}

public class ConcreteCommand implements BaseCommand {
private Object argument;
public ConcreteCommand(Object argument) {
this.argument = argument;

}

@Override public void execute() {
// Work with own state.

}
}

https://stackoverflow.com/questions/4834979

5317-214

Design pattern conclusions

• Provide shared language
• Convey shared experience
• Can be system and language specific

5417-214

Today

• UML diagrams
• Introduction to design patterns

– Strategy pattern
– Command pattern

• Design patterns for reuse:
– Template method pattern
– Iterator pattern
– Decorator pattern (next lecture)

5517-214

One design scenario

• A GUI-based document editor works with multiple document
formats. Some parts of the algorithm to load a document (e.g.,
reading a file, rendering to the screen) are the same for all
document formats, and other parts of the algorithm vary from
format-to-format (e.g. parsing the file input).

5617-214

Another design scenario

• Several versions of a domain-specific machine learning algorithm
are being implemented to use data stored in several different
database systems. The basic algorithm for all versions is the
same; just the interactions with the database are different from
version to version.

5717-214

The abstract java.util.AbstractList<E>

abstract T get(int i);
abstract int size();
boolean set(int i, E e); // pseudo-abstract*
boolean add(E e); // pseudo-abstract*
boolean remove(E e); // pseudo-abstract*
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
boolean contains(E e);
boolean containsAll(Collection<?> c);
void clear();
boolean isEmpty();
abstract Iterator<E> iterator();
Object[] toArray()
<T> T[] toArray(T[] a);
… *throws an UnsupportedOperationException

5817-214

Template method pattern

• Problem: An algorithm consists of
customizable parts and invariant parts

• Solution: Implement the invariant parts
of the algorithm in an abstract class, with
abstract (unimplemented) primitive
operations representing the customizable
parts of the algorithm. Subclasses
customize the primitive operations

• Consequences
– Code reuse for the invariant parts of algorithm
– Customization is restricted to the primitive

operations
– Inverted (Hollywood-style) control for

customization

AbstractClass

TemplateMethod() {final}
PrimitiveOperation() {abstract}

ConcreteClass
PrimitiveOperation()

5917-214

Template method example
public abstract class Game {
abstract void startPlay();
abstract void endPlay();
//template method
public final void play(){
startPlay();
endPlay();

}
}

https://www.tutorialspoint.com/design_pattern/template_pattern.htm

6017-214

Template method example
public abstract class Game {
abstract void startPlay();
abstract void endPlay();
//template method
public final void play(){
startPlay();
endPlay();

}
}

public class Football extends Game {
@Override
void startPlay() {
System.out.println("Football Started!");

}
@Override
void endPlay() {
System.out.println("Football Finished!");

}
}

public class Cricket extends Game { ... }

https://www.tutorialspoint.com/design_pattern/template_pattern.htm

6117-214

Template method example
public abstract class Game {
abstract void startPlay();
abstract void endPlay();
//template method
public final void play(){
startPlay();
endPlay();

}
}

public class Football extends Game {
@Override
void startPlay() {
System.out.println("Football Started!");

}
@Override
void endPlay() {
System.out.println("Football Finished!");

}
}

public class Cricket extends Game { ... }

public class Demo {
public static void main(String[] args) {
Game game = new Cricket();
game.play();
game = new Football();
game.play();

}
}

https://www.tutorialspoint.com/design_pattern/template_pattern.htm

6217-214

Template method vs. the strategy pattern

• Template method uses inheritance to vary part of an algorithm
– Template method implemented in supertype, primitive operations

implemented in subtypes

• Strategy pattern uses delegation to vary the entire algorithm
– Strategy objects are reusable across multiple classes
– Multiple strategy objects are possible per class

6317-214

Summary

• Use UML class diagrams to simplify communication
• Design patterns…

– Convey shared experience, general solutions
– Facilitate communication

• Specific design patterns for reuse:
– Strategy
– Template method
– Iterator (next lecture)

