
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Designing classes

Java basics, functional correctness

Michael Hilton Bogdan Vasilescu

217-214

Administrivia

• No Smoking
• Office Hours – check online calendar
• Homework 1 due Thursday 11:59 p.m.
• Everyone must read and sign the collaboration policy

317-214

Key concepts from last Thursday

417-214

Key concepts from last Thursday

• Infrastructure
• Introduction to Java

– Syntax
– Types
– I/O
– Iterators
– Exceptions

517-214

Today

• Information hiding: Design for change, design for reuse
– Encapsulation: Visibility modifiers in Java
– Interface types vs. class types

• Functional correctness
– JUnit and friends

617-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

717-214

Visibility modifiers in Java ("encapsulation")

• private: Accessible only from declaring class
• "package private": Accessible from any class in package
– a.k.a. default access, no visibility modifier

• protected: Accessible from package and also from
subclasses

• public: Accessible anywhere

817-214

Visibility modifier example

• Consider:
public class Point {

private double x, y;
public Point(double x, double y) {

this.x = x;
this.y = y;

}
public void translateBy(Point p) {

x += p.x;
y += p.y;

}
}

917-214

Visibility modifier example
• Consider:

public class Point {
private double x, y;
public Point(double x, double y) {

this.x = x;
this.y = y;

}
public void translateBy(Point p) {

x += p.x; // This is OK. p.x and p.y are
y += p.y; // accessible from the Point class!

}
public double getX() { return x; }
public double getY() { return y; }

}

1017-214

Fundamental Design Principle for Change:
Information Hiding
• Expose as little implementation detail as necessary
• Allows to change hidden details later

Service*
implementation

Service* interface

Client
environment

Hidden from
service* provider

Hidden from
service* client

* service = object,
subsystem, …

1117-214

A more complex example

public class Complex {
private final double re; // Real part
private final double im; // Imaginary part

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }
public double imaginaryPart() { return im; }
public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex add(Complex c) {
return new Complex(re + c.re, im + c.im);

}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ... }

}

1217-214

Using the Complex class

public class ComplexUser {
public static void main(String args[]) {

Complex c = new Complex(-1, 0);
Complex d = new Complex(0, 1);

Complex e = c.add(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c. multiply(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
}

}

When you run this program, it prints
-1.0 + 1.0i
0.0 + -1.0i

1317-214

Extracting an interface from our class

public interface Complex {
// No constructors, fields, or implementations!

double realPart();
double imaginaryPart();
double r();
double theta();

Complex plus(Complex c);
Complex minus(Complex c);
Complex times(Complex c);
Complex dividedBy(Complex c);

}

An interface defines but does not implement API

1417-214

Modifying our earlier class to use the interface
public class OrdinaryComplex implements Complex {
private final double re; // Real part
private final double im; // Imaginary part

public OrdinaryComplex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }
public double imaginaryPart() { return im; }
public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex add(Complex c) {
return new OrdinaryComplex(re + c.realPart(), im + c.imaginaryPart());

}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ... }

}

1517-214

Modifying our earlier client to use the interface

public class ComplexUser {
public static void main(String args[]) {

Complex c = new OrdinaryComplex(-1, 0);
Complex d = new OrdinaryComplex(0, 1);

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
}

}

When you run this program, it still prints
-1.0 + 1.0i
0.0 + -1.0i

1617-214

Interfaces permit multiple implementations

public class PolarComplex implements Complex {
private final double r; // Radius
private final double theta; // Angle

public PolarComplex(double r, double theta) {
this.r = r;
this.theta = theta;

}

public double realPart() { return r * Math.cos(theta) ; }
public double imaginaryPart() { return r * Math.sin(theta) ; }
public double r() { return r; }
public double theta() { return theta; }

public Complex plus(Complex c) { ... } // Completely new impls
public Complex minus(Complex c) { ... }
public Complex times(Complex c) { ... }
public Complex dividedBy(Complex c) { ... }

}

1717-214

Interface decouples client from implementation

public class ComplexUser {
public static void main(String args[]) {

Complex c = new PolarComplex(Math.PI, 1); // -1
Complex d = new PolarComplex(Math.PI/2, 1); // i

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
}

}

When you run this program, it STILL prints
-1.0 + 1.0i
0.0 + -1.0i

1817-214

Information hiding is more general than visibility

• Use interfaces to separate expectations from
implementation
– Create interfaces to define your API
– Declare variables, arguments, and return values as interface

type
• Write API in terms of other interfaces, not implementations

• Do not publicly document implementation details

1917-214

Information hiding facilitates change, promotes reuse

• Think in term of abstractions, not implementations
– Abstractions are more likely to be reused

• Can change implementations more easily
– Different performance
– Different behavior

• Prevents bad programmer behavior, unnecessary dependencies

2017-214

Other benefits of information hiding

• Decoupled subsystems are easier to understand in isolation
• Speeds up system development
• Reduces cost of maintenance
• Improves effectiveness of performance tuning

2117-214

Best practices for information hiding

• Carefully design your API
• Provide only functionality required by clients

– All other members should be private
• You can always make a private member public later without

breaking clients
– But not vice-versa!

2217-214

Hyrum’s Law

2317-214

CONTRACTS
(BEYOND TYPE SIGNATURES)

2417-214

Contracts and Clients

Service*
implementation

Service* interface

Client
environment

Hidden from
service* provider

Hidden from
service* client

* service = object,
subsystem, …

2517-214

Contracts

• Agreement between provider and users of an object
• Includes

– Interface specification (types)
– Functionality and correctness expectations
– Performance expectations

• What the method does, not how it does it
– Interface (API), not implementation

2617-214

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

2717-214

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

2817-214

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

2917-214

Who’s to blame?

class Algorithms {

/**

* This method finds the

* shortest distance between to

* verticies. It returns -1 if

* the two nodes are not

* connected. */

int shortestDistance(…) {…}

}

3017-214

Who’s to blame?

Math.sqrt(-5);

> 0

3117-214

Who’s to blame?

/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* If the argument is NaN or less than zero, then the
* result is NaN.
* If the argument is positive infinity, then the result
* is positive infinity.
* If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
*
* @param a a value.
* @return the positive square root of {@code a}.
* If the argument is NaN or less than zero, the result is NaN.
*/

public static double sqrt(double a) { …}

3217-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

3317-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

• Multiple error cases, each with a
precondition

• Includes “runtime exceptions” not in
throws clause

• Specification of return
• Timing behavior (blocks)
• Case-by-case spec

• len=0 è return 0
• len>0 && eof è return -1
• len>0 && !eof èreturn >0

• Exactly where the data is stored
• What parts of the array are not affected

3417-214

Specifications

• Contains
– Functional behavior
– Erroneous behavior
– Quality attributes (performance, scalability, security, …)

• Desirable attributes
– Complete

• Does not leave out any desired behavior
– Minimal

• Does not require anything that the user does not care about
– Unambiguous

• Fully specifies what the system should do in every case the user cares
about

– Consistent
• Does not have internal contradictions

– Testable
• Feasible to objectively evaluate

– Correct
• Represents what the end-user(s) need

3517-214

Functional Specification

• States method’s and caller’s responsibilities
• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a with the following detailed specification
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines what it means for impl to be correct

3617-214

Functional Specification

• States method’s and caller’s responsibilities
• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a with the following detailed specification
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines what it means for impl to be correct

What does the implementation

have to fulfill if the client

violates the precondition?

3717-214

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j]);
@*/

int total(int array[], int len);

Advantage of formal specifications:

* runtime checks (almost) for free

* basis for formal verification

* assisting automatic analysis tools
JML (Java Modelling Language) as
specifications language in Java
(inside comments)

Disadvantages?

3817-214

/*@ requires len >= 0 && array.length == len

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j])

@*/

float sum(int array[], int len) {

assert len >= 0;
assert array.length == len;
float sum = 0.0;

int i = 0;

while (i < len) {

sum = sum + array[i]; i = i + 1;

}

assert sum …;
return sum;

}

Runtime Checking of Specifications with Assertions

Enable assertions
with -ea flag, e.g.,
> java -ea Main

4017-214

Specifications in the real world
Javadoc

/**
* Returns the element at the specified position of this list.
*
* <p>This method is <i>not</i> guaranteed to run in constant time.
* In some implementations, it may run in time proportional to the
* element position.
*
* @param index position of element to return; must be non-negative and
* less than the size of this list.
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size()})
*/
E get(int index);

Postcondition

Precondition

Exceptional behavior

4117-214

Javadoc contents

• Document
– Every parameter
– Return value
– Every exception (checked and unchecked)
– What the method does, including

• Purpose
• Side effects
• Any thread safety issues
• Any performance issues

• Do not document implementation details

4217-214

Write a Specification

• Write
– a type signature,
– a textual (Javadoc) specification, and
– a formal specification

for a function slice(list, from, until) that returns all values of a
list between positions <from> and <until> as a new list

Reminder: Formal specification

/*@ requires len >= 0 && array != null &&
@ array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j &&
@ j < len; array[j]);
@*/

int total(int array[], int len);

Reminder: Javadoc specification
/**
* Returns …
* @param index position of element …
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size
*/

E get(int index);

4317-214

Contracts and Interfaces

• All objects implementing an interface must adhere to the
interface’s contracts
– Objects may provide different implementations for the same specification
– Subtype polymorphism: Client only cares about interface, not about the

implementation
p.getX() s.read()

=> Design for Change

4417-214

Functional correctness

• Compiler ensures types are correct
• Static analysis tools recognize common problems ("bug patterns")
• …

4517-214

CheckStyle

4617-214

SpotBugs

4717-214

Functional correctness

• Compiler ensures types are correct
• Static analysis tools recognize common problems ("bug patterns")
• Formal verification

– Mathematically prove code matches its specification

• Testing
– Execute program with select inputs in a controlled environment

• …

4817-214

Formal verification vs. testing?

“Beware of bugs in the above code; I have only proved it
correct, not tried it.”

Donald Knuth, 1977

"Testing shows the presence, not the absence of bugs.”
Edsger W. Dijkstra, 1969

4917-214

Formal verification vs. testing?

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Consider java.util.Arrays.binarySearch:

5017-214

Formal verification vs. testing?

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Consider java.util.Arrays.binarySearch:

Fails if
low + high > MAXINT (231 - 1)
Sum overflows to negative value

5117-214

Comparing strategies for correctness

• Testing

– Observable properties

– Verify program for one execution

– Manual development with automated

regression

– Most practical approach now

– Does not find all problems (unsound)

• Static Analysis

– Analysis of all possible executions

– Specific issues only with conservative

approx. and bug patterns

– Tools available, useful for bug finding

– Automated, but unsound and/or

incomplete

• Proofs (formal verification)

– Any program property

– Verify program for all

executions

– Manual development with

automated proof checkers

– Practical for small programs,

may scale up in the future

– Sound and complete, but not

automatically decidable

Which strategies to
use in your project?

5217-214

Manual testing

• Live system or a testing system?
• How to check output / assertions?
• What are the costs?
• Are bugs reproducible?

5317-214

Automate testing

• Execute a program with specific inputs, check output for
expected values

• Set up testing infrastructure
• Execute tests regularly

– After every change

5417-214

Unit testing

• Tests for small units: methods, classes, subsystems
– Smallest testable part of a system
– Test parts before assembling them
– Intended to catch local bugs

• Typically written by developers
• Many small, fast-running, independent tests
• Few dependencies on other system parts or environment

5517-214

JUnit

• A popular, easy-to-use, unit-testing framework for Java

5617-214

A JUnit example

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
@Test
public void testSanityTest(){

Graph g1 = new AdjacencyListGraph(10);
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, g1.addVertex(s1));
assertEquals(true, g1.addVertex(s2));
assertEquals(true, g1.addEdge(s1, s2));
assertEquals(s2, g1.getNeighbors(s1)[0]);

}

@Test
public void test….

private int helperMethod…
}

5717-214

Selecting test cases

• Write tests based on the specification, for:
– Representative cases
– Invalid cases
– Boundary conditions

• Write stress tests
– Automatically generate huge numbers of test cases

• Think like an attacker
• Other tests: performance, security, system interactions, …

5817-214

A testing example
/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the first len array values
* @throws NullPointerException if array is null
* @throws IndexOutOfBoundsException if len > array.length
* @throws IllegalArgumentException if len < 0
*/

int partialSum(int array[], int len);

5917-214

A testing example
/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the first len array values
* @throws NullPointerException if array is null
* @throws IndexOutOfBoundsException if len > array.length
* @throws IllegalArgumentException if len < 0
*/

int partialSum(int array[], int len);

• Test negative length

6017-214

A testing example
/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the first len array values
* @throws NullPointerException if array is null
* @throws IndexOutOfBoundsException if len > array.length
* @throws IllegalArgumentException if len < 0
*/

int partialSum(int array[], int len);

• Test negative length
• Test length > array.length
• Test length == array.length
• Test small arrays of length 0, 1, 2
• Test null array
• Test long array
• Stress test with randomly-generated arrays and lengths

6117-214

Test organization conventions

• Have a test class FooTest for each
public class Foo

• Separate source and test directories
– FooTest and Foo in the same package

6217-214

Testable code

• Think about testing when writing code
– Modularity and testability go hand in hand

• Same test can be used on all implementations of an interface!
• Test-driven development

– Writing tests before you write the code
– Tests can expose API weaknesses

6317-214

Writing testable code
//700LOC
public boolean foo() {

try {
synchronized () {

if () {
} else {
}
for () {

if () {
if () {

if () {
if ()?
{

if () {
for () {
}

}
}

} else {
if () {

for () {
if () {
} else {
}
if () {
} else {

if () {
}

}
if () {

if () {
if () {

for () {
}

}
}

} else {
}

}
} else {
}

}
}

}
}

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

Unit testing as a design
mechanism:
• Code with low complexity
• Clear interfaces and

specifications

6417-214

Run tests frequently

• Run tests before every commit
– Do not commit code that fails a test

• If entire test suite becomes too large and slow:
– Run local package-level tests ("smoke tests“) frequently
– Run all tests nightly
– Medium sized projects easily have 1000s of test cases

• Continuous integration servers scale testing

6517-214

Continuous integration: Travis CI

6617-214

Continuous integration: Travis CI build history

6717-214

When should you stop writing tests?

6817-214

When should you stop writing tests?

• When you run out of money…
• When your homework is due…
• When you can't think of any new test cases...
• The coverage of a test suite

– Trying to test all parts of the implementation
– Statement coverage

• Execute every statement, ideally
• Compare to: method coverage, branch coverage, path coverage

6917-214

Summary

• Please complete the course reading assignments
• Java has a bipartite type system: primitives and objects
• Power of OO programming comes from dynamic dispatch
• Collections framework is powerful and easy to use
• Test early, test often!

