Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Designing classes

Java basics, functional correctness

Michael Hilton Bogdan Vasilescu

Schaol of
Computer Science

@
. institute for
I S SOFTWARE
RESEARCH
nstitute for

17-214 R | S [By

Administrivia

* No Smoking

* Office Hours — check online calendar

* Homework 1 due Thursday 11:59 p.m.

* Everyone must read and sign the collaboration policy

: INstitute Fc |
17-214 2 sortate

Key concepts from last Thursday

nstitute for

17-214 3 [H] o

Key concepts from last Thursday

* |nfrastructure

* Introduction to Java
— Syntax
— Types
- 1/0
— lterators
— Exceptions

: institute F‘ |
17-214 4 sormiat

Today

* Information hiding: Design for change, design for reuse
— Encapsulation: Visibility modifiers in Java
— Interface types vs. class types

o Functionalcorrectness
— JUnit and friends

:
T institute for
17-214 5 fortinst

Intro to Java

Git, Cl

UML GUIs
Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Design erns
Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem
Responsibility Assignment,
Design Patterns,

GUI vs Core,

Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

17-214

i institute for
6 I S SOFTWARE
RESEARCH

Visibility modifiers in Java ("encapsulation”)

 private: Accessible only from declaring class

* "package private": Accessible from any class in package
— a.k.a. default access, no visibility modifier

 protected: Accessible from package and also from
subclasses

e public: Accessible anywhere

: INstitute F:)
17-214 7 sormiat

Visibility modifier example

* Consider:
public class Point {
private double x, y;
public Point(double x, double y) {
this.x = Xx;

this.y = y;

}

public void translateBy(Point p) {
X += p.X;
y += p.Yy;

)
M INstitute Fc)
17-214 8 sormiat

Visibility modifier example

* Consider:
public class Point {

private double x, y;

public Point(double x, double y) {
this.x = Xx;
this.y = y;

}

public void translateBy(Point p) {
X += p.X; // This is OK. p.x and p.y are
y += p.y; // accessible from the Point class!

}

public double getX() { return x; }

public double getY() { return y; }

17-214 | S [FEa

Fundamental Design Principle for Change:
Information Hiding

* Expose as little implementation detail as necessary

* Allows to change hidden details later

el e by Hidden from
service* client service* provider

Service*
implementation

* service = object,
subsystem, ...

17-214 o TEYR v

RRRRRRRRR

A more complex example

public class Complex { *’i’
private final double re; // Real part
private final double im; // Imaginary part
) Z=X+1y

public Complex(double re, double im) {

this.re = re; r

this.im = im; °
} ,Iv » K

public double realPart() { return re; }

public double imaginaryPart() { return im; }

public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex add(Complex c) {

return new Complex(re + c.re, im + c.im);
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}

A institute F« |
17-214 11 sortate

Using the Complex class

public class ComplexUser {
public static void main(String args[]) {
Complex c¢ = new Complex(-1, 0);
Complex d = new Complex(0, 1);

Complex e = c.add(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c. multiply(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it prints

-1.0 + 1.01
0.0 + -1.01i

17-214 12

institute for
SOFTWARE
RESEARCH

Extracting an interface from our class

public interface Complex {
// No constructors, fields, or implementations!

double realPart();
double imaginaryPart();
double r();

double theta();

Complex plus(Complex c);
Complex minus(Complex c);

Complex times(Complex c);
Complex dividedBy(Complex c);

An interface defines but does not implement API

: INstitute Fc |
17-214 13 sortate

Modifying our earlier class to use the interface

public class OrdinaryComplex implements Complex {
private final double re; // Real part
private final double im; // Imaginary part

public OrdinaryComplex(double re, double im) {
this.re re;
this.im im;

}

public double realPart() { return re; }
public double imaginaryPart() { return im; }
{
{

public double r() return Math.sqrt(re * re + im * im); }
public double theta() return Math.atan(im / re); }

public Complex add(Complex c) {
return new OrdinaryComplex(re + c.realPart(), im + c.imaginaryPart());
}
public Complex subtract(Complex c) { ... }
public Complex multiply(Complex c) { ... }
public Complex divide(Complex c) { ...}

A institute F« |
17-214 14 sortate

Modifying our earlier client to use the interface

public class ComplexUser {
public static void main(String args[]) {
Complex ¢ = new OrdinaryComplex(-1, 0);
Complex d = new OrdinaryComplex(0, 1);

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it still prints

-1.0 + 1.01
0.0 + -1.01
17-214 15

»
0 institute for
I S SOFTWARE

RESEARCH

Interfaces permit multiple implementations

public class PolarComplex implements Complex {
private final double r; // Radius
private final double theta; // Angle

public PolarComplex(double r, double theta) {
this.r = r;
this.theta = theta;

}

public double realPart() { return r * Math.cos(theta) ; }
public double imaginaryPart() { return r * Math.sin(theta) ; }
public double r() { return r; }

public double theta() { return theta; }

public Complex plus(Complex c) { ... } // Completely new impls
public Complex minus(Complex c) { ...}
public Complex times(Complex c) { ...}

{ ...}

public Complex dividedBy(Complex c)

il Institute for
17-214 16 sormiat

Interface decouples client from implementation

public class ComplexUser {

public static
Complex c
Complex d

Complex e

void main(String args[]) {
= new PolarComplex(Math.PI, 1); // -1
= new PolarComplex(Math.PI/2, 1); // 1

= c.plus(d);

System.out.println(e.realPart() + " +

+ e.imaginaryPart() + "i");

e = c.times(d);
System.out.println(e.realPart() + " +

+ e.imaginaryPart() + "i");

When you run this program, it STILL prints

}
}
-1.0 + 1.01
0.0 + -1.01i
17-214

-
institute for
SOFTWARE

1 7 RESEARCH

Information hiding is more general than visibility

» Use interfaces to separate expectations from
implementation
— Create interfaces to define your API

— Declare variables, arguments, and return values as interface
type

* Write API in terms of other interfaces, not implementations

* Do not publicly document implementation details

: INstitute F:)
17-214 18 sormiat

Information hiding facilitates change, promotes reuse

* Think in term of abstractions, not implementations

— Abstractions are more likely to be reused

 (Can change implementations more easily

— Different performance
— Different behavior

* Prevents bad programmer behavior, unnecessary dependencies

: INstitute F:)
17-214 19 sormiat

Other benefits of information hiding

 Decoupled subsystems are easier to understand in isolation
* Speeds up system development

* Reduces cost of maintenance

* Improves effectiveness of performance tuning

: INstitute F:)
17-214 20 sormiat

Best practices for information hiding

e Carefully design your API
* Provide only functionality required by clients
— All other members should be private
* You can always make a private member public later without

breaking clients
— But not vice-versal

ite for

17-214 21 sormast

Hyrum Wright

@hyrumwright

Hyrum’s Law

- Infrastructure software engineer. Googler. Father. Occasional
- professor.

institute for
) SOFTWARE
- RESEARCH

17-214 22

CONTRACTS
(BEYOND TYPE SIGNATURES)

17-214 T v
23 RRRRRRR H

Contracts and Clients

el e by Hidden from
service* client service* provider

Service*
implementation

* service = object,
subsystem, ...

institute for
17-214 Y | S [By

Contracts

 Agreement between provider and users of an object

* Includes
— Interface specification (types)
— Functionality and correctness expectations
— Performance expectations
 What the method does, not how it does it
— Interface (API), not implementation

: INstitute Fc |
17-214 25 sortate

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

: INstitute F:)
17-214 26 sormiat

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

: INstitute Fc |
17-214 27 sortate

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

: INstitute Fc |
17-214 28 sortate

Who’s to blame?

class Algorithms {

17-214

/**
* This method finds the
* shortest distance between to
* verticies. It returns -1 if
* the two nodes are not
* connected. */

int shortestDistance(..) {..}

RRRRRRRR

Who’s to blame?

Math.sqgrt(-5);

> 0

17-214

Who’s to blame?

/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* <1i>If the argument is NaN or less than zero, then the
* result is NaN.
* <1i>If the argument is positive infinity, then the result
* is positive infinity.
* <1i>If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
k
* @param a a value.
* @return the positive square root of {@code a}.
* If the argument is NaN or less than zero, the result is NaN.
*/

public static double sqrt(double a) { ..}

: INstitute F:)
17-214 31 SOTVAKE

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

= Reads up to len bytes of data from the input stream into an array of bytes. An

attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

= If len is zero, then no bytes are read and O is returned; otherwise, there is an

attempt to read at least one byte. If no byte is available because the stream is at
end obf file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

= The first byte read is stored into element b[off], the next one into b[off+1], and so

on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

= In every case, elements b[0] through b[off] and

elements b[off+len] through b[b.length-1] are unaffected.

e Throws:
« IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.

= NullPointerException - If b is null.
» IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

17-214

than b.length - off

institute for
SOFTWARE
32 RESEARCH

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

- Reads up to len bytes of data

Specification of return

attempt is made to read as mais FTy T8 o= =V o)l (o] 61615

The number of bytes actually
until input data is available, Case-by-case spec

- If len is zero, then no bytes a e len=0= return0

= The first byte read is stored in

= In every case, elements b[0]

e Throws:
= IOException - If the first byte

= NullPointerException - If b is n
» IndexOutOfBoundsException -

17-214

attempt to read at least one b
end of file, the value -1 is ret
into b.

e len>0 && eof = return -1

e len>0 && !eof =return >0
Exactly where the data is stored
What parts of the array are not affected

on. The number of bytes read
bytes actually read; these byt
1], leaving elements b[off+k]

elements b[off+|en] through b[b. Iength 1] are unaffected

e Multiple error cases, each with a

or if the input stream has bee precondition

¢ Includes “runtime exceptions” not in
than b.length - off throws clause

Y= institute for

H Y sorTvA

RESEARCH

Specifications

* Contains
— Functional behavior
— Erroneous behavior
— Quality attributes (performance, scalability, security, ...)

e Desirable attributes
— Complete
* Does not leave out any desired behavior
— Minimal
* Does not require anything that the user does not care about
— Unambiguous

* Fully specifies what the system should do in every case the user cares
about

— Consistent

* Does not have internal contradictions
— Testable

* Feasible to objectively evaluate
— Correct

* Represents what the end-user(s) need

M INstitute Fc)
17-214 34 sormiat

Functional Specification

* States method’s and caller’s responsibilities

* Analogy: legal contract
— If you pay me this amount on this schedule...
— | will build a with the following detailed specification
— Some contracts have remedies for nonperformance

 Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

: INstitute [:)
17-214 35 sora

Functional Specification

.
=
2
=
-3
jo})
=

aired specification
nperformance

Method contract structure
— Preconditions: what method requires for correct operation

— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

17-214 36

Formal Specifications

/*@ requi
quires len >=
= @ & array != null &&
array.length
== len;

g ensures \result ==
(\sum_gnt 5
Jjs ©6 <=7 & j < len; ar
; ray[j]);

*/

Advantage of formal speciﬁcations:

hecks (a\most) for free

51 verification
matic analysis 10

[

* runt.\me c
* pasis for form
* ggsisting auto

ols

17-214

Runtime Checking of Specifications with Assertions

/*@ requires len >= 0 && array.length == len

@ ensures \result ==
@ (\sum int j; © <= j & j < len; array[j])
@*/

float sum(int array[], int len) {

17-214

assert len >= 0;

assert array.length == len;
float sum = 0.0;

int 1 = 0;

while (i < len) {

sum = sum + array[i]; i =1 + 1;

} Enable assertions
assert sum ..; with -ea flag, e.g.,
return sum; > java -ea Mailn

f

institute tor
: SOFTWARE
38 - RESEARCH

Specifications in the real world
Javadoc

/**

* Returns the element at the specified position of this list.

Postcondition

*

<p>This method is <i>not</i> guaranteed to run in constant time.
* In some implementations, it may run in time proportional to the
* element position.

* @param index position of element to return; must be non-negative and
* less than the size of this list.

*

@return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < @ || index >= this.size()})
*/

E get(int index);

institute for
SOFTWARE
RESEARCH

17-214 40

Javadoc contents

* Document
— Every parameter
— Return value
— Every exception (checked and unchecked)

— What the method does, including
* Purpose
 Side effects
* Any thread safety issues
* Any performance issues

* Do not document implementation details

: INstitute F:)
17-214 41 sormiat

Write a Specification

* Write
— a type signature,
— a textual (Javadoc) specification, and
— a formal specification

for a function slice(list, from, until) that returns all values of a
list between positions <from> and <until> as a new list

Reminder: Formal specification Reminder: Javadoc specification

k%
/*@ requires len >= 0 && array != null && /*
@ array.length == len; Returns ..
@ * @param index position of element ..
@ ensures \result == ¢ - . * @return the element at the specified posi
@ (\sum int j; ©<=3J & * @throws IndexOutOfBoundsException if the
@ j < len; array[]j]); : . :
@*/ * ({@code index < @ || index >= thi
int total(int array[], int len); */

E get(int index);

f

17-214 o [El

Contracts and Interfaces

* All objects implementing an interface must adhere to the
interface’s contracts
— Objects may provide different implementations for the same specification

— Subtype polymorphism: Client only cares about interface, not about the
implementation

p.getX() s.read()

=> Design for Change

: INstitute F:)
17-214 43 sormiat

Functional correctness

 Compiler ensures types are correct
e Static analysis tools recognize common problems ("bug patterns")

: INstitute Fc |
17-214 a4 sortate

CheckStyle

17-214

4] CartesianPoint.java & = g

public final class CartesianPoint {

BlTaskL 8 = A

v (%% @
") private int X,Y; -
Cartes§anPoint(int X, int y) { ® Connect Mylyn
tlr:l..s.)(=§;) Connect to your task
}l this.Y =y; and ALM tools or cre
Soutlin 2 = B
Hoe public int GetY() { —
return Y; |1az| W Y e
} -
© public int getX() { v 7 cartesianPoint
return X; .
} g8 X:int
28 Y ink
M Pro 8 @ Jav [Dec Sea ElCo =3 Pro [m Cov E His ¥ Bug Call Ana = 0O
-~
0 errors, 9 warnings, 0 others
Description Resonl
v & Checkstyle Problem (9 items)
& '"is not followed by whitespace. Carte
& '="is not followed by whitespace. Carte
& '="is not preceded with whitespace. Carte
& File contains tab characters (this is the first instance). Carte
& Name 'GetY' must match pattern 'Aa-z][a-zA-Z0-9]*S". Carte
& Name 'X' must match pattern '*[a-z][a-zA-Z0-9]*S$". Carte
& Name'Y' must match pattern '~[a-z][a-zA-Z0-9]*S". Carte!
= = s L LAl Fad I Carkr

wirirahbla Cmart Incark QA

SpotBugs

17-214

‘r. -0 Jika EMWEFBRe fRekne)/sroliests/Mokinl otkjava REclipseiow Help

&
@
4
(g
\i)
2,
4
N5
i
=

B L o B NN Gy sy Oy Qv

T

H - . .,
vl v Gl oy 0 Oy v (A

JJ1 ProgramPoint.ja
by

@0verride
public void run() {
Lock localLock = new ReentrantLock();

1.lock();

int a = 1;
locallLock.lock();

if (a == 2) {
1.unlock();
} else {
// do nothing
}
return;

}

] NoUnlock.java 88 ™ m|

~

% Proble 2 ’ @ Javad [2 Declar 4" Search B Consol 3¢ CallHi [Analysi % Debug = O

0 errors, 12 warnings, 0 others
Description

=

i Iterator is a raw type. References to generic type Iterator<E> should be parameterized

‘w1, Iterator is a raw type. References to generic type Iterator<E> should be parameterized

4 No required execution environment has been set

& plugin.ProgramPoint defines equals and uses Object.hashCode() [Troubling(14), High confidence]

@ tests.NoUnlock$T3.run() does not release lock on all paths [Troubling(12), High confidence]
& tests.NoUnlock$T4.run() might ignore java.lang.Exception [Troubling(14), High confidence]
‘W Type safety: Unchecked cast from Object to Map.Entry<String,ProgramPoint.LockState>

F Fram NMhiark Fa Man EnbrusShrinn PranaramPaint | nrkQrakas

[T Bk L | '} o

tests.NoUnlock$T3.run() does not release..| paths [Troubling(12), High confidence] '

|Q | ‘ F | &’ Java <9=Plug-in Development %5 Debug

O
o-

Functional correctness

 Compiler ensures types are correct
 Static analysis tools recognize common problems ("bug patterns")

* Formal verification
— Mathematically prove code matches its specification

* Testing
— Execute program with select inputs in a controlled environment

iiig fi

17-214 o [El

Formal verification vs. testing?

“Beware of bugs in the above code; | have only proved it
correct, not tried it.”
Donald Knuth, 1977

"Testing shows the presence, not the absence of bugs.”
Edsger W. Dijkstra, 1969

: INstitute F:)
17-214 48 sormiat

Formal verification vs. testing?

Consider java.util.Arrays.binarySearch:

1: public static int binarySearch(int[] a, int key) {
2: int low = ©;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midval = a[mid];

8:

9: if (midval < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14 return mid; // key found

15: }

16: return -(low + 1); // key not found.
17: }

f

17-214 o [FI

Formal verification vs. testing?

Consider java.util.Arrays.binarySearch:

coNOuUVIDS WN R

public static int binarySearch(int[] a, int key) {
int low = ©;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;

int midval = a[mid]; —
Fails if
if (midval < key) low + high > MAXINT (231-1)
low = mid + 1 Sum overflows to negative value

else if (midvVal > key)
high = mid - 1;
else
return mid; // key found

}
return -(low + 1); // key not found.

S r institute for
SOFTWARE
50 RESEARCH

Comparing strategies for correctness

* Testing * Proofs (formal verification)
— Observable properties — Any program property
— Verify program for one execution — Verify program for all
executions

— Manual development with automated
regression — Manual development with

— Most practical approach now automated proof checkers

— Practical for small programs,

— Does not find all problems (unsound) ,
may scale up in the future

* Static Analysis — Sound and complete, but not

— Analysis of all possible executions automatically decidable

— Specific issues only with conservative
approx. and bug patterns

— Tools available, useful for bug finding
— Automated, but unsound and/or Which strategles to

incomplete use in your project?

: INstitute F:)
17-214 51 SOTVAKE

Manual testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Maim Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
7 Select “Send Message” Message 1s correctly sent

* Live system or a testing system?

* How to check output / assertions?
 What are the costs?

* Are bugs reproducible?

institute for
SOFTWARE
RESEARCH

17-214 52

Automate testing

* Execute a program with specific inputs, check output for
expected values

e Set up testing infrastructure

* Execute tests regularly
— After every change

: INstitute Fc |
17-214 53 sortate

Unit testing

Tests for small units: methods, classes, subsystems

— Smallest testable part of a system
— Test parts before assembling them
— Intended to catch local bugs

Typically written by developers

Many small, fast-running, independent tests

Few dependencies on other system parts or environment

f

17-214 s [N

JUnit

* A popular, easy-to-use, unit-testing framework for Java

Problems Javadoc Declaration Ju JUnit & 4 ¢ " BE @ B B+ Y = B8
Finished after 0.012 seconds
Runs: 4/4 B Errors: 0 B Failures: 1 e
> fi edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000s) = Failure Trace ‘ 3:5‘
¥ @il edu.cmu.cs.cs214.hw1.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000s) J9 java.lang.AssertionError: Expected exception: java.lang.NullPointerException

gl
¢l basicNullTest2 (0.000 s)
> Ei] edu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000 s)

institute for
SOFTWARE
RESEARCH

17-214

A JUnit example

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencylListTest {
@Test

public void testSanityTest(){
Graph gl = new AdjacencylListGraph(10);
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, gl.addVertex(sl));
assertEquals(true, gl.addVertex(s2));
assertEquals(true, gl.addEdge(sl, s2));

assertEquals(s2, gl.getNeighbors(sl)[0]);
}

@Test
public void test...

private int helperMethod..

: INstitute Fc |
17-214 56 sortate

Selecting test cases

Write tests based on the specification, for:
— Representative cases

— Invalid cases

— Boundary conditions

Write stress tests

— Automatically generate huge numbers of test cases

Think like an attacker
Other tests: performance, security, system interactions, ...

: INstitute F:)
17-214 57 SOTVAKE

A testing example
/**

* computes the sum of the first len values of the array
*
* @param array array of integers of at least length Llen
* @param Len number of elements to sum up
* @return sum of the first len array values
* @throws NullPointerException if array 1s null
* @throws IndexOutOfBoundsException if len > array.length
* @throws IllegalArgumentException i1f lLen < @
*/
int partialSum(int array[], int len);

Py institute for
SOFTWARE
RESEARCH

17-214 58

A testing example
/**

* computes the sum of the first len values of the array
*
* @param array array of integers of at least length Llen
* @param Len number of elements to sum up
* @return sum of the first len array values
* @throws NullPointerException if array 1s null
* @throws IndexOutOfBoundsException if len > array.length
* @throws IllegalArgumentException i1f lLen < @
*/
int partialSum(int array[], int len);

* Test negative length

17-214 59

A testing example

17-214 60

/**
* computes the sum of the first len values of the array
%

* @param array array of integers of at Least Llength Llen

* @param Len number of elements to sum up

* @return sum of the first Len array values

* @throws NullPointerException if array 1s null

* @throws IndexOutOfBoundsException if Len > array.length
* @throws IllegalArgumentException i1f len < ©

*/

int partialSum(int array[], int len);

Test negative length

Test length > array.length

Test length == array.length

Test small arrays of length O, 1, 2

Test null array

Test long array

Stress test with randomly-generated arrays and lengths

Test organization conventions

v = hwi
v i#Bsrc

° Have d teSt CIaSS FOOTeSt for eaCh v &8 edu.cmu.cs.cs214.hwi.graph
pUbliC CIaSS Foo » [J] AdjacencyListGraph.java

> [J] AdjacencyMatrixGraph.java
> [J] Algorithm.java

e Separate source and test directories .
& edu.cmu.cs.cs214.hwi.sols
— FooTest and Foo in the same package > 8 edu.cmu.cs.cs214.hwi.staff

> H edu.cmu.cs.cs214.hw1.staff.tests
v B tests
v 8 edu.cmu.cs.cs214.hw1.graph
> 1J] AdjacencyListTest.java
> 1J] AdjacencyMatrixTest.java
> 1) AlgorithmTest.java
» [J) GraphBuilder.java
> # edu.cmu.cs.cs214.hwi.staff.tests
> =i JRE System Library [jdk1.7.0]

> =4 JUnit 4
> = docs
> (= theory
. institute for
1 7- 2 14 6 1 sranfl';"&'&kg

RESEARCH

Testable code

* Think about testing when writing code
— Modularity and testability go hand in hand

 Same test can be used on all implementations of an interface!

e Test-driven development
— Writing tests before you write the code
— Tests can expose APl weaknesses

: INstitute Fc |
17-214 62 sortate

Writing testable code

//700LOC
public boolean foo() {
try {
synchronized () {
if O£
} else {

by
for () {
if () {
if () {

if () {
if ()?
{

if () {
for () {
b

¥
b
} else {
if) {
for () {
if) {
} else {

b

if) {

} else {
if () {
b

b
if () {
if () {
if) {
for () {
b
b
b
} else {
¥

b
} else {

Unit testing as a design

mechanism:

* Code with low complexity

* C(Clear interfaces and
specifications

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

il institute for
63 I S SOFTWARE
RESEARCH

Run tests frequently

* Run tests before every commit
— Do not commit code that fails a test

* If entire test suite becomes too large and slow:
— Run local package-level tests ("smoke tests”) frequently

— Run all tests nightly
— Medium sized projects easily have 1000s of test cases

* Continuous integration servers scale testing

: INstitute F:)
17-214 64 SOTVAKE

Continuous integration: Travis ClI

17-214

% Build #17 - wyvernla x \

€« C A 8 https://travis-ci.org/wyvernlang

Blog

« wyvernlang/wyvern

Status

Help

wyvernlang / wyvern ©

b

SimpleWyvern-devel Asserting false (works on Linux, so its C

s job ran on our legacy infrastructu

Jonathan Ald

D

X= Remove Log J= Download Log

Using worker: worker-1linux-827f@49@-1.bb.travis-ci.org:travis-linux-2 [

Build system information

$ git clone --depth=5@ --branch=SimpleWyvern-devel
$ jdk_switcher use oraclejdk8

system_info

git.checkout

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle

$ java -Xmx32m -version

java version "1.8.0_31"

Java(TM) SE Runtime Environment (build 1.8.0_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)
$ javac -J-Xmx32m -version

javac 1.8.0_31

$ cd tools

The command "cd tools" exited with ©.
$ ant test
Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

copper-compose-compile:

Continuous integration: Travis Cl build history

17-214

W —
& Builds - wyvernlang, x

€ - C A B https//travis-ci.org/wyvernlang/wyvern/builds

* Travis Cl Blog Status Help

i

Search all repositories

My Repositories + Current

 wyvernlang/wyvern 17

Duration: 16 sec
Finished: 3 days ago

>feofeoffcofcofooffeofeofco

Branches Build History Pull Requests

SimpleWyvern-devel Asserting false (works on

O potanin committed

SimpleWyvern-devel Debugging mac bug.
o potanin committed

SimpleWyvern-devel Zooming in on Mac's IRBt

o potanin committed

SimpleWyvern-devel Zoomingin on Mac LLVM
o potanin committed

SimpleWyvern-devel Removed outdated tests

. Jonathan Aldrich committed

newlexer Merge branch 'master’ of https://gith

. Jonathan Aldrich committed

master Build with JDK 8
. Jonathan Aldrich committed

master fixed Travis build script syntax error

. Jonathan Aldrich committed

mactar mavad tho VMI filo inta tho ricght nlace

wyvernlang / wyvern ©

17 passed
fd7belc

16 passed
Oe2af1f

14 passed
8b3606f

13 passed
727fce4

7 passed
4684fbs

6 passed
876a074

5 passed
b15273c

4 failed
737a89f

Jonathan Aldrich '

16 sec

3 days ago

22 sec

3 days ago

15 sec

4 days ago

16 sec

4 days ago

15 sec

11 days ago

14 sec

11 days ago

13 sec

11 days ago

5sec

11 days ago

When should you stop writing tests?

nstitute for

17-214 67 [FJJ sominse

When should you stop writing tests?

* When you run out of money...
* When your homework is due...
* When you can't think of any new test cases...

 The coverage of a test suite
— Trying to test all parts of the implementation
— Statement coverage
* Execute every statement, ideally
 Compare to: method coverage, branch coverage, path coverage

f

17-214 68 fortinst

Summary

* Please complete the course reading assignments

* Java has a bipartite type system: primitives and objects
 Power of OO programming comes from dynamic dispatch
* Collections framework is powerful and easy to use

e Test early, test often!

: INstitute F:)
17-214 69 sora

