
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

217-214

Software is everywhere

317-214

Growth of code and complexity over time

(informal reports)

417-214

617-214 15-313
Software

6

717-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

817-214

binary tree

graph search

sorting

primes

GCD

917-214

Our goal: understanding both the building blocks and the
design principles for construction of software systems

From programs to systems

Writing algorithms, data
structures from scratch

Functions with inputs
and outputs

Sequential and local
computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

1017-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

1117-214

Objects in the real world

1217-214

Object-oriented programming

• Programming based on structures
that contain both data and methods
public class Bicycle {

private final Wheel frontWheel, rearWheel;
private final Seat seat;
private int speed;
…

public Bicycle(…) { … }

public void accelerate() {
speed++;

}

public int speed() { return speed; }
}

1317-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

1417-214

Semester overview

• Introduction to Java and O-O
• Introduction to design

– Design goals, principles, patterns
• Designing classes

– Design for change
– Design for reuse

• Designing (sub)systems
– Design for robustness
– Design for change (cont.)

• Design case studies
• Design for large-scale reuse
• Explicit concurrency

• Crosscutting topics:
– Modern development tools:

IDEs, version control, build
automation, continuous
integration, static analysis

– Modeling and specification,
formal and informal

– Functional correctness: Testing,
static analysis, verification

1517-214

Sorting with a configurable order, version A

static void sort(int[] list, boolean ascending) {
…
boolean mustSwap;
if (ascending) {

mustSwap = list[i] > list[j];
} else {

mustSwap = list[i] < list[j];
}
…

}

1617-214

Sorting with a configurable order, version B
interface Order {

boolean lessThan(int i, int j);

}

class AscendingOrder implements Order {

public boolean lessThan(int i, int j) { return i < j; }

}

class DescendingOrder implements Order {

public boolean lessThan(int i, int j) { return i > j; }

}

static void sort(int[] list, Order order) {

…

boolean mustSwap =

order.lessThan(list[j], list[i]);

…

}

1717-214

Sorting with a configurable order, version B'

interface Order {

boolean lessThan(int i, int j);

}

final Order ASCENDING = (i, j) -> i < j;

final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order order) {

…

boolean mustSwap =

order.lessThan(list[j], list[i]);

…

}

1817-214

Which version is better?

static void sort(int[] list, boolean ascending) {
…
boolean mustSwap;
if (ascending) {

mustSwap = list[i] > list[j];
} else {

mustSwap = list[i] < list[j];
}
…

}

interface Order {
boolean lessThan(int i, int j);

}
final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order order) {
…
boolean mustSwap =
order.lessThan(list[j], list[i]);

…
}

Version A:

Version B':

1917-214

It depends?

2017-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

2117-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software engineering entails making decisions under
constraints of limited time, knowledge, and resources…

Engineering quality resides in engineering judgment…
Quality of the software product depends on the engineer’s
faithfulness to the engineered artifact…
Engineering requires reconciling conflicting constraints…
Engineering skills improve as a result of careful systematic
reflection on experience…
Costs and time constraints matter, not just capability…

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

2217-214

Goal of software design

• For each desired program behavior there are infinitely many
programs
– What are the differences between the variants?
– Which variant should we choose?
– How can we create a variant with desired properties?

2317-214

Metrics of software quality, i.e., design goals

Functional
correctness Adherence of implementation to the specifications

Robustness Ability to handle anomalous events

Flexibility Ability to accommodate changes in specifications

Reusability Ability to be reused in another application

Efficiency Satisfaction of speed and storage requirements

Scalability Ability to serve as the basis of a larger version of the application

Security Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

2417-214

A typical Intro CS design process

1. Discuss software that needs to be written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

2517-214

Better software design

• Think before coding: broadly consider quality attributes
– Maintainability, extensibility, performance, …

• Propose, consider design alternatives
– Make explicit design decisions

2617-214

Using a design process

• A design process organizes your work
• A design process structures your understanding
• A design process facilitates communication

2717-214

Preview: Design goals, principles, and patterns

• Design goals enable evaluation of designs
– e.g. maintainability, reusability, scalability

• Design principles are heuristics that describe best practices
– e.g. high correspondence to real-world concepts

• Design patterns codify repeated experiences, common solutions
– e.g. template method pattern

2817-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

2917-214

Concurrency

• Roughly: doing more than one thing at a time

3017-214

Summary: Course themes

• Object-oriented programming
• Code-level design
• Analysis and modeling
• Concurrency

3117-214

Software Engineering (SE) at CMU

• 17-214: Code-level design

– Extensibility, reuse, concurrency, functional correctness

• 17-313: Human aspects of software development

– Requirements, teamwork, scalability, security, scheduling, costs, risks,

business models

• 17-413 Practicum, 17-415 Seminar, Internship

• Various courses on requirements, architecture, software analysis,

SE for startups, etc.

• SE Minor: http://isri.cmu.edu/education/undergrad

31

http://isri.cmu.edu/education/undergrad/

3217-214

COURSE ORGANIZATION

3317-214

Preconditions

• 15-122 or equivalent
– Two semesters of programming
– Knowledge of C-like languages

• 21-127 or equivalent
– Familiarity with basic discrete math concepts

• Specifically:
– Basic programming skills
– Basic (formal) reasoning about programs

• Pre/post conditions, invariants, formal verification
– Basic algorithms and data structures

• Lists, graphs, sorting, binary search, etc.

3417-214

Learning goals

• Ability to design and implement medium-scale programs
• Understanding OO programming concepts & design decisions
• Proficiency with basic quality assurance techniques for

functional correctness
• Fundamentals of concurrency
• Practical skills

3517-214

Course staff

• Michael Hilton
mhilton@cmu.edu
Wean 5122

• Bogdan Vasilescu
vasilescu@cmu.edu
Wean 5115

• Teaching assistants:
Ari, Alice, Henry, Lily, Michelle, Nick, Shruti, Rick, Ruby, Yang

mailto:mhilton@cmu.edu
mailto:vasilescu@cmu.edu

3617-214

Course meetings

• Lectures: Tuesday and Thursday, 3:00 – 4:20pm, DH A302

– Electronic devices discouraged

• Recitations: Wednesdays 9:30 - … - 2:20pm

– Supplementary material, hands-on practice, feedback

– Bring your laptop

• Office hours: see course web page

– http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/

Recitation
attendance
is required

Smoking
Section

http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/

3717-214

Infrastructure

• Course website: http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/
– Schedule, office hours calendar, lecture slides, policy documents

• Tools
– Git, Github: Assignment distribution, hand-in, and grades

– Piazza: Discussion board
– IntelliJ or Eclipse: Recommended for code development (other IDEs are fine)
– Gradle, Travis-CI, Checkstyle, Findbugs: Practical development tools

• Assignments
– Homework 1 available tomorrow

• First recitation is tomorrow
– Introduction to Java and the tools in the course
– Install Git, Java, some IDE, Gradle beforehand

http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/

3817-214

Textbooks

• Required course textbooks (electronically

available through CMU library):

– Joshua Bloch. Effective Java, Third Edition.

Addison-Wesley, ISBN 978-0-13-468599-1.

– Craig Larman. Applying UML and Patterns. 3rd

Edition. Prentice Hall, ISBN 978-0321356680.

• Additional readings on design, Java, and

concurrency on the course web page

3917-214

Approximate grading policy

• 50% assignments
• 20% midterms (2 x 10% each)
• 20% final exam
• 10% quizzes and participation

This course does not have a fixed letter grade policy; i.e., the final
letter grades will not be A=90-100%, B=80-90%, etc.

4017-214

Collaboration policy (also see the course syllabus)

• We expect your work to be your own
– You must clearly cite external resources so that we can evaluate your own

personal contributions.

• Do not release your solutions (not even after end of semester)
• Ask if you have any questions
• If you are feeling desperate, please mail/call/talk to us

– Always turn in any work you've completed before the deadline
• We use cheating detection tools
• You must sign and return a copy of the collaboration policy

before we will grade your work: https://goo.gl/CBXKQK

https://goo.gl/CBXKQK

4117-214

Late day policy

• You may turn in each* homework up to 2 days late
• You have five free late days per semester

– 10% penalty per day after free late days are used

• We don't accept work 3 days late
• See the syllabus for additional details
• Got extreme circumstances? Talk to us

4217-214

10% quizzes and participation

• Recitation participation counts toward your participation grade
• Lecture has in-class quizzes

4317-214

Summary

• Software engineering requires decisions, judgment
• Good design follows a process
• You will get lots of practice in 17-214!

117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to course
infrastructure

Michael Hilton Bogdan Vasilescu

317-214

1) This is not a
Java course

but you will
write a lot of

Java code

417-214

1) This is secretly a
Java course

More on Thursday

617-214

2) This is not a
tools course
but you will use a lot of
software development

tools

717-214

2) This is secretly a
tools course

817-214

DevOps Toolchain

https://marketplace-cdn.atlassian.com/s/f01dfe0a9e6d2f8a1d1bada432a8914f126aea8b/public/devops-hero.png

917-214

A DevOps Definition

• “DevOps is a set of practices
intended to reduce the time
between committing a
change to a system and the
change being placed into
normal production, while
ensuring high quality.”

1017-214

@Facebook

1117-214

@Google

1317-214

You will need for homework 1

• Java (+Eclipse/IntelliJ): more on Thursday

• Version control: Git

• Hosting: GitHub

• Build manager: Gradle

• Continuous integration service: Travis-CI

1417-214

What is version control?

• System that records changes to a set of files over

time

– Revert files back to a previous state

– Revert entire project back to a previous state

– Compare changes over time

– See who last modified something that might be

causing a problem

• As opposed to:

hw1.java hw1_v2.java hw1_v3.java

hw1_final.java hw1_final_new.java …

1517-214

Brief timeline of VCS

• 1982: RCS (Revision Control System), still maintained
• 1990: CVS (Concurrent Versions System)
• 2000: SVN (Subversion)
• 2005: Bazaar, Git, Mercurial

Git
• Developed by Linus Torvalds, the creator of Linux
• Designed to handle large projects like the Linux kernel

efficiently
– Speed
– Thousands of parallel branches

1617-214

Highly recommended

https://git-scm.com/book/en/v2

• (second) most useful life skill
you will have learned in 214

1717-214

Centralized version control

• Single server that
contains all the
versioned files

• Clients check out/in
files from that central
place

• E.g., CVS, SVN
(Subversion), and
Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

1817-214

SVN

Server (truth)

Clients

Network

svn checkout

1917-214

SVN

Server (truth)

Clients

Network

svn commit

2017-214

SVN

Server (truth)

Clients

Network

svn update

2117-214

SVN

Server (truth)

Clients

Network

svn commit: FAIL

2217-214

SVN

Server (truth)

Clients

Network

svn update

2317-214

SVN

Server (truth)

Clients

Network

svn update: CONFLICT

2417-214

Centralized version control

• Advantages:
– Everyone knows what everyone else is doing

(mostly)
– Administrators have more fine-grained control

• Disadvantages:
– Single point of failure
– Cannot work offline
– Slow
– Does not scale

• Easier to lose data
• Incentive to use version

control sparingly
• Tangled instead of

atomic commits

2917-214

Git

Server (truth)

Git is distributed. There is not one server …

3017-214

Git
… but many

3117-214

Git
Actually there is one server per computer

3217-214

Git
Every computer is a server and version
control happens locally.

3317-214

Distributed version control

• Clients fully mirror the
repository
– Every clone is a full

backup of all the data

• Advantages:
– Fast, works offline,

scales
– Better suited for

collaborative workflows

• E.g., Git, Mercurial,
Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

3417-214

SVN (left) vs. Git (right)

• SVN stores changes to a base
version of each file

• Version numbers (1, 2, 3, …)
are increased by one after
each commit

• Git stores each version as a
snapshot

• If files have not changed, only a
link to the previous file is
stored

• Each version is referred by the
SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

3517-214

Git

git commit

How do you share code with collaborators if
commits are local?

3617-214

Git

git push git pull

git push

… But requires host names / IP addresses

You push your commits into their
repositories / They pull your commits into
their repositories

3717-214

GitHub typical workflow
GitHub

Public repository where you make your changes public

3817-214

GitHub typical workflow
GitHub

git commit

3917-214

GitHub typical workflow
GitHub

git commit

4017-214

GitHub typical workflow
GitHub

git push

push your local changes into a remote repository.

4117-214

GitHub typical workflow
GitHub

git push

Collaborators can push too if they have access rights.

4217-214

GitHub typical workflow
GitHub

git pull

Without access rights, “don’t call us, we’ll call you” (pull from
trusted sources) … But again requires host names / IP addresses.

4317-214

GitHub typical workflow
GitHub

git push

“Main” “Forks”

Instead, people maintain public remote “forks” of “main”
repository on GitHub and push local changes.

4417-214

GitHub typical workflow
GitHub

Pull
Request

“Main” “Forks”

Availability of new changes is signaled via ”Pull Request”.

4517-214

GitHub typical workflow
GitHub

git pull
“Main” “Forks”

Changes are pulled into main if PR accepted.

4617-214

214 workflow
GitHub“Main”

Your local “clone” TA’s “clone”

You push homework solutions; pull recitations, homework
assignments, grades. TAs vice versa

4717-214

You will need for homework 1

• Java (+Eclipse/IntelliJ): more on Thursday

• Version control: Git

• Hosting: GitHub

• Build manager: Gradle

• Continuous integration service: Travis-CI

4917-214

Build Manager

• Tool for scripting the automated steps
required to produce a software artifact, e.g.:
– Compile Java source files into class files
– Compile Java test files
– Run JUnit tests
– If all tests pass, package compiled classes into .jar

file.

5017-214

Aside: Java virtual machine

http://images.slideplayer.com/21/6322821/slides/slide_9.jpg

5117-214

Types of Build Managers

• IDE project managers (limited functionality)
• Dependency-Based Managers
– Make (1977)

• Task-Based Managers
– Ant (2000)
– Maven (2002)
– Ivy (2004)
– Gradle (2012)

5217-214

Dependency-Based Managers
• Dependency graph:
– Boxes: files
– Arrows: dependencies;

“A depends on B”: if B is
changed, A must be
regenerated

• Build manager (e.g.,
Make) determines min
number of steps
required to rebuild after
a change.

5317-214

Task-Based Managers: Ant

• Disadvantages of Make:
– Not portable (system-

dependent commands,
paths, path lists)

– Low level (focus on individual files)

• Ant:
– Focus on task dependencies
– Targets (dependencies) described

in build.xml

5417-214

Task-Based Managers: Maven

• Maven:
– build management (like Ant),
– and dependency management (unlike Ant)

• Can express standard project layouts and
build conventions (project archetypes)

• Still uses XML (pom.xml)

5517-214

Organizing a Java Project

(Project root)

Optional: Sub-
Project

src

main

java resources

test

java resources

target

Optional: Sub-
Project ...

Derived (does not go
into version control),
e.g., compiled Java

Actual
source code

Everything
below src/main
gets deployed,
i.e., no tests

README.md, LICENSE.md,
version control, configuration
management

5617-214

Task-Based Managers: Gradle

• Combines the best of Ant and Maven

• From Ant keep:

• Portability: Build commands described platform-independently

• Flexibility: Describe almost any sequence of processing steps

• … but drop:

• XML as build language, inability to express simple control flow

• From Maven keep:

• Dependency management

• Standard directory layouts & build conventions for common

project types

• … but drop:

• XML, inflexibility, inability to express simple control flow

5717-214

You will need for homework 1

• Java (+Eclipse/IntelliJ): more on Thursday

• Version control: Git

• Hosting: GitHub

• Build manager: Gradle

• Continuous integration service: Travis-CI

5917-214

Continuous Integration

• Version control with central “official” repository. Run:
– automated builds & tests (unit, integration, system,

regression) with every change (commit / pull request)

– Test, ideally, in clone of production environment

– E.g., Jenkins (local), Travis CI (cloud-based)

• Advantages:
– Immediate testing of all changes

– Integration problems caught early and fixed fast

– Frequent commits encourage modularity

– Visible code quality metrics motivate developers

– (cloud-based) Local computer not busy while waiting for build

• Disadvantages:
– Initial effort to set up

6017-214

Travis CI

• Cloud-based CI service; GitHub integration

– Listens to push events and pull request events and

starts “build” automatically

– Runs in virtual machine / Docker container

– Notifies submitter of outcome; sets GitHub flag

• Setup: project top-level folder .travis.yml

– Specifies which environments to test in (e.g., jdk

versions)

6117-214

You will need for homework 1

• Java (+Eclipse/IntelliJ): more on Thursday

• Version control: Git

• Hosting: GitHub

• Build manager: Gradle

• Continuous integration service: Travis-CI

