Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

()

17-214 1 Sorv
RESEARCH

Software is everywhere

17-214

amazon .r.

Search
Unlimited Instant Videcs.

MP3e & Cloud Prayer

‘Amazon Cloud Drive

Kindle

Appstore for Android

Digital Games & Software
Audible Audiotooks

Electronics & Computers
Home, Garden & Toois
Grocery, Heslth & Beauty

Ful Store Directory.

nest
oWy

IN20 MIN

Todsy's Desis G Cards Help

WP3Store Clowd Player CloudDrive Kindie (A8

kindle fire Ho

The ultimate HD experience

hite, from $119 > Shop now

ool Wooden Sieds 5o

THE AMAZON SHOE STORE

Floxi
oppr
from New

de Amazon Prime

STAYING

g

OWER

> Shop At

> Shop Al Shoes

FREE TWO-DAY SHIPPIN
FOR COLLEGE STUDENTS
>Leammare

institute for
SOFTWARE
RESEARCH

Growth of code and complexity over time

% of Functions

n System Year Performed in
Software
F-4 1960 8
A-7 1964 10
F-111 1970 20
F-15 1975 35 — .
=T T T Millions of Lines of Code (MLOC)
B-2 1990 63
F-22 2000 80 Vista
XP
Win 2000
NT 4
NT35
NT3.1

0 5 10 15 20 25 30 35 40 45 50 55

(informal reports)
institute for
17-214 3 oAt

institute for
SOFTWARE
RESEARCH

A Chris Murphy

Editor, InformationWeek

See more from this author

&

W Tweet ¢164| Edlke {548| [fJ) share| @ +1| 21| @ & Permalink

Why Ford Just Became A Software
Company

Ford is upgrading its in-vehicle software on a huge scale, embracing all the customer expectations
and headaches that come with the development lifecycle.

@B Comments | Chris Murphy | November 14,2011 09:31 AM

Sometime early next year, Ford will mail USB sticks to about 250,000 owners of vehicles with its advanced
touchscreen control panel. The stick will contain a major upgrade to the software for that screen. With it,
Ford is breaking from a history as old as the auto industry, one in which the technology in a car essentially
stayed unchanged from assembly line to junk yard.

Ford is significantly changing what a driver or passenger experiences in its cars years after they're built. And
with it, Ford becomes a software company--with all the associated high customer expectations and
headaches.

Principles of Software Construction:
Objects, igm, ncurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

()

17-214 7 Sor At
RESEARCH

primes graph search

binary tree

GCD

sorting

nest
vy

IN20 MIN

_

[* -;:[-jyui -ee
- i, T

AMAZON oprcr oo s o

Search

‘x"

o Sign in s 0 wan
Vour Aceount + prime~ Ydcan~ List+

FREE TWO-DAY SHIPPIN
FOR COLLEGE STUDENTS
>Leammare

Unlimited Instant Videcs.
MP3e & Cloud Prayer

loud Player Clowd Drive Kindle (APPStore Dlpial G
Cloud Player Cloud D for kndroid 5.

kindle fire Ho

The ultimate HD experience

from $119>Shop now

ool Wooden Sleds Shoe Trends Amazon Prime

STAYING POWER

17-214 - BSEA
RESEARCH

From programs to systems

Writing algorithms, data Reuse of libraries,
structures from scratch frameworks

Functions with inputs Asynchronous and
and outputs reactive designs

Sequential and local jl> Parallel and distributed
computation computation

Full functional jl> Partial, composable,
specifications targeted models

Our goal: understanding both the building blocks and the
design principles for construction of software systems

[J
_
17-214 o [Hi 5
RESEARCH

Principles of Software Construction:
Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

[)
institute for
17-214 10 oAt

Objects in the real world

°
institute for
17-214 11 SO

Object-oriented programming

* Programming based on structures
that contain both data and methods

public class Bicycle {
private final Wheel frontWheel, rearWheel;
private final Seat seat;
private int speed;

public Bicycle(..) { .. }

public void accelerate() {
speed++;

¥

public int speed() { return speed; }
}

°
institute for
17-214 12 SO

Principles of Software Construction:
Objectnd Concurrency

Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

[)
institute for
17-214 13 oAt

Semester overview

* Introduction to Java and O-O
* Introduction to design

— Design goals, principles, patterns
e Designing classes

— Design for change

— Design for reuse
e Designing (sub)systems

— Design for robustness

— Design for change (cont.)
* Design case studies
e Design for large-scale reuse
e Explicit concurrency

17-214

Crosscutting topics:

— Modern development tools:
IDEs, version control, build
automation, continuous
integration, static analysis

— Modeling and specification,
formal and informal

— Functional correctness: Testing,
static analysis, verification

institute for
SOFTWARE
1 4 RESEARCH

Sorting with a configurable order, version A

static void sort(int[] 1list, boolean ascending) {

boolean mustSwap;
if (ascending) {

mustSwap = list[i] > list[j];
} else {

mustSwap = list[i] < list[j];
}

°
institute for
17-214 15 SO

Sorting with a configurable order, version B

interface Order {
boolean lessThan(int i, int j);

}

class AscendingOrder implements Order {
public boolean lessThan(int i, int j) { return i < j; }

¥

class DescendingOrder implements Order {
public boolean lessThan(int i, int j) { return i > j; }

¥

static void sort(int[] list, Order order) {

boolean mustSwap =
order.lessThan(list[j], 1list[i]);

°
institute for
17-214 16 SO

Sorting with a configurable order, version B’

interface Order {
boolean lessThan(int i, int j);

¥

final Order ASCENDING (i, j) -> 1 < J;
final Order DESCENDING = (i, j) -> 1 > j;

static void sort(int[] list, Order order) {

boolean mustSwap =
order.lessThan(list[j], list[i]);

°
institute for
17-214 17 SO

Which version is better?

Version A:

static void sort(int[] list, boolean ascending) {

boolean mustSwap;
if (ascending) {

mustSwap = list[i] > list[j];
} else {

mustSwap = list[i] < list[j];

} interface Order {
) " boolean lessThan(int i, int j);
}
final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

Version B':
static void sort(int[] list, Order order) {

boolean mustSwap =

order.lessThan(list[j], list[i]);

17-214 18 [FYf e

RESEARCH

It depends?

°
institute for
17-214 19 SO

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information

processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

institute f
17-214 20

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software engineering entails making decisions under
constraints of limited time, knowledge, and resources...

Engineering quality resides in engineering judgment...

Quality of the software product depends on the engineer’s
faithfulness to the engineered artifact...

Engineering requires reconciling conflicting constraints...

Engineering skills improve as a result of careful systematic
reflection on experience...

Costs and time constraints matter, not just capability...

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

°
institute for
17-214 21 SO

Goal of software design

* For each desired program behavior there are infinitely many
programs
— What are the differences between the variants?
— Which variant should we choose?
— How can we create a variant with desired properties?

institute for
17-214 22 SO

Metrics of software quality, i.e., design goals

Functional
correctness

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214

Adherence of implementation to the specifications

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security
Source: Braude, Bernstein,

Software Engineering. Wiley 2011

institute for
SOFTWARE
23 RESEARCH

A typical Intro CS design process

Discuss software that needs to be written
Write some code

Test the code to identify the defects
Debug to find causes of defects

Fix the defects

If not done, return to step 1

o U sE wh e

°
institute for
17-214 24 SO

Better software design

* Think before coding: broadly consider quality attributes
— Maintainability, extensibility, performance, ...

* Propose, consider design alternatives
— Make explicit design decisions

°
institute for
17-214 25 SO

Using a design process
* A design process organizes your work

* A design process structures your understanding

* A design process facilitates communication

°
institute for
17-214 26 SO

Preview: Design goals, principles, and patterns

* Design goals enable evaluation of designs
— e.g. maintainability, reusability, scalability

* Design principles are heuristics that describe best practices

— e.g. high correspondence to real-world concepts

* Design patterns codify repeated experiences, common solutions

— e.g. template method pattern

°
institute for
17-214 27 SO

Principles of Software Construction:
Objects, Design, an o@
Part 1: Introduction

Course overview and introduction to software design

Michael Hilton Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

°
institute for
17-214 28 SO

Concurrency

* Roughly: doing more than one thing at a time

°
institute for
17-214 29 SO

Summary: Course themes

* Object-oriented programming
* Code-level design

* Analysis and modeling

* Concurrency

°
institute for
17-214 30 SO

Software Engineering (SE) at CMU

17-214: Code-level design

— Extensibility, reuse, concurrency, functional correctness

 17-313: Human aspects of software development

— Requirements, teamwork, scalability, security, scheduling, costs, risks,
business models

e 17-413 Practicum, 17-415 Seminar, Internship

e Various courses on requirements, architecture, software analysis,
SE for startups, etc.

e SE Minor: http://isri.cmu.edu/education/undergrad

17-214 31 ., 157 B

RESEARCH

http://isri.cmu.edu/education/undergrad/

COURSE ORGANIZATION

[)
institute for
17-214 32 [I)J sormvace

Preconditions

 15-122 or equivalent
— Two semesters of programming
— Knowledge of C-like languages

e 21-127 or equivalent
— Familiarity with basic discrete math concepts
* Specifically:
— Basic programming skills
— Basic (formal) reasoning about programs
* Pre/post conditions, invariants, formal verification
— Basic algorithms and data structures
* Lists, graphs, sorting, binary search, etc.

°
institute for
17-214 33 SO

Learning goals

* Ability to design and implement medium-scale programs
* Understanding OO programming concepts & design decisions

* Proficiency with basic quality assurance techniques for
functional correctness

* Fundamentals of concurrency
* Practical skills

°
institute for
17-214 34 SO

Course staff

* Michael Hilton ‘ 7§ -
mhilton@cmu.edu A [
Wean 5122 > N,

* Bogdan Vasilescu Vs
vasilescu@cmu.edu s
Wean 5115 '

v W

* Teaching assistants:
Ari, Alice, Henry, Lily, Michelle, Nick, Shruti, Rick, Ruby, Yang

°
institute for
17-214 35 SO

mailto:mhilton@cmu.edu
mailto:vasilescu@cmu.edu

Course meetings

Smoking
Section

* Lectures: Tuesday and Thursday, 3:00 —4:20pm, DH A302

— Electronic devices discouraged

* Recitations: Wednesdays 9:30 - ... - 2:20pm

— Supplementary material, hands-on practice, feedback
— Bring your laptop

* Office hours: see course web page

17-214

— http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/

Recitation
attendance
is required

°
institute for
SOFTWARE
3 6 RESEARCH

http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/

Infrastructure

* Course website: http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/
— Schedule, office hours calendar, lecture slides, policy documents

* Tools
— Git, Github: Assignment distribution, hand-in, and grades
— Piazza: Discussion board
— Intelli) or Eclipse: Recommended for code development (other IDEs are fine)
— Gradle, Travis-Cl, Checkstyle, Findbugs: Practical development tools
* Assignments
— Homework 1 available tomorrow

 First recitation is tomorrow

— Introduction to Java and the tools in the course
— Install Git, Java, some IDE, Gradle beforehand

institute for
17-214 37 SO

http://www.cs.cmu.edu/~mhilton/classes/17-214/s19/

Textbooks

* Required course textbooks (electronically
available through CMU library):

— Joshua Bloch. Effective Java, Third Edition.
Addison-Wesley, ISBN 978-0-13-468599-1.

— Craig Larman. Applying UML and Patterns. 3™
Edition. Prentice Hall, ISBN 978-0321356680.

e Additional readings on design, Java, and
concurrency on the course web page

17-214

e -
jown 9

Effective Java

Third Edition

APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Iterative Development

CRAIG 1

institute for
SOFTWARE
38 RESEARCH

Approximate grading policy

* 50% assignments

e 20% midterms (2 x 10% each)
* 20% final exam

* 10% quizzes and participation

This course does not have a fixed letter grade policy; i.e., the final
letter grades will not be A=90-100%, B=80-90%, etc.

°
institute for
17-214 39 SO

Collaboration policy (also see the course syllabus)

 We expect your work to be your own

— You must clearly cite external resources so that we can evaluate your own
personal contributions.

* Do not release your solutions (not even after end of semester)
* Ask if you have any questions
* |f you are feeling desperate, please mail/call/talk to us

— Always turn in any work you've completed before the deadline
 We use cheating detection tools

* You must sign and return a copy of the collaboration policy
before we will grade your work: https://goo.gl/CBXKQK

°
institute for
17-214 a0 SO

https://goo.gl/CBXKQK

Late day policy

* You may turn in each* homework up to 2 days late

* You have five free late days per semester
— 10% penalty per day after free late days are used

* We don't accept work 3 days late
* See the syllabus for additional details
* Got extreme circumstances? Talk to us

°
institute for
17-214 a1 SO

10% quizzes and participation

e Recitation participation counts toward your participation grade
* Lecture has in-class quizzes

°
institute for
17-214 a2 SO

Summary
e Software engineering requires decisions, judgment

* Good design follows a process
* You will get lots of practice in 17-214!

°
institute for
17-214 a3 SO

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to course
infrastructure

Michael Hilton Bogdan Vasilescu

eeeeeeeeeeeeeee

L
institute for
I S SOFTWARE
RESEARCH = INstitute Fuv
- H

17-214

1) Thisis not a
Java course

but you will
write a lot of
Java code

1) This Is secretly a
Java course

More on Thursday

= INstitute [()i
17-214 a |NY§ o

2) This is not a
tools course

but you will use a lot of
software development
tools

-
INstitute)i
17-214 6 |[IY sorrvare

2) This Is secretly a
tools course

= INstitute [()i
17-214 7 Y} sorrvare

DevOps Toolchain

. _ NN
3% @ HashiCorp “i;ramazon e

ANSIBLE

o PivotalTrack
sasana) dw;cz racker T Cit
“ ucidchart @ .
o @ Jenkins) [: -
‘ o w Travis CI Ml Azure
(i Platform 74

circleci
Oouglc Cloud Platfo

draw.io l x)
X *planio
Flowdock Wri CODESHIP buddy
Google Drive rike < Spllt XL) RELEASE o
‘/ G Office Googlebocs XL) DEPLOY
smatsheet <fr gliffy puppet cyer
Basecam g
2 P Q & () rackspace
mﬁ'd[& Drophox 5}7
e | . :Z {5‘ OpsGenie *
|. Microsoft Teams § VictorOps
matters’ E __ pagerduty
' z00minfo. 3,2 BlueJeans 4% slack
v O New Relic. u snyk
w bugsnag Nagios’

splunk> L@GGLY

GitLa
23 RAYGUN
dynatrace

@ SAUCELABS I T F
U estFairy

N SENTRY $ 22

bigpanda

A
JFrog npm —
= @)FitNesse
B runnable
Github . nede . - zendesk (%9 Jasmine jer
kubernetes dOCer itHu iNTercom E36XELJCRM @
.._cucumber riRollbar APPDYNAMICS
e = Z=PHYR @ BrowserStack ¢
\T/;sal:gléotg(r!‘:?ationServer = Sonatype - - [:]SoucceClear LogicMonitor
_ P :
@freshdesk QMETRY @ QASymphony %4 OMNI
https://marketplace-cdn.atlassian. com/s/fOldfe0a9e6d2f8a1d1bada432a8914f126aea8b/pubI|c/devops hero.png
institute for
8

17-214

A DevOps Definition

“DevOps is a set of practices
intended to reduce the time
between committing a
change to a system and the
change being placed into
normal production, while
ensuring high quality.”

17-214

\lrtsl’;t

én Bass

A [FIngo Weber

Liming Zhu

o 2 for
9 SOFTWARE
RESEARCH

@Facebook

Weekly web branch

10000
8000

6000

Diffs

4000

2000

0
13-Jan 13-Jun 13-Nov 14-Mar 14-Aug 15-Jan 15-May 15-Sep 16-Feb 16-Jun

institute for

-
SOF TWARE
10 I Sr RESEARCH

Google repository statistics

Total number of files*
Number of source files
Lines of code

Depth of history

Size of content

Commits per workday

1 billion

9 million

2 billion

35 million commits
86 terabytes

45 thousand

*The total number of files includes source files copied into release branches, files that are deleted at the latest revision, configuration files, documentat

11

ion, and supporting data files

institute for
SOFTWARE
RESEARCH

You will need for homework 1

 Java (+Eclipse/Intelli]): more on Thursday

e Version control: Git
* Hosting: GitHub
* Build manager: Gradle

o’ gradle

* Continuous integration service: Travis-Cl

Lana))

Travis Cl

_a»

= Institute F(I
17-214 13 [N sorvese

What is version control?

e System that records changes to a set of files over
time
— Revert files back to a previous state
— Revert entire project back to a previous state
— Compare changes over time

— See who last modified something that might be
causing a problem

* As opposed to:

hwl.java hwl v2.java hwl v3.java

hwl final.java hwl final new.java

e for

17-214 10 [0 o

Brief timeline of VCS

1982: RCS (Revision Control System), still maintained
1990: CVS (Concurrent Versions System)

2000: SVN (Subversion)

2005: Bazaar, Git, Mercurial

Git
 Developed by Linus Torvalds, the creator of Linux

* Designed to handle large projects like the Linux kernel
efficiently

— Speed
— Thousands of parallel branches

17-214 T | S [F

Highly recommended

SECOND EDITION

 (second) most useful life skill
you will have learned in 214

Pro

(it

EVERYTHING YOU NEED TO
KNOW ABOUT GIT

Scott Chacon and Ben Straub

Apress

https://git-scm.com/book/en/v2

= Institute F(|
17-214 16 sorm:

Centralized version control

* Single server that
contains all the

Vers'oned flles Eo— Central VCS Server
* Clients check out/in &€& T
files from that central version 3
p ace Version 2
Computer B ‘

 E.g., CVS, SVN
(Subversion), and
Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

= Institute F(I
17-214 17 sormuase

SVN

- Server (truth)

svn checkout

Network

Clients

_ @ PRy institute for
17-214 18 sortins:

SVN

- Server (truth)

svn commit
Network

Clients

% PRy institute for
17-214 10 [l

SVN

- Server (truth)

svn update

Network

Clients

% PRy institute for
17-214 20 [HH o

SVN

- Server (truth)

Network

svn commit: FAIL

Clients

_ = @ PRy institute for
17-214 21 sortins:

SVN

- Server (truth)

Network
svn update
Clients

% PRy institute for
17-214 22 [H s

SVN

- Server (truth)

Network

svn update: CONFLICT

Clients

_ = @ PRy institute for
17-214 23 sortins:

Centralized version control

* Advantages:

— Everyone knows what everyone else is doing
(mostly)

— Administrators have more fine-grained control

* Disadvantages:
e Easier to lose data

* Incentive to use version

— Cannot work offline control sparingly

 Tangled instead of
atomic commits

— Single point of failure

— Slow

— Does not scale

17-214 24 [HI o

Git is distributed. There is not one server ...

- Server (truth)

Git

' PRy institute for
17-214 20 [l

... but many

Git

Py institute for
SOFTWARE
RESEARCH

17-214 30

Actually there is one server per computer

o= insti for
_ (:,\ P institute
17-214 31 sormme

Every computer is a server and version
Git control happens locally.

insti for
= @ P rns% tute
17-214 32 SOt

Distributed version control

* Clients fully mirror the Server Conputer
repository —
— Every clone is a full Version 2
backup of all the data
* Advantages: : \
— Fast, works offline, , ‘
Scales Computer A Computer B
— Better suited for — —
collaborative workflows version Database [| version patabase
* E.g., Git, Mercurial,
Ba Zaa r Version 1 Version 1

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

institute for

17-214 33 |NY§ sormvax

SVN (left) vs. Git (right)

Checkins Over Time Checkins Over Time

File A A1 A2 File A Al Al A2 A2
File B Al 02 File B B B Bl B2

File C Al 02 A3 File C (1 Q2 Q2 a3

 SVN stores changes to a base * Git stores each version as a
: : snapshot
version of each file * |If files have not changed, only a
* Version numbers (1, 2, 3, ...) link to the previous file is
are increased by one after stored
each commit e Each version is referred by the

SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

institute for
17-214 34 ot

How do you share code with collaborators if
Git commits are local?

git commit

X PPJ institute for
17-214 35 [Hl o

You push your commits into their
G |t repositories / They pull your commits into
their repositories

git push

... But requires host names / IP addresses

-
institute for
17-214 36

GitHub typical workflow

Public repository where you make your changes public

GitHub

= institute tor
17-214 37 [B)J sormvax

GitHub typical workflow

GitHub

git commit

= institute tor
17-214 38 |NJf sormvar

GitHub typical workflow

GitHub

git commit

= institute tor
17-214 39 |NJf sormvak

GitHub typical workflow -

git push

push your local changes into a remote repository.

F()Y

= institute
17-214 a0 AN s

GitHub typical workflow S

Collaborators can push too if they have access rights.

F()Y

= institute
17-214 SR | S [Fetsiy

GitHub typical workflow -

\ . \\\
v git pull "~

Without access rights, “don’t call us, we’ll call you” (pull from
trusted sources) ... But again requires host names / IP addresses.

institute for
17-214 42 softns

GitHub typical workflow S

“Forks”

“Main”

git push

Instead, people maintain public remote “forks” of "main”
repository on GitHub and push local changes.

X e for
17-214 43 SO

Availability of new changes is signaled via “Pull Request”.

17-214 44 i S r gg}if[Tu\sgAR)é

RRRRRRRR

Changes are pulled into main if PR accepted.

= institute tor
17-214 as YN s

214 workflow

I\\

Your local “clone” TA's “clone”
You push homework solutions; pull recitations, homework
assignments, grades. TAs vice versa

institute for
17-214 a6 softis

You will need for homework 1

 Java (+Eclipse/Intelli]): more on Thursday

* Build manager: Gradle

o’ gradle

* Continuous integration service: Travis-Cl

Lana))

Travis Cl

_a»

= Institute F(I
17-214 a7 sormuase

Build Manager

* Tool for scripting the automated steps
required to produce a software artifact, e.g.:
— Compile Java source files into class files
— Compile Java test files
— Run JUnit tests

— If all tests pass, package compiled classes into .jar
file.

17-214 o [Hii

Aside: Java virtual machine

ac

S . 4 Unix
N\

Windows

Source Java Byte JVM
Code Compiler Code (interpreter)
(.java file) (.class file)

http://images.slideplayer.com/21/6322821/slides/slide_9.jpg

institute for
17-214 so LISIN s

Types of Build Managers

* |DE project managers (limited functionality)

* Dependency-Based Managers
— Make (1977)

* Task-Based Managers
— Ant (2000)
— Maven (2002)
— vy (2004)
— Gradle (2012)

-
institute for
17-214 |S [s

Dependency-Based Managers
* Dependency graph:

jar

— Boxes: files !
. TS T T T T T e - |
— Arrows: dependencies; |
“A depends on B”: if Biis code2HTML.class
chan ge d. A must be CppJavaScanner.class
V4

regenerated | o -
javac
|
I

* Build manager (e.g., '
Make) determines min bommmmmmmm s
|
number of steps fx
required to rebuild after T

@ change

. institute for
17-214 52 sorTe

Task-Based Managers: Ant

* Disadvantages of Make: - o (G)

— Not portable (system- :
dependent commands, ~ ----------f T

paths, path lists)
— Low level (focus on individual files)

T At *

— Focus on task dependencies !

— Targets (dependencies) described

in build.xml

17-214 s3 [s

Task-Based Managers: Maven

* Maven:
— build management (like Ant),

— and dependency management (unlike Ant)

e Can express standard project layouts and
build conventions (project archetypes)

e Still uses XML (pom.xml)

17-214 54

Organizing a Java Project

README.md, LICENSE.md,
version control, configuration

management \\u (Project root)]
|

)))
Optional: Sub- Optional: Sub-
Everything Project Project
1

below src/main |

gets deployed, ' L ()) _
i.e., no tests u src] L target |~ Derived (does not go

: I — ’into version control),
) L L e.g., compiled Java
main] test

\

1)] 1
u java] u resources] u java] u resources]

Actual
source code
Institute For

17-214 s5 (TN sormes

]

Task-Based Managers: Gradle

e Combines the best of Ant and Maven

* From Ant keep:

e Portability: Build commands described platform-independently
* Flexibility: Describe almost any sequence of processing steps

... but drop:

e XML as build language, inability to express simple control flow

* From Maven keep:

* Dependency management

e Standard directory layouts & build conventions for common
project types

e ...butdrop:
* XML, inflexibility, inability to express simple control flow
17-214 s [B i

You will need for homework 1

 Java (+Eclipse/Intelli]): more on Thursday

® Blli A rmanacor: CGradln
AlTI\A IIIUIIUB\—I . d'uu N

o’ gradle

* Continuous integration service: Travis-Cl

Lana))

Travis Cl

_a»

17-214 57 [EJH soivess

Continuous Integration

I o I”

* Version control with central “official” repository. Run:

— automated builds & tests (unit, integration, system,
regression) with every change (commit / pull request)

— Test, ideally, in clone of production environment
— E.g., Jenkins (local), Travis Cl (cloud-based)

 Advantages:
— Immediate testing of all changes
— Integration problems caught early and fixed fast
— Frequent commits encourage modularity
— Visible code quality metrics motivate developers
— (cloud-based) Local computer not busy while waiting for build

* Disadvantages:
— Initial effort to set up

2 Institute F« I
17-214 59 sormunse

Commits on Jan 17, 2017

..? missing import

° ~
TraVI S C I v 2 bvasiles committed 7 hours ago X

..? testing Travis

bvasiles committed 7 hours ago X

* Cloud-based Cl service; GitHub integration

— Listens to push events and pull request events and
starts “build” automatically

— Runs in virtual machine / Docker container

— Notifies submitter of outcome; sets GitHub flag

* Setup: project top-level folder .travis.yml

— Specifies which environments to test in (e.g., jdk
versions)

2 Institute F(I
17-214 60 sormunse

You will need for homework 1

 Java (+Eclipse/Intelli]): more on Thursday

o’ gradle

17-214 o [N i

