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Abstract
Extended resolution shows that auxiliary variables are very powerful in theory. However, attempts

to exploit this potential in practice have had limited success. One reasonably effective method in this
regard is bounded variable addition (BVA), which automatically reencodes formulas by introducing
new variables and eliminating clauses, often significantly reducing formula size. We find motivating
examples suggesting that the performance improvement caused by BVA stems not only from this
size reduction but also from the introduction of effective auxiliary variables. Analyzing specific
packing-coloring instances, we discover that BVA is fragile with respect to formula randomization,
relying on variable order to break ties. With this understanding, we augment BVA with a heuristic
for breaking ties in a structured way. We evaluate our new preprocessing technique, Structured BVA
(SBVA), on more than 29 000 formulas from previous SAT competitions and show that it is robust to
randomization. In a simulated competition setting, our implementation outperforms BVA on both
randomized and original formulas, and appears to be well-suited for certain families of formulas.
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1 Introduction

Pre-processing techniques that introduce and eliminate auxiliary variables have been shown
to be helpful both in theory and practice. Theoretically, auxiliary variables lift the power of
solvers from the resolution proof system to Extended Resolution (ER) [23, 8, 11]. In practice,
efforts to exploit this full power of ER have had limited success; however, auxiliary variables
have been used to reencode formulas in a way that drastically reduces their size [4, 2, 15],
often leading to a decreased solve time. In this work we show that this speedup may not be
caused entirely by the reduction in formula size, but by the introduction of certain effective
auxiliary variables.
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10:2 Effective Auxiliary Variables via Structured Reencoding

A very powerful pre-processing technique is Bounded Variable Elimination (BVE) [9]. As
its name suggests, it eliminates a variable x by resolving each clause containing a literal x

with every clause containing literal x. Importantly, BVE only performs such an elimination
if it helps reduce the formula size (measured as the number of clauses plus the number of
variables). A pre-processing technique that introduces new auxiliary variables is Bounded
Variable Addition (BVA) [15], which is the focus of this article. It is well known that the
introduction of auxiliary variables is crucial for many succinct encodings (e.g., the Tseitin
transformation [23], or cardinality constraints [20, 14]). Following the intuition of BVE, BVA
will only introduce a new variable if it can eliminate a larger number of clauses than it adds.

Auxiliary variables may not only be useful to reduce the size of a formula, but they
can also capture some semantic meaning about the underlying problem to encode, as we
detail in Section 3. As a case study, we consider a recent encoding used by Subercaseaux
and Heule for computing the packing chromatic number of the infinite square grid via SAT
solving [22]. In their work, BVA was found to generate auxiliary variables that represented
clusters of neighboring vertices of the grid. The encoding resulting from running BVA
on a direct encoding of the problem inspired a more efficient encoding, by suggesting the
usefulness of having auxiliary variables capturing clusters of vertices. In this paper, we offer
new insight into this “meaningful variables” phenomenon, which we believe can generalize
to other problems as well. Furthermore, even though the reencoding resulting from BVA
suggested meaningful new variables for the packing coloring problem, it was not as effective
as manually designing a more structured encoding based on some of those variables. We take
this as motivation to identify shortcomings of BVA and improve upon its design.

In general, on problems where BVA is effective, the effect tends to be extreme. BVA
is able to reduce the number of clauses by a ×10 factor or more, improving solve time by
orders of magnitude. However, in this paper, we find that this reduction in solve time is
highly sensitive to randomly scrambling the formula (even when controlling for how CDCL
solvers are generally sensitive to this form of randomization [3]). In particular, randomizing
the order of variables and clauses prior to BVA substantially reduces the positive effect of
BVA on solve time, despite maintaining the same overall reduction in formula size. Using the
packing k-color problem, we show that the effectiveness of BVA relies on the introduction of
a few specific variables that account for only a small fraction of the reduction in formula
size. Moreover, we identify that the lack of effective tie-breaking in BVA is the cause of
this high sensitivity to randomization. Inspired by these new insights into the behavior of
BVA, we present SBVA (Section 4), a version augmented with a tie-breaking heuristic that
enables it to introduce better auxiliary variables at each step, even when the original formula
is randomized. Our heuristic is based on a connectivity measure between variables in the
incidence graph of CNF formulas, which is preserved under randomization of the formula. As
a result, SBVA is able to identify effective auxiliary variables even when the original formula
is scrambled. We evaluate our implementation by running it on more than 29 000 formulas
from the Global Benchmark Database [12]. Experimental results, presented in Section 5,
demonstrate that our approach outperforms the original implementation of BVA.

In summary, the main contributions of this article are:
1. We offer new insight into the behavior of BVA, by exhibiting its ability to introduce

effective auxiliary variables and showing its sensitivity to formula randomization.
2. We design SBVA, a heuristic-guided form of BVA, that introduces new variables in a way

that is robust to randomization.
3. We perform a large-scale evaluation of both BVA and SBVA on benchmark problems

from the SAT Competition and study their behavior on different families of instances.
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4. We release an open-source implementation of SBVA that supports DRAT proof logging.

2 Preliminaries

A literal is either a variable x, or its negation (x). A propositional formula in conjunctive
normal form (CNF) is a conjunction of clauses, which are themselves disjunctions of literals.
An assignment is a mapping from variables to truth values. A positive (negative) literal is
true if the corresponding variable is assigned to true (false, respectively). An assignment
satisfies a clause if at least one of its literals is true, and we say an formula is satisfied if all
of its clauses are. A formula is satisfiable (SAT) if there exists an assignment that satisfies it,
or unsatisfiable (UNSAT) otherwise. For example, the formula (x ∨ y) ∧ (x ∨ z) is made up
of two clauses, (x ∨ y) and (x ∨ z), each with two literals. This formula is satisfiable, since
the assignment of x and z to true and y to false satisfies it.

Auxiliary Variables. There can be many equivalent ways of encoding a problem into CNF,
differing in the meaning assigned to individual variables. Problems often have a direct
encoding, in which variables are assigned for each individual decision element present in a
problem. For example, in a direct encoding of graph coloring, there are k|V | variables, where
each vi,c represents whether node i has color c and k is the number of colors.

Although direct encodings are often the most intuitive, more efficient encodings are
known for a wide variety of problems. These encodings often add auxiliary variables to the
formula, which capture properties about a group of variables. One of the simplest examples
is an AtMostOne(x1, . . . , xn) constraint, which requires that at most one of the variables
x1, . . . , xn is true. Without adding auxiliary variables, this constraint requires Θ(n2) clauses,
which are typically binary clauses between every pair of variables [14]. However, with the
introduction of auxiliary variables, this constraint can be encoded in a linear number of
clauses and variables as follows [13]:

AtMostOne(x1, . . . , xn) = AtMostOne(x1, x2, x3, y) ∧AtMostOne(x4, . . . , xn, y) (1)

where the pairwise encoding is used for AtMostOne(x1, . . . , xn) where n < 4. The split
AtMostOne constraints require that at most one of {x1, x2, x3} is true, and at most one of
{x4, . . . , xn} is true, respectively. The added auxiliary variable y prevents a variable in both
of the groups from being true. The auxiliary variable y is forced false if any of x1, x2, or x3
are true, and forced true if any of x4, . . . , xn are false. If a literal from both groups is true,
the auxiliary variable y prevents the formula from being satisfiable.

Extended Resolution. Starting from the original formula, the Extended Resolution proof
allows only two simple rules:

1. Resolution: Given clauses C ∨ p and D ∨ p, add the clause C ∨D to the proof.
2. Extension: Define a new variable x as x↔ a ∨ b, where a and b are literals in the current

proof. Add the clauses x ∨ a, x ∨ b, and x ∨ a ∨ b to the proof.

In resolution, the clause C ∨D is implied by the first two clauses, resulting in a logically
equivalent formula. In extension, however, the introduction of a new variable x is not implied
by the original clauses, and results in a formula that preserves satisfiability and is only
logically equivalent over the original variables.

Using the extension rule, new variables can be defined in terms of existing variables. The
original rule defined by Tseitin [23] only allows for definitions of the form x ↔ a ∨ b, the
construction for which is given in the definition above. However, the extension rule can be

SAT 2023



10:4 Effective Auxiliary Variables via Structured Reencoding

applied repeatedly to construct variables corresponding to arbitrary propositional formulas
over the original variables. This flexibility is key to the success of Extended Resolution, but
it provides no guidance on how these extensions should be chosen.

Bounded Variable Addition. Bounded Variable Addition (BVA) [15] is a pre-processing
technique that reduces the number of clauses in a formula by adding new variables. Each
application of BVA first identifies a “grid” of clauses, as shown in Figure 1. Then, BVA adds
a new variable and clauses which resolve together to generate all clauses in the grid.

p
∨ q

p
∨ r

r ∨
s

t

a

b

1 2 3 4

5 6 7 8

L = {a, b}

P = {p ∨ q, p ∨ r, r ∨ s, t}

1 a ∨ p ∨ q

2 a ∨ p ∨ r

3 a ∨ r ∨ s

4 a ∨ t

5 b ∨ p ∨ q

6 b ∨ p ∨ r

7 b ∨ r ∨ s

8 b ∨ t

◦ x ∨ p ∨ q

◦ x ∨ p ∨ r

◦ x ∨ r ∨ s

◦ x ∨ t

◦ x ∨ a

◦ x ∨ b

Figure 1 Bounded variable addition transforms groups of clauses (those that form a grid) by
adding a new variable and eliminating a number of clauses.

Collectively, for a formula F , the grid constitutes a set of literals L and a set of partial
clauses P , such that ∀l ∈ L,∀C ∈ P : (l ∨ C) ∈ F . While bounded-variable elimination
eliminates variables by replacing all the clauses containing a variable with their resolvents,
BVA tries to identify grids of resolvents which can be generated by the introduction of a new
variable and a smaller number of clauses. These grids of clauses capture the fact that either
the entirety of L must be satisfied, or the entirety of P must be satisfied. More precisely,
F =⇒ (

∧
l∈L l)∨ (

∧
C∈P C). By identifying these grids, BVA replaces |L| · |P | clauses with a

single, new variable x and |L|+ |P | clauses (which can generate the original set by resolution
on x in {x ∨ C | C ∈ P} × {x ∨ l | l ∈ L}). Therefore, if |L| · |P | > |L|+ |P |+ 1, then this
replacement results in a reduction in formula size.

Note that a BVA replacement step can be simulated by extended resolution: First, add
the definition x↔ AND(L). In the example above, this means adding the clauses x ∨ a ∨ b,
x ∨ a, and x ∨ b. Afterwards, the clauses x ∨ p ∨ q, x ∨ p ∨ r, x ∨ r ∨ s, and x ∨ t can each be
derived using |L| resolution steps. For example, to derive x ∨ p ∨ q, resolve x ∨ a ∨ b with
a ∨ p ∨ q and the result with b ∨ p ∨ q. Afterward the clauses used in these resolution steps
can be deleted.

The SimpleBoundedVariableAddition algorithm. Manthey et al. [15] propose a greedy
algorithm to identify these grids of resolvents that prioritizes literals which appear in many
clauses called SimpleBoundedVariableAddition. An abbreviated version of a single
variable addition in this algorithm is shown in Algorithm 1.

Each identified grid starts from the most frequently occurring literal l in the current
formula. The grid starts with dimension 1× |Fl|, where Fl is the set of clauses containing l.
From there, the algorithm searches for a literal lmax to add to the grid, which maximizes the
number of remaining resolvents.

To identify the literal lmax, the BVA algorithm looks for the literal for which (lmax ∨ C)
appears in F for the greatest number of clauses C ∈ P (line 4). At each step, a literal is
added to L (line 6), and clauses may be removed from P (line 7). The grid will continue to
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Algorithm 1 A single variable addition in SimpleBoundedVariableAddition [15]

PartialClauses(F , l) := {C \ {l} | (C ∈ F ) ∧ (l ∈ C)}
F := the clauses in the current formula
l := a literal in F

1: L← {l}
2: P ← PartialClauses(F, l)
3: while True do
4: lmax = argmaxlm∈Lits(F ) |P ∩PartialClauses(F, lm)| ▷ Sensitive to tiebreaking
5: if adding lmax results in a greater reduction then
6: L← L ∪ {lmax}
7: P ← P ∩PartialClauses(F, lmax)
8: else
9: break

10: if |L| · |P | > |L|+ |P |+ 1 then ▷ If adding this variable would reduce the formula size
11: Sadd ← {x ∨ C | C ∈ P} ∪ {x ∨ lm | lm ∈ L} ▷ Introduce a new variable x

12: Sremove ← {li ∨ C | (li, C) ∈ L× P}
13: F ← (F \ Sremove) ∪ Sadd

shrink until the addition of a literal to the grid would not increase the size of the formula
reduction (line 5), as shown in Figure 2.
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P = {p ∨ q, p ∨ r, s ∨ t, u}
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R = 3− 4 = −1

Figure 2 BVA adds variables to form a grid, until the reduction stops increasing. Here, the
largest reduction was 1, and the variable corresponding to the middle grid will be added.

In BVA, variable additions are performed as long as there is a reduction in formula size.
The entirety of Algorithm 1 is repeated using different literals for l to construct multiple
new auxiliary variables. Specifically, the original implementation defines a priority queue of
literals ordered by the number of clauses each literal appears in. Our adaptation of BVA
(Section 4) reuses this implementation detail. These repeated applications of BVA enable
the algorithm to achieve large reductions in formula size, and auxiliary variables added in
previous steps can even be re-used in future variable introductions.

3 Motivating Example

To motivate the need for a heuristic-guided version of BVA, we will first demonstrate the
effect of randomization on existing implementations of BVA, and the disproportionate impact
of a few critical variable additions.
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10:6 Effective Auxiliary Variables via Structured Reencoding

3.1 Packing Colorings
BVA has been shown to be effective on the grid packing k-coloring problems, whose constraints
are based on coloring a circular grid of tiles, shown in Figure 3a. Unlike a standard graph
coloring problem, each color in the packing k-coloring problem is associated with a integer
distance from 1 to k. When coloring the grid, two tiles can only have the same color if the
taxicab distance between them is greater than the color number. For example, two tiles of
color 3 must have at least 3 tiles between them, while color 1 tiles cannot be adjacent. The
Dr,k problem asks whether the grid of radius r can be colored with k colors.

The direct encoding for this problem consists of variables vi,c, denoting that grid location
i has color c. There are three types of clauses [22]:

1. At-Least-One-Color: ∀i, (vi,1 ∨ vi,2 ∨ · · · ∨ vi,k). Each tile must be colored with a color
between 1 and k.

2. At-Most-One-Distance: ∀i, j, c : d(i, j) ≤ c, (vi,c ∨ vj,c). If the distance between two tiles
is less than or equal to the color, they cannot both have that color.

3. Center-Clause: v(0,0),c for a fixed color c. This is a symmetry-breaking optimization [21],
which has no effect on BVA since it ignores unit clauses.

Previous work [22] showed that BVA can reduce the size of such formulas by a factor
of 4, and induces more than a ×4 speedup on the larger instance (D6,11). They found
that auxiliary variables capture regions of grid tiles within a particular color, i.e. the grid
replacement happens entirely within the binary at-most-one-distance constraints.

We visualize the variables introduced by BVA on D5,10, the packing k-coloring problem
with radius 5 and 10 colors. In the first row of Figure 3b, each of the four plots introduces a
new auxiliary variable x for one of the colors c ∈ {1, . . . , 10} (denoted above each plot). All
the binary clauses for color c (At-Most-One-Distance clauses) of the form (vi,c ∨ vj,c) with
grid location i corresponding to a green square and grid location j corresponding to a yellow
square will be replaced with a smaller number of clauses: (x ∨ vi,c) for each green location i

and (x ∨ vj,c) for each yellow location j.

(a) Figure from [22] showing
the D3,5 grid packing

k-coloring problem

Var 1 (Color 10) Var 2 (Color 9) Var 3 (Color 8) Var 4 (Color 7)

Original

Var 1 (Color 10) Var 2 (Color 9) Var 3 (Color 8) Var 4 (Color 6)

Randomized

Var 1 (Color 10) Var 2 (Color 8) Var 3 (Color 9) Var 4 (Color 7)

Heuristic

(b) The effect of variable randomization on the first four BVA
substitutions in D5,10. The black boxes indicate the first variable

addition, the effect of which is isolated in Table 1.

Figure 3 The auxiliary variables introduced by BVA on the packing k-coloring problem are
sensitive to randomization.
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Table 1 CaDiCaL solve time for the D5,10 packing problem, breaking BVA ties using the
original variable order (sorted), randomized variable order (randomized), or the heuristic proposed
in Section 4 (heuristic). Breaking ties differently has a significant effect on solve time even when the
resulting formula is the same size (Single BVA Step).

# Vars # Clauses Solve (s)

Original formula 610 10688 590.545

Single BVA Step (sorted) 611 9819 105.635
Single BVA Step (randomized) 611 9819 429.396
Single BVA Step (heuristic, this paper) 611 9819 213.018

Full BVA (sorted) 973 2313 38.749
Full BVA (randomized) 971 2305 107.675
Full BVA (heuristic, this paper) 972 2290 55.482

3.2 Negative Impact of Randomization
We discovered that randomizing packing k-coloring formulas prior to running BVA signi-
ficantly increases the resulting solve time. Furthermore, the variables added by BVA after
randomization fail to capture the clustered regions within the problem’s 2D space that are
identified without randomization. Figure 3b shows the first four variable additions performed
by BVA on D5,10. The effect is especially noticeable in the first few variable additions. The
structure of these variables is more than a visual artifact. Running BVA to completion
produces a formula that requires more than ×2 the solve time in CaDiCaL compared with
running BVA on the original formula, despite a similar reduction in formula size (see Table 1).

We found that the first variable added by BVA in D5,10 had a disproportionate impact on
the solve time of the formula. We isolated the effect of a single replacement by allowing BVA
to only produce one new auxiliary variable and then evaluating the solve time of the resulting
formula. Table 1 shows that a single variable addition (outlined in black in Figure 3b) can
achieve a ×6 speedup over the original formula and that the impact of this single addition is
also substantially affected by randomization. Although randomization before BVA did not
affect the size reduction of the first variable addition, the randomized formula with a single
BVA step is 2 times slower compared to the original formula.

The importance of individual variable additions and their sensitivity to randomization
suggests that BVA’s impact is derived not only from the size reduction but from the structure
of the variable additions.

3.3 Ties in Bounded Variable Addition
The reason for the BVA’s sensitivity to randomization is due to a detail in the way imple-
mentations treats ties between literals. As described in Section 2, the algorithm chooses the
literal that maximizes the number of remaining resolvents to be eliminated (Algorithm 1,
line 4). If there is a tie between two literals, the original algorithm does not specify which
literal should be used. The original implementation provided by [15] breaks ties using the
variable number in the original formula. Figure 4 shows how breaking ties differently leads
to different variable additions. Note that since BVA eliminates the clauses in the grid when
adding a variable, it is not possible for multiple applications of BVA to eventually add both
variables resulting from a tie.

In the D5,10 packing problem, colors 9 and 10 are almost fully connected; coloring a
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Figure 4 The addition of b or c both lead to a 2 × 3 grid of resolvents. Breaking this tie in
different ways leads to different variable additions.

tile with color 10 means that no tile within 10 spaces of it can also be colored 10. When
BVA creates a variable for these pairwise constraints, all of the clauses are tied for the
number of preserved resolvents (since every pair of color-10 variables appears in a at-most-
one-distance clause). Since the original implementation used variable number to break ties
and ordered variables from top-left to bottom-right, the variable additions it produces follow
that structured pattern. However, when the variable order is randomized, the resulting
region lacks structure and the formula takes longer to solve.

3.4 Recovering Structure
After randomization, BVA struggles to introduce variables that represent coherent clusters
of tiles. However, we note that the original structure is still captured by the original formula
as a whole. For example, in the D5,10 packing problem, two variables representing color 1,
vi,1 and vj,1, only share a pairwise constraint if they are adjacent (i.e. if i and j represent
adjacent tiles). If we could recover a generic metric for how close variables are to each other
(e.g. in the 2D space of D5,10), this metric could be used to help BVA recover structure in
problems where the original variable order does not result in structured variable additions.

The intuition for our heuristic, which is detailed in Section 4, is based on the structure
observed in the packing problem. We notice that while variables in color 10 are indistinguish-
able after randomization (i.e. all fully connected with At-Most-One-Distance clauses), the
variables in color 1 preserve the structure of the original problem: these variables only share
At-Most-One-Distance clauses with their immediate neighbors. Additionally, variables for
the same tile location but different colors are all linked by an At-Least-One-Color constraint,
even after randomization. One could deduce which variables in color 10 are neighbors by
looking at the connectivity of the equivalent tile positions in color 1. Specifically this requires
3 “hops” through clauses: starting at a variable vi,10 in color 10, we find vi,1 in color 1
(via an At-Least-One-Color clause), then find vj,1 in color 1 (via an At-Most-One-Distance
clause), and finally find vj,10 in color 10 (via an At-Least-One-Color clause); the full path is
vi,10 → vi,1 → vj,1 → vj,10.

While it is possible to construct an algorithm to recover this structure specifically for
the k-coloring packing problem, we generalize this concept by counting paths. Specifically,
between two variables vi,10 and vj,10 in color 10 there are many paths of length 3: for
example vi,10 → va,10 → vb,10 → vj,10 (using only At-Most-One-Distance clauses). However,
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only adjacent variables in color 10 will have the additional path that goes through color 1:
vi,10 → vi,1 → vj,1 → vj,10. For a given variable in color 10, it will have the most 3-hop paths
to variables of the immediately adjacent grid tiles. We formalize this intuition in Section 4.

4 Structured Reencoding

In this section we define our implementation of a heuristic for breaking ties during variable
selection in BVA. While our heuristic was initially designed to mitigate the detrimental
effects of randomization on the packing coloring problems, we found that it is also effective
for other problems, even ones which have not been randomized. In Section 5 we show that
our heuristic-guided BVA is effective on a wide variety of problems and offers a significant
improvement to solve time for certain families of formulas.

The 3-Hop Heuristic. Our heuristic is based on the intuition that BVA should prefer to
break ties by adding variables that are close to one another. In Subsection 3.4, we noticed
that in the k-coloring problem, there are some paths between variables that are only present
when variables are close in the problem’s 2-D space. The variable incidence graph compactly
captures this notion of variable adjacency. Here we formally define a heuristic for “variable
distance” based on the number of paths between pairs of variables in the variable incidence
graph.

▶ Definition 1. The Variable Incidence Graph (VIG) of a formula F is an undirected graph
G = (V, E) where V is the set of variables in F , and E contains an edge between variables if
they appear in a clause together. The weight on an edge (v1, v2) is the number of clauses in
which v1 and v2 appear together: w(v1, v2) = |{C ∈ F : {v1, v2} ⊂ Vars(C)}|

We measure variable distance by counting the number of distinct paths between two
variables (i.e. using different intermediate variables or clauses). Edges in the VIG indicate
the number of clauses shared by pairs of variables. For a given sequence of variables
(v1, v2, ..., vn) the number of distinct paths through different combinations of clauses is given
by w(v1, v2) · w(v2, v3) · . . . · w(vn−1, vn). Since edge weights are multiplicative along a path,
the number of different paths of length n through the VIG is given by An, where A is the
adjacency matrix of the VIG. Since we identified that adjacent tiles in the packing problem
have more length-3 paths between them, we define a simple heuristic that counts the number
of paths of length 3 in the VIG, which we call the 3-hop heuristic.

▶ Definition 2. The 3-hop heuristic H(x, y) is defined as the number of distinct paths of
length 3 between two variables x and y in the VIG. Two paths are distinct if they travel
through a different sequence of variables or clauses. Given the VIG adjacency matrix A, the
3-hop heuristic can be computed as H(x, y) = (A3)x,y.

We modify Algorithm 1 to use our heuristic as a tie-breaker, specifically augmenting
the computation of argmax in line 4: when multiple values of lm have the same number
of remaining resolvents, we choose the literal lm with the highest value of H(l, lm). Our
implementation of BVA, called SBVA, is written in C++ and uses the Eigen library for
sparse matrix operations. It is capable of generating DRAT proofs describing the sequence
of variable additions and clause deletions and thus could be used with a solver to generate
certificates of unsatisfiability.

In Figure 5, we show the value of H(x, y) in D5,10 for variables representing color 10
between a variable of interest (outlined in black) and all other variables of color 10. Grid tiles
that are closer in the 2-D space of the packing k-coloring problem have more 3-hop paths
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Figure 5 The value of the 3-hop heuristic in D5,10 between the color-10 variable for the location
outlined in black and all other color-10 locations.

between them and thus have a higher heuristic value. Using our heuristic on a randomized
formula for the packing problem, we recover variables that capture the spatial structure of
the problem. In the third row of Figure 3b, we show the first 4 variables added by SBVA,
which cluster variables together using the notion of distance that is inherent in the original
problem. Furthermore, we find that applying this heuristic to the packing problem results in
formulas that solve much faster than BVA on a randomized formula (Table 1).

5 Experimental Details

We evaluated BVA on more than 29,000 formulas from the Global Benchmark Database [12]
in order to study the effects of randomization and our heuristic on BVA. In this section, we
discuss the experimental setup and provide a brief overview of the results. In Section 6, we
analyze the results in more detail and discuss families of formulas that were significantly
impacted by BVA and/or SBVA.

Configurations. We constructed three solver configurations that use BVA in different ways.
All three variants take a formula, (optionally) randomize it with scranfilize, run BVA
(with or without heuristic), and pass it to CaDiCaL to solve. For comparison, we include a
baseline variant that does not run BVA. Since the particular ordering of clauses and variables
in a formula can impact solver performance [3], we also use the scranfilize tool immediately
prior to running CaDiCaL in all configurations. To mitigate this variance, we run the entire
sequence three times for each configuration, averaging across the three runs. The list of
configurations is shown in Table 2. Note that all four configurations have randomization
applied prior to solving with CaDiCaL but only BVA-rand-orig and BVA-rand-3hop
have randomization applied prior to BVA/SBVA.

Benchmarks. We evaluated our variants on 29 402 benchmark instances (downloaded on
February 20, 2023) from the Global Benchmark Database (GBD) [12]. We also report results
against the Anniversary Track from the SAT Competition 2022 [1] (labeled as “ANNI-2022”
within this paper) which is included as a subset in the GBD (5355 benchmarks).

Hardware. All experiments were performed on the Bridges-2 system at the Pittsburgh
Supercomputing Center [7] on nodes with 128 cores and 256 GB RAM.

Experimental Setup. We compare the four configurations in a simulated competition setting
with a fixed time limit of 5 000 seconds per benchmark. The total time is computed as the
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Table 2 Experimental configurations. Pre and Post refer to arguments passed to scranfilize
before and after running the preprocessor respectively. An empty space indicates the step was
skipped for this variant.

Variant Pre Preprocessor Post Solver

Baseline -p -P -f 0.5 CaDiCaL
BVA-orig BVA -p -P -f 0.5 CaDiCaL
BVA-rand-orig -p -P -f 0.5 BVA -p -P -f 0.5 CaDiCaL
BVA-rand-3hop -p -P -f 0.5 SBVA -p -P -f 0.5 CaDiCaL

Table 3 PAR-2 scores and number of formulas solved for each variant split by problem type
(ALL/UNSAT/SAT) and dataset (FULL/ANNI-2022). Bold cells indicate the lowest PAR-2 score
or highest number solved for that group.

ALL UNSAT SAT
Dataset Variant PAR-2 # PAR-2 # PAR-2 #

FULL

Baseline 1077.91 21602 756.14 6495 1196.99 15107
BVA-orig 867.04 22140 635.71 6562 948.85 15578
BVA-rand-orig 870.20 22077 673.58 6533 953.25 15544
BVA-rand-3hop 862.29 22173 650.41 6568 935.38 15605

ANNI-2022

Baseline 1262.18 3953 1164.61 2048 1309.41 1905
BVA-orig 1174.80 3987 967.85 2085 1338.31 1902
BVA-rand-orig 1193.27 3958 1053.75 2060 1350.09 1898
BVA-rand-3hop 1188.63 3995 982.84 2088 1350.98 1907

sum of BVA and CaDiCaL runtimes (scranfilize time is not counted towards this limit).
As noted by Manthey et al. [15], BVA can be quite expensive, even on formulas that do
not reduce significantly. We allow all versions of BVA to run for 200 seconds and if it has
not terminated by then, we instead run the original formula with CaDiCaL. On our full
benchmark, BVA terminates within 200 seconds on approximately 95% of problems. We ran
128 instances in parallel per node, leaving approximately 2GB of memory (for reference, in
the SAT Competition 2022 [1], solvers were allotted 128GB) for each BVA/CaDiCaL process.
This limit is enough for most formulas, but in cases where BVA runs out of memory, we
instead run the original formula in CaDiCaL. In both cases (timeout and out-of-memory), the
already-used time is added to the subsequent solve time of the original formula. This setup
provides a fair comparison as BVA could be realistically configured this way in a competition.

We report the PAR-2 scores and number of formulas solved for each variant in Table 3.
The PAR-2 score is computed as the total time it took to solve an instance (BVA runtime
+ CaDiCaL runtime) or twice the time limit if the formula was not solved within 5 000
seconds. We compute the PAR-2 score individually for each run and average across the
three runs of a given formula. A formula is marked as solved in Table 3 if any of the three
runs solved it within the time limit. Additionally, the set of formulas over which PAR-2 is
computed consists of instances where at least one of the four configurations was able to solve
it. Instances that were not solved by any configuration were not included in the PAR-2 score.
Adding these entirely unsolved instances would not change the number solved and would
simply scale the PAR-2 scores equally for all configurations.

SAT 2023
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Figure 6 Formula speedup compared to compression factor for BVA-rand-3hop.

6 Results and Analysis

This section takes a closer look at the performance of BVA-orig, BVA-rand-orig, and
BVA-rand-3hop in comparison to the Baseline configuration. We explore both the effects
of randomization and the effects of the heuristic, in general and on specific families of formulas.
Specifically, we explore the following questions:

Q1: Does compression factor correlate with solve time in the context of BVA?
Q2: What is the effect of randomization on the performance of BVA?
Q3: Can our heuristic outperform randomized BVA?
Q4: How does the performance of our heuristic vary across different families of formulas?

We address these questions directly in the following paragraphs:

A1: Formulas with larger compression factors tend to be solved faster, but this is not
always the case. As demonstrated in Table 1, even small reductions from BVA can have a
large impact on solve time. For example, on the packing k-coloring problem, a single added
variable can reduce solve time by over a factor of 5 if picked correctly (Table 1).

We compute the compression factor of a formula as the ratio of the formula size before to
the size after running BVA. For example, a factor of 1 indicates no reduction, a factor of 2
indicates the formula was reduced to 50% the original size, and a factor of 10 indicates the
formula was reduced to 10% of the original size. Similarly, we compute the speedup as the
ratio of solve time to Baseline solve time (values below 1 indicate the formula was solved
faster). In Figure 6 we plot the speedup of BVA-rand-3hop against the compression factor
for every problem in the benchmark. Equivalent figures for BVA-orig and BVA-rand-orig
look similar and are available in the appendix (Figure A1 and Figure A2).

For formulas that could be greatly reduced, there is an observable trend towards a greater
speedup. However, for small reductions, the speedup is much more variable. In some cases,
even formulas that are reduced to less than 10% of the original size may be slowed down
by BVA. With BVA-rand-3hop, 60% of formulas had a compression factor greater than 1,
40% had a factor greater than 2, and 4% had a factor greater than 10.

A2: Randomization is Detrimental to BVA. Randomization has a negative effect on the
performance of BVA; in all benchmark groups, BVA-rand-orig solved fewer formulas and
has a higher PAR-2 score than BVA-orig. Interestingly, this effect appears to be entirely
due to the structure of the resulting formula and not the resulting size of the formula.
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Figure 7 Difference in reduction size and solve time between BVA-rand-orig and BVA-orig
on formulas from ANNI-2022. Larger points indicate a more-reduced formula.

In Figure 7, we plot the relative solve times of formulas from the ANNI-2022 benchmark
for BVA-rand-orig and BVA-orig. While there is almost no difference in the reduction
sizes of the formulas produced by BVA-rand-orig and BVA-orig (formula sizes differ by
less than 1.5%), a number of formulas were substantially slowed down (Figure 7). Note that
in these plots, randomization prior to BVA is more detrimental for UNSAT formulas and
introduces a lot of variance to SAT formulas.

A3: 3-Hop Heuristic is Robust to Randomization. While randomization has a negative
effect on the original implementation of BVA, we observe that our heuristic-guided BVA is
robust to this effect. Despite being provided with randomized formulas, it is able to generate
high quality variable additions and recover all of the performance loss of BVA-rand-orig,
even surpassing BVA-orig in many cases on number of problems solved and PAR-2 score.
We believe the slight performance improvement over BVA-orig in several cases is due to the
presence of “pre-randomized” formulas in the benchmark; in these cases BVA-orig already
suffers the effects of randomization while BVA-rand-3hop is able to recover the original
structure of the problem.

In Figure 8, we compare the relative solve times of formulas from the ANNI-2022
benchmark for BVA-rand-3hop and BVA-rand-orig. As in the previous section, the
formula sizes between the two variants differs by less than 1.5% on average. However,
BVA-rand-3hop is able to speed up many formulas, especially UNSAT instances.

A4: SBVA performs similar to BVA in most cases and performs extremely well for a few
families. We found that both the original implementation of BVA and our heuristic-guided
version have strong effects for specific families of formulas. In Figure 9, we plot the relative
performance of the four configurations on 10 formula families for which BVA was effective.
For these plots we allow BVA/SBVA to run for the full 5 000 seconds and consider only
the CaDiCaL solve time in the plots in order to understand the effectiveness of the formula
rather than the speed of BVA. In this section, we briefly describe some of the families where
BVA was most effective.

Pigeonhole / PHNF / FPGA-Routing. Pigeonhole formulas try to uniquely assign n

pigeons to m holes. Like the packing k-coloring problem, these formulas consist primarily of

SAT 2023
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Figure 8 Difference in reduction size and solve time between BVA-rand-3hop and BVA-rand-
orig on formulas from ANNI-2022. Larger points indicate a more-reduced formula.
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Figure 9 Performance of BVA/SBVA on 10 families of formulas where it was effective.

AtLeastOne constraints (a pigeon must be in at least one hole) and pairwise AtMostOne
constraints (two pigeons cannot share a hole). Our benchmark also contains variants of this
problem, e.g. allowing multiple pigeons in a hole. These formulas are difficult for SAT solvers
due to the number of possible permutations.

We found that SBVA was quite effective for UNSAT instances of pigeonhole problems
(note that SAT instances of pigeonhole problems are trivial), able to solve new instances that
the other three configurations could not solve. Interestingly, we found that these newly solved
problems consist mainly of pre-shuffled pigeonhole problems. A full list of solved UNSAT
pigeonhole problems is provided in Table A1. Other pigeonhole-like families in the dataset
include PHNF (Pigeonhole Normal Form) [19] and FPGA-Routing [17], which consists of
problems generated by combining two pigeonhole problems. All forms of BVA were very
effective on these problems compared to Baseline.

Petri Net Concurrency. Petri nets are a model of concurrent computation that consists of
places and transitions [6]. They are used to model a variety of systems, including chemical
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reactions, manufacturing processes, and computer programs. The Petri Net Concurrency
family consists of formulas that encode the satisfiability of Petri nets. All three configurations
of BVA are able to generate very compact encodings for these formulas, with an average
compression factor of more than 20.

Bioinformatics. The bioinformatics family consists of problems that encode genetic evolu-
tionary tree computations into SAT [5]. As noted by the authors of the original BVA paper,
these problems are also reduced significantly with BVA. For the problems in this family, we
found that the average compression factor was more than 7 for all three BVA configurations,
i.e. the formulas were reduced to less than 15% total size on average.

Puzzle / Rooks / Battleship. We found BVA to be useful in several families of formulas
derived from 2-D games. The puzzle family consists of formulas that encode the satisfiability
of a sliding-block puzzle and were contributed by van der Grinten to SAT Comp 2017. The
rooks family asks if it is possible to place N + 1 rooks on a N ×N chessboard such that no
two rooks can attack each other [16]. The battleship family consists of problems that are
derived from the battleship guessing game and were contributed by Skvortsov to SAT Comp
2011. BVA was effective in all three families and SBVA was especially effective for the puzzle
and battleship families.

Antibandwidth / Spectrum Repacking. The antibandwidth [10] and spectrum repacking
[18] formulas are both related to assigning radio stations to channels. Specifically, the
antibandwidth family asks if it possible to assign a given set of stations to a given set of
channels such that the difference in channel between any two stations is at least k. Similarly,
the spectrum repacking family asks if it is possible to reassign a given set of stations into
a smaller set of channels, taking into account physical distances between stations and the
bandwidth of each channel. All configurations of BVA were effective on these problems.

7 Conclusion

Bounded Variable Addition is surprisingly effective at reducing the size of formulas and
improving solve time by introducing auxiliary variables. We discovered that this speedup
is caused not only by the reduction in formula size but also the introduction of certain
effective auxiliary variables. We found that the original implementation was sensitive to
randomization and proposed a new heuristic-guided implementation, SBVA, that is robust
to this effect. In a competition-style benchmark, we show that using SBVA resulted in
the most formulas solved in every category, outperforming both BVA and the baseline (no
preprocessor). Additionally, SBVA was extremely effective on certain families of formulas,
demonstrating that auxiliary variables can be useful in practice if they are chosen carefully.
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A.1 Reduction Size vs. Solve Time
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Figure A1 Formula speedup compared to compression factor for BVA-orig.
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Figure A2 Formula speedup compared to compression factor for BVA-rand-orig.

A.2 Performance on Pigeonhole Problems
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Table A1 Performance on unsatisfiable instances of problems in the pigeon-hole family.

Solve Time (s)
Instance (unsatisfiable) Baseline BVA-orig BVA-rand-orig BVA-rand-3hop

a_rphp035_05 499.77 478.28 327.31 328.82
a_rphp045_05 2165.96 2069.67 1748.25 1952.39
a_rphp055_04 79.75 81.91 79.09 75.39
a_rphp065_04 168.98 164.66 137.85 146.82
a_rphp085_04 760.00 752.18 707.73 661.66
a_rphp098_04 1945.51 2136.84 2726.63 2318.10

ae_rphp035_05 410.54 501.24 426.94 407.24
ae_rphp045_05 2402.73 2549.29 2206.80 2307.20
ae_rphp055_04 83.73 86.48 81.64 74.17
ae_rphp075_04 513.63 515.97 558.53 504.86
ae_rphp095_04-sc2018 1937.08 1686.12 2074.11 1678.99
ae_rphp095_04 1706.39 1611.31 1560.96 1572.97

clqcolor-08-06-07.shuffled-as.sat05-1257 3.28 0.62 0.91 0.81
counting-clqcolor-unsat-set-b-clqcolor-08-06-07.sat05-1257.reshuffled-07 2.69 0.83 0.76 1.02

counting-easier-fphp-012-010.sat05-1214.reshuffled-07 111.76 33.26 30.03 0.11
counting-easier-fphp-014-012.sat05-1215.reshuffled-07 T.O. T.O. T.O. 1.62
counting-easier-php-012-010.sat05-1172.reshuffled-07 139.59 27.07 29.35 3.45
counting-easier-php-018-014.sat05-1175.reshuffled-07 T.O. T.O. T.O. 4224.30
counting-harder-php-014-013.sat05-1187.reshuffled-07 T.O. T.O. T.O. 1760.18

e_rphp035_05-sc2018 424.51 460.54 461.25 387.80
e_rphp035_05 482.43 480.30 419.09 501.65
e_rphp055_04 73.62 81.31 77.03 78.85
e_rphp065_04 139.17 125.17 143.14 144.34
e_rphp096_04 1626.72 1830.11 1492.40 1503.88

easier-fphp-020-015.sat05-1218.reshuffled-07 T.O. T.O. T.O. 4205.14

fphp-010-008.shuffled-as.sat05-1213 0.49 0.22 0.22 0.02
fphp-010-009.shuffled-as.sat05-1227 5.43 4.30 4.22 0.06
fphp-012-010.shuffled-as.sat05-1214 113.38 45.04 36.16 0.12
fphp-012-011.shuffled-as.sat05-1228 1722.86 1525.19 1844.10 0.68
fphp-014-012.shuffled-as.sat05-1215 T.O. T.O. T.O. 1.95
fphp-014-013.shuffled-as.sat05-1229 T.O. T.O. T.O. 564.50
fphp-016-013.shuffled-as.sat05-1216 T.O. T.O. T.O. 383.94
fphp-016-015.shuffled-as.sat05-1230 T.O. T.O. T.O. 1027.46
fphp-018-014.shuffled-as.sat05-1217 T.O. T.O. T.O. 549.07
fphp-020-015.shuffled-as.sat05-1218 T.O. T.O. T.O. 944.65

harder-fphp-016-015.sat05-1230.reshuffled-07 T.O. T.O. T.O. 3496.64
hole10.cnf.mis-98.debugged 2.20 0.95 1.51 1.05

ph9 5.68 1.55 4.02 0.08
ph10 120.63 13.83 50.17 8.64
ph11 3061.40 35.76 790.89 26.45

php-010-008.shuffled-as.sat05-1171 0.64 0.15 0.25 0.03
php-010-009.shuffled-as.sat05-1185 6.59 3.03 3.58 0.07
php-012-010.shuffled-as.sat05-1172 138.30 31.52 23.96 3.02
php-012-011.shuffled-as.sat05-1186 2695.99 1006.29 755.79 26.97
php-014-012.shuffled-as.sat05-1173 T.O. T.O. T.O. 237.47
php-016-013.shuffled-as.sat05-1174 T.O. T.O. T.O. 3024.16

php11e11 3599.98 500.38 780.09 796.55

rphp4_065_shuffled 146.66 148.59 129.96 132.01
rphp4_070_shuffled 213.59 249.18 280.29 227.72
rphp4_075_shuffled 448.36 459.23 415.65 419.72
rphp4_080_shuffled 532.00 519.81 516.74 503.20
rphp4_085_shuffled 666.98 723.74 654.52 648.68
rphp4_090_shuffled 853.68 850.60 919.62 890.40
rphp4_095_shuffled 1571.45 1362.84 1611.21 1342.79
rphp4_100_shuffled 2314.76 2545.95 2361.29 2154.53
rphp4_105_shuffled 3168.06 2948.21 2520.33 2249.50
rphp4_110_shuffled 3726.95 3389.56 3208.10 3665.63
rphp4_115_shuffled 4155.81 4406.08 4169.75 4095.25
rphp4_120_shuffled T.O. 4840.06 4883.44 4948.49
rphp4_125_shuffled T.O. 4613.90 4676.45 3989.60

rphp_p6_r28 T.O. T.O. 4895.39 T.O.

tph6 226.78 12.06 68.97 0.52
tph7 T.O. 249.13 T.O. 0.88
tph8 T.O. T.O. T.O. 188.30
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A.3 Performance on Bioinformatics Problems

Table A2 Performance on unsatisfiable instances of problems in the bioinformatics family.

Solve Time (s)
Instance (unsatisfiable) Baseline BVA-orig BVA-rand-orig BVA-rand-3hop

ndhf_xits_09_UNSAT T.O. 9.69 11.10 10.52
ndhf_xits_10_UNSAT T.O. 70.30 70.43 63.04
ndhf_xits_11_UNSAT T.O. 612.65 869.25 401.50
ndhf_xits_12_UNSAT T.O. T.O. T.O. 1003.12

rbcl_xits_06_UNSAT 5.27 0.20 0.22 0.20
rbcl_xits_07_UNSAT 110.14 0.60 0.60 0.47
rbcl_xits_08_UNSAT 3603.02 2.09 2.15 1.72
rbcl_xits_09_UNKNOWN T.O. 8.11 9.55 10.69
rbcl_xits_10_UNKNOWN T.O. 69.24 56.82 95.77
rbcl_xits_11_UNKNOWN-sc2009 T.O. 311.98 309.87 505.25
rbcl_xits_11_UNKNOWN T.O. 331.32 392.19 528.49
rbcl_xits_12_UNKNOWN T.O. 3607.56 4857.58 T.O.

rpoc_xits_07_UNSAT 54.86 0.95 1.03 0.97
rpoc_xits_09_UNSAT T.O. 41.37 30.13 24.29
rpoc_xits_10_UNKNOWN T.O. 237.25 172.23 182.65
rpoc_xits_11_UNKNOWN-sc2009 T.O. 3863.50 2369.91 1672.29
rpoc_xits_11_UNKNOWN T.O. 1813.61 4624.68 1413.96

Table A3 Performance on satisfiable instances of problems in the bioinformatics family.

Solve Time (s)
Instance (unsatisfiable) Baseline BVA-orig BVA-rand-orig BVA-rand-3hop

ndhf_xits_19_UNKNOWN-sc2011 143.44 31.96 9.59 13.37
ndhf_xits_20_SAT 29.44 2.20 3.32 3.38
ndhf_xits_21_SAT 6.27 2.16 1.13 2.27
ndhf_xits_22_SAT 3.09 1.11 0.50 0.86

rbcl_xits_14_SAT 1.31 0.47 0.46 1.91
rbcl_xits_18_SAT 0.22 0.04 0.05 0.03
rpoc_xits_17_SAT 1.22 0.14 0.11 0.11

SAT 2023


	1 Introduction
	2 Preliminaries
	3 Motivating Example
	3.1 Packing Colorings
	3.2 Negative Impact of Randomization
	3.3 Ties in Bounded Variable Addition
	3.4 Recovering Structure

	4 Structured Reencoding
	5 Experimental Details
	6 Results and Analysis
	7 Conclusion
	A Appendix
	A.1 Reduction Size vs. Solve Time
	A.2 Performance on Pigeonhole Problems
	A.3 Performance on Bioinformatics Problems


