
Mycielski graphs and PR proofs

Emre Yolcu, Xinyu Wu, and Marijn J.H. Heule

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{emreyolcu,xinyuwu,marijn}@cmu.edu

Abstract. Mycielski graphs are a family of triangle-free graphs Mk with
arbitrarily high chromatic number. Mk has chromatic number k and
there is a short informal proof of this fact, yet finding proofs of it via
automated reasoning techniques has proved to be a challenging task. In
this paper, we study the complexity of clausal proofs of the uncolorability
of Mk with k − 1 colors. In particular, we consider variants of the PR
(propagation redundancy) proof system that are without new variables,
and with or without deletion. These proof systems are of interest due to
their potential uses for proof search. As our main result, we present a
sublinear-length and constant-width PR proof without new variables or
deletion. We also implement a proof generator and verify the correctness
of our proof. Furthermore, we consider formulas extended with clauses
from the proof until a short resolution proof exists, and investigate the
performance of CDCL in finding the short proof. This turns out to be
difficult for CDCL with the standard heuristics. Finally, we describe an
approach inspired by SAT sweeping to find proofs of these extended
formulas.

1 Introduction

Proof complexity investigates the relative strengths of Cook–Reckhow proof
systems [7], defined in terms of the length of the shortest proof of a tautology as a
function of the length of the tautology. Proof systems are separated with respect
to their strengths by establishing lower and upper bounds on the lengths of the
proofs of certain “difficult” tautologies in each system. Finding short proofs of such
tautologies in a proof system is a method for proving small upper bounds, which
provide evidence for the strength of a proof system. Similarly, the existence of a
large lower bound implies that a proof system is relatively weak. The related field
of SAT solving involves the study of search algorithms that have corresponding
proof systems, and concerns itself with not only the existence of short proofs, but
also the prospect of finding them automatically when they exist. As a result, the
two areas interact. The long-term agenda of proof complexity is to prove lower
bounds on proof systems of increasing strength towards concluding NP 6= co-NP,
whereas SAT solving benefits from strong proof systems with properties that
make them suitable for automation. A recently proposed such system is PR
(propagation redundancy) [14] and some of its variants SPR (subset PR), PR−

(without new variables), DPR− (allowing deletion).

2 E. Yolcu et al.

For several difficult tautologies, PR has been shown to admit proofs that are
short (at most polynomial-length), narrow (small clause width), and without
extension (disallowing new variables) [5, 12, 13, 14]. From the perspective of
proof search, these are favorable qualities for a proof system:

– Polynomial-length is essentially a necessity.
– Small width implies that we may limit the search to narrow proofs.
– Eliminating extension drastically shrinks the search space.

Compared to strong proof systems with extension, a proof system with the above
properties may admit a proof search algorithm that is effective in practice.

Mycielski graphs are a family of triangle-free graphs Mk with arbitrarily high
chromatic number. In particular, Mk has chromatic number k. Despite having
a simple informal proof, this has been a difficult fact to prove via automated
reasoning techniques, and the state-of-the-art tools can only handle instances up
toM6 orM7 [6, 9, 18, 19, 20, 21, 23]. Symmetry breaking [8], a crucial automated
reasoning technique for hard graph coloring instances, is hardly effective on these
graphs as the largest clique has size 2. Most short PR proofs for hard problems
are based on symmetry arguments. Donald Knuth challenged us in personal
communication1 to explore whether short PR proofs exist for Mycielski graph
formulas.

In this paper, we provide short proofs in PR− and DPR− for the colorability
of Mycielski graphs [17]. Our proofs are of length quasilinear (with deletion and
low discrepancy) and sublinear (without deletion but high discrepancy) in the
length of the original formula, and include clauses that are at most ternary. With
deletion allowed, the PR inferences have short witnesses, which allows us to
additionally establish the existence of quasilinear-length DSPR− proofs. We also
implement a proof generator and verify the generated proofs with dpr-trim2.
Furthermore, we experiment with adding various combinations of the clauses
in the proofs to the formulas and observe their effect on conflict-driven clause
learning (CDCL) solver [3, 16] performance. It turns out that the resulting
formulas are still difficult for state-of-the-art CDCL solvers despite the existence
of short resolution proofs, reinforcing a recent result by Vinyals [22]. We then
demonstrate an approach inspired by SAT sweeping [24] to solve these difficult
formulas automatically.

2 Preliminaries

In this work we focus on propositional formulas in conjunctive normal form
(CNF), which consist of the following: n Boolean variables, at most 2n literals
pi and pi referring to different polarities of variables, and m clauses C1, . . . , Cm
where each clause is a disjunction of literals. The CNF formula is the conjunction
of all clauses. Formulas in CNF can be treated as sets of clauses, and clauses as
1 Email correspondence on May 25, 2019
2 https://github.com/marijnheule/dpr-trim

https://github.com/marijnheule/dpr-trim

Mycielski graphs and PR proofs 3

sets of literals. For two clauses C,D such that p ∈ C, p ∈ D, their resolvent on p
is the clause (C \ {p}) ∪ (D \ {p}). A clause is called a tautology if it includes
both p and p. We denote the empty clause by ⊥.

An assignment α is a partial mapping of variables in a formula to truth values
in {0, 1}. We denote assignments by a conjunction of the literals they satisfy.
As an example, the assignment x 7→ 1, y 7→ 0, z 7→ 1 is denoted by x ∧ y ∧ z.
The set of variables assigned by α is denoted by dom(α). We denote by F |α
the restriction of a formula F under an assignment α, the formula obtained by
removing satisfied clauses and falsified literals from F . A clause C is said to block
the assignment α =

∧
p∈C p, which we denote by C.

A clause is called unit if it contains a single literal. Unit propagation refers to
the iterative procedure where we assign the variables in a formula F to satisfy
the unit clauses, restrict the formula under the assignment, and repeat until no
unit clauses remain. If this procedure yields the empty clause ⊥, we say that unit
propagation derives a conflict on F .

Assume for the rest of the paper that F,H are formulas in CNF, C is a clause,
and α is the assignment blocked by C. Formulas F,H are equisatisfiable if either
they are both satisfiable or both unsatisfiable. C is redundant with respect to F
if F and F ∧C are equisatisfiable. C is blocked with respect to F if there exists a
literal p ∈ C such that for each clause D ∈ F that includes p, the resolvent of C
and D on p is a tautology [15]. C is a reverse unit propagation (RUP) inference
from F if unit propagation derives a conflict on F ∧ α [11]. F implies H by unit
propagation, denoted F 1̀ H, if each clause C ∈ H is a RUP inference from F .
Let us state a lemma about implication by unit propagation for later use.

Lemma 1 ([5]). Let C,D be clauses such that C ∨D is not a tautology and let
α be the assignment blocked by C. Then

F |α 1̀ D \ C ⇐⇒ F |α 1̀ D ⇐⇒ F 1̀ C ∨D.

Letting xi be either a unit clause or a conjunction of unit clauses, we will use the
notation F 1̀ x1 1̀ x2 1̀ . . . 1̀ xN to mean that for each i ∈ {1, . . . , N} we have
F ∧

∧i−1
j=1 xj 1̀ xi. This serves as a compact way of writing a sequence of unit

clauses that become true on the way to deriving xN from F via unit propagation.

3 PR proof system

Redundancy is the basis for clausal proof systems. In a clausal proof of a contra-
diction, we start with the formula and introduce redundant clauses until we can
finally introduce the empty clause. Since satisfiability is preserved at each step
due to redundancy, introduction of the empty clause implies that the formula
is unsatisfiable. The sequence of redundant clauses constitutes a proof of the
formula. Also note that since only unsatisfiable formulas are of interest, we use
“proof” and “refutation” interchangeably.

Definition 1. For a formula F , a valid clausal proof of it is a sequence of
clause–witness pairs (C1, ω1), . . . , (CN , ωN) where, defining Fi := F ∧

∧i
j=1 Cj,

we have

4 E. Yolcu et al.

– each clause Ci is redundant with respect to the conjunction of the formula
with the preceding clauses in the proof, that is, Fi−1 and Fi = Fi−1 ∧ Ci are
equisatisfiable,

– there exists a predicate r(Fi−1, Ci, ωi) computable in polynomial-time that
indicates whether Ci is redundant with respect to Fi−1,

– CN = ⊥.

For a clausal proof P of length N , we call maxi∈{1,...,N} |Ci| its width.

Definition 2. C is propagation redundant with respect to F if there exists an
assignment ω satisfying C such that F |α 1̀ F |ω where α is the assignment blocked
by C.

Note that propagation redundancy can be decided in polynomial-time given a
witness ω due to the existence of efficient unit propagation algorithms. Unit
propagation is a core primitive in SAT solvers, and despite the prevalence of
large collections of heuristics implemented in solvers, in practice the majority of
the runtime of a SAT solver is spent performing unit propagation inferences.

Theorem 1 ([14]). If C is propagation redundant with respect to F , then it is
redundant with respect to F .

Theorem 1 allows us to define a specific clausal proof system:

Definition 3. A PR proof is a clausal proof where the predicate r(Fi−1, Ci, ωi)
in Definition 1 computes the relation Fi−1|αi 1̀ Fi−1|ωi where αi is the assignment
blocked by Ci.

Resolvents, blocked clauses, and RUP inferences are propagation redundant.
Hence they are valid steps in a PR proof.

Let us also mention a few notable variants of the PR proof system:

– SPR: For each clause–witness pair (Ci, ωi) in the proof and αi the assignment
blocked by Ci, require that dom(ωi) = dom(αi).

– PR−: No clause C in the proof can include a variable that does not occur in
the formula F being proven.

– DPR: In addition to introducing redundant clauses, allow deletion of a
previous clause in the proof (or the original formula), that is, allow Fi =
Fi−1 \ {C} for some C ∈ Fi−1.

Following the notation of Buss and Thapen [5], the prefix “D” denotes a variant
of a proof system with deletion allowed, and the superscript “−” denotes a variant
disallowing new variables.

3.1 Expressiveness of PR

Intuition PR allows us to introduce clauses that intuitively support the following
reasoning:

Mycielski graphs and PR proofs 5

If there exists a satisfying assignment, then there exists a satisfying
assignment with a certain property X, described by the witness ω. This
is because we can take any assignment that does not have X, apply a
transformation to it that does not violate any original constraints of the
formula, and obtain a new satisfying assignment with property X. The
validation of such a transformation in general is NP-hard. Transformations
are limited such that they can be validated using unit propagation.

Hence, if our goal is to find some (not all) of the satisfying assignments to a formula
or to refute it, then we can extend the formula by introducing useful assumptions
without harming our goal since satisfiability is preserved with each assumption.
The redundancy of each assumption is efficiently checkable using the blocked
assignment α and the witness ω which together describe the transformation that
we apply to a solution without property X to obtain another with X. Having
this kind of understanding and mentally executing unit propagation allows us to
look for PR proofs while continuing to reason at a relatively intuitive level. This
proves useful when working towards upper bounds.

Upper bounds For several difficult tautologies (pigeonhole principle, bit pi-
geonhole principle, parity principle, clique-coloring principle, Tseitin tautologies)
short SPR− proofs exist [5, 14]. Still, there are several problems mentioned by
Buss and Thapen [5] for which there are no known PR− proofs of polynomial-
length. Furthermore, we do not know whether there are short SPR− proofs of the
Mycielski graph formulas. Buss and Thapen [5] have a partial simulation result
between SPR− and PR− depending on a notion called “discrepancy”, defined as
follows.

Definition 4. For a PR inference, its discrepancy is |dom(ω) \ dom(α)|.

Theorem 2. Let F be a formula with a PR refutation of length N such that
maxi∈{1,...,N}|dom(ωi) \ dom(αi)| ≤ δ. Then, F has an SPR refutation of length
O(2δN) without using variables not in the PR refutation.

As a result, a PR proof of length N with maximum discrepancy at most logN
directly gives an SPR proof of length O(N2). In our case, the maximum discrep-
ancy of the PR− proof is Ω(N/(logN)2), hence we cannot utilize Theorem 2 to
obtain a polynomial-length SPR− proof. For our DPR− proof, the maximum
discrepancy is 2, and by Theorem 2 there do exist quasilinear-length DSPR−

proofs of the Mycielski graph formulas.

4 Proofs of Mycielski graph formulas

4.1 Mycielski graphs

Let G = (V,E) be a graph. Its Mycielski graph µ(G) is constructed as follows:

1. Include G in µ(G) as a subgraph.

6 E. Yolcu et al.

2. For each vertex vi ∈ V , add a new vertex ui that is connected to all the
neighbors of vi in G.

3. Add a vertex w that is connected to each ui.

Unless G has a triangle µ(G) does not have a triangle, and µ(G) has chromatic
number one higher than G. We denote the chromatic number of G by χ(G).

Starting with M2 = K2 (the complete graph on 2 vertices) and applying
Mk = µ(Mk−1) repeatedly, we obtain triangle-free graphs with arbitrarily large
chromatic number. We call Mk the kth Mycielski graph. Since χ(M2) = 2 and µ
increases the chromatic number by one, we have χ(Mk) = k. The graph Mk has
3 · 2k−2 − 1 = Θ(2k) vertices and 1

2 (7 · 3k−2 + 1)− 3 · 2k−2 = Θ(3k) edges [1].

M2

−−−→
µ

M3

−−−→
µ

M4

Fig. 1: The first few graphs in the sequence of Mycielski graphs.

Let us denote by MYCk the contradiction that Mk is colorable with k − 1
colors. We will present short PR− and DPR− proofs of MYCk in Section 4.2.
Before doing so, let us present the short informal argument to prove that applying
µ increases the chromatic number, which implies that χ(Mk) > k − 1.

Proposition 1. χ(µ(G)) > χ(G).

Proof. Assume we partition the vertices of µ(G) as V ∪ U ∪ {w} where V is the
set of vertices of G which is included as a subgraph, U is the set of newly added
vertices corresponding to each vertex in V , and w is the vertex that is connected
to all of U .

Let k = χ(G), and denote [k] = {1, 2, . . . , k}. Denote the set of neighbors of
a vertex v by N(v). Consider a proper k-coloring φ : V ∪ U → [k] of µ(G) \ {w}.
Assume that in this coloring U uses only the first k − 1 colors. Then we can
define a (k − 1)-coloring φ′ of G by setting φ′(vi) = φ(ui) for vi with φ(vi) = k
and copying φ for the remaining vertices. The coloring φ′ is proper, because for
any two vi, vj ,

– if φ(vi) = φ(vj) = k, then no edges exist between them;
– if φ(vi), φ(vj) < k, then their colors are not modified;
– if φ(vi) 6= φ(vj) = k, then φ′(vi) = φ(vi) 6= φ(uj) = φ′(vj) since for all
v ∈ N(vj) we have φ(v) 6= φ(uj).

Mycielski graphs and PR proofs 7

As a result, we can obtain a proper (k − 1)-coloring of G, contradiction. Hence,
U must use at least k colors in a proper coloring of µ(G), and since w then has
to have a color greater than k we have χ(µ(G)) > k = χ(G). ut

Theorem 3. Mk is not colorable with k − 1 colors.

Proof. Follows from the fact that χ(M2) = 2 and Proposition 1 via induction. ut

4.2 PR proofs

To obtain PR− and DPR− proofs, we follow a different kind of reasoning than
that of the informal proof in the previous section. Let k ≥ 3. Denote by vi, Ek−1
the vertices and the edge set of the (k−1)th Mycielski graph, respectively. Assume
we partition the vertices of Mk as in the proof of Proposition 1 into V ∪U ∪ {w}.
Let nk = |V | = |U | = 3 · 2k−3 − 1.

In propositional logic, MYCk is defined on the variables vi,c, ui,c, wc for
i ∈ [nk], c ∈ [k− 1]. The variable vi,c indicates that the vertex vi ∈ V is assigned
color c, and ui,c, wc have similar meanings. MYCk consists of the clauses∨

c∈[k−1]

vi,c for each i ∈ [nk]

∨
c∈[k−1]

ui,c for each i ∈ [nk]

∨
c∈[k−1]

wc

vi,c ∨ vj,c for each vivj ∈ Ek−1, c ∈ [k − 1]

ui,c ∨ vj,c for each i, j such that vivj ∈ Ek−1, c ∈ [k − 1]

ui,c ∨ wc for each i ∈ [nk], c ∈ [k − 1].

For both the PR− and the DPR− proofs, the high-level strategy is to introduce
clauses that effectively insert edges between any ui, uj for which vivj ∈ Ek−1.
In other words, if there is an edge vivj , we introduce clauses that imply the
existence of the edge uiuj , resulting in the modified graphM ′k that has an induced
subgraph M ′k[U] isomorphic to Mk−1, and has all of its vertices connected to w.
As an example, Figure 3a shows the result of this step on M4. Then we partition
the vertices of M ′k[U] into new V ∪ U ∪ {w} similar to the way we did for Mk.
Such a partition exists asM ′k[U] is isomorphic toMk−1 which by construction has
this partition. Then we inductively repeat the whole process. Figure 3c displays
the result of repeating it once. Finally, the added edges result in a k-clique in
Mk, as illustrated in Figure 3d. The vertices that participate in the clique are
the two ui’s of the subgraph we obtain at the last step that is isomorphic to M3

and the w’s of all the intermediate graphs isomorphic to Mk′ for k′ ∈ [k] \ {1, 2}.
Since we have k − 1 colors available, the problem then reduces to the pigeonhole
principle with k pigeons and k − 1 holes (denoted PHPk−1), for which we know

8 E. Yolcu et al.

there exists a polynomial-length PR− proof due to Heule et al. [14]. At the end
we simply concatenate the pigeonhole proof for the clique, which derives the
empty clause as desired.

The primary difference between the versions of the proof with and without
deletion is the discrepancy of the PR inferences. Deletion allows us to detach
M ′k[U] fromM ′k[V], as illustrated in Figure 3b, by removing each preceding clause
that contains both a variable corresponding to some vertex in U and another
corresponding to some vertex in V . This makes it possible to introduce the PR
clauses with discrepancy bounded by a constant. Without deletion, we instead
introduce the PR inferences at each inductive step which imply that every ui ∈ U
has the same color as its corresponding vi, and this requires us to keep track of
sets of equivalent vertices and assign them together in the witnesses. Figure 4
displays the effect of introducing these clauses on M4.

For ease of presentation, we first describe the DPR− proof, followed by the
PR− proof.

Theorem 4. MYCk has quasilinear-length DPR− and DSPR− refutations.

Proof. At each step below, let F denote the conjunction of MYCk with the
clauses introduced in the previous steps.

1. As the first step, we introduce (2|U |+ 1)
(
k−1
2

)
blocked clauses

vi,c ∨ vi,c′ for each i ∈ [nk]

ui,c ∨ ui,c′ for each i ∈ [nk]

wc ∨ wc′
(1)

for each c, c′ ∈ [k − 1] such that c < c′. These clauses assert that each vertex
in the graph can be assumed to have at most one color.

2. Then, we introduce |U |(k − 1)(k − 2) PR clauses

vi,c ∨ ui,c′ ∨ wc for each i ∈ [nk] and
for each c, c′ ∈ [k − 1], c 6= c′.

(2)

Intuitively, these clauses introduce the assumption that if there exists a
solution, then there exists a solution that does not simultaneously have vi
colored c, ui colored c′, and w not colored c. If ui has color c′, then we can
switch its color to c and still have a valid coloring. The validity of this new
coloring is verifiable relying only on unit propagation inferences. It does not
create any monochromatic edges between ui and vj ∈ N(vi)∩V , as vj would
already not have the color c. It also does not create a monochromatic edge
between ui and w since w is already assumed not to have color c. Figure 2
shows this argument with a diagram. The corresponding witness for this
transformation is ω = vi,c ∧ ui,c′ ∧ ui,c ∧ wc, leading to a discrepancy of 1.

3. Then, we introduce |Ek−1|(k − 1)(k − 2) RUP inferences

ui,c ∨ uj,c ∨ vi,c′ for each i, j such that vivj ∈ Ek−1 and
for each c, c′ ∈ [k − 1], c 6= c′.

(3)

Mycielski graphs and PR proofs 9

vi vj

ui uj

w

−−−→
ω

vi vj

ui uj

w

Fig. 2: Schematic form of the argument for the PR inference. With c = Red
and c′ = Blue, the above diagram shows the transformation we can apply to a
solution to obtain another valid solution. A vertex colored black on the inside
means that it does not have the outer color, i.e. w has some color other than red.
Unit propagation implies that vj is not colored red.

Let C = ui,c ∨ uj,c ∨ vi,c′ and α = C. Due to the previously introduced
blocked and PR clauses (from (1) and (2)) we have

F |α 1̀ wc′ 1̀

∧
1≤d≤k−1
d6=c′

wd 1̀

∧
1≤d≤k−1
d6=c′

vj,d 1̀ vj,c′

and also F |vj,c′ 1̀ vi,c′ due to the edge vivj . These imply that F |α 1̀ vi,c′ .
Then, since vi,c′ ∈ C, we have F |α 1̀ ⊥ by Lemma 1.

4. Next, we introduce |Ek−1|(k − 1) RUP inferences

ui,c ∨ uj,c for each i, j such that vivj ∈ Ek−1 and
for each c ∈ [k − 1].

(4)

Let D = ui,c ∨ uj,c and β = D. From the previous set of RUP inferences
in (3) we have

F |β 1̀

∧
1≤d≤k−1

d 6=c

vi,d 1̀ vi,c.

Due to the edge ujvi we also have F |vi,c 1̀ uj,c and consequently F |β 1̀ uj,c.
Since uj,c ∈ D, we have F |β 1̀ ⊥ by Lemma 1.
With the addition of this last set of assumptions, we have effectively copied
the edges between vi to between ui. Figure 3a visualizes the result of this step
onM4 with the red edges corresponding to the newly introduced assumptions.

5. After the addition of the new edges, we delete the clauses introduced in steps
2, 3, and the clauses corresponding to the edges between U and V of the
current Mycielski graph. Figure 3b displays the graph after the deletions.

6. Then we inductively repeat steps 2–5, that is, we introduce clauses and delete
the intermediate ones for each subgraph isomorphic to Mycielski graphs of
descending order. Figure 3c shows the result of repeating the process on a
subgraph isomorphic to M3, with the blue edges corresponding to the latest
assumptions.

10 E. Yolcu et al.

(a) Introduction of
edge assumptions to
obtain a subgraph
isomorphic to the
Mycielski graph of
the previous order.

(b) Deletions of the
clauses introduced
previously and the
edges between U, V
to detach the sub-
graph.

(c) Repetition of the
inductive step on
the previously ob-
tained subgraph iso-
morphic to M3.

(d) Detached clique
obtained after delet-
ing the clauses cor-
responding to the
edges leaving the
clique.

Fig. 3: Illustrations of the proof steps in the case where M4 is the initial graph,
i.e. MYC4 is the formula being refuted. The blue and the red edges correspond
to the clauses introduced as RUP inferences, and the clauses corresponding to
the faded edges are deleted.

7. After an edge is inserted between the two ui of the subgraph isomorphic toM3,
we obtain a k-clique on the two ui and all of the previous w’s. Then we delete
all the clauses corresponding to the edges leaving the clique. This detaches
the clique from the rest of the graph as illustrated for M4 in Figure 3d. Since
(k − 1)-colorability of the k-clique is exactly the pigeonhole principle, we
simply concatenate a PR− proof of the pigeonhole principle as described
by Heule et al. [14], which has maximum discrepancy 2. This completes the
DPR− proof that Mk is not colorable with k − 1 colors.

In total, the proof has length O(3kk2) and the PR inferences have maximum
discrepancy 2. Hence, by Theorem 2, there also exists a DSPR− proof of length
O(3kk2). Since MYCk has length Θ(3kk), if we denote the length of the formula
by S then the proof is of quasilinear length O(S logS). ut

Theorem 5. MYCk has sublinear-length PR− refutations.

Proof. At a high-level, the proof is similar to the DPR− proof. However, in order
to avoid deletion we introduce assumptions at each inductive step that imply the
equivalence of every ui with its corresponding vi. This eliminates the need to
detach M ′k[U] from M ′k[V], but leads to sets of vertices forced to have the same
color. As a result, the witnesses for the PR inferences after the first inductive
step that refer to switching the color of a vertex ν need to also include all the
previous vertices forced to have the same color as ν.

1. We start by introducing the blocked clauses from (1).
2. Then we introduce the PR inferences from (2).

Mycielski graphs and PR proofs 11

3. It becomes possible to infer the following |U |(k − 1)(k − 2) clauses via PR.

ui,c ∨ vi,c′ for each i ∈ [nk] and
for each c, c′ ∈ [k − 1], c 6= c′.

(5)

Let γ = ui,c ∧ vi,c′ , and denote the conjunction of the formula and the
clauses in (1) and (2) by F . In step 3 of the previous proof we showed that
F 1̀ ui,c ∨ uj,c ∨ vi,c′ . Then, by Lemma 1, we have F |γ 1̀ uj,c. Hence, we
can switch the color of vi from c′ to c. This does not result in any conflicts
since ui having color c implies that no vj ∈ N(vi) ∩ V has the color c, and
uj,c is implied by unit propagation. As a result, the clause ui,c ∨ vi,c′ is PR
with witness ω = ui,c ∧ vi,c′ ∧ vi,c. After the addition of these clauses, the
equivalence ui,c ↔ vi,c is implied via unit propagation. Due to the edge vivj ,
the existence of the edge uiuj is also implied via unit propagation. This step
allows us to avoid deletion.

4. At this point, we inductively repeat steps 2–3 for each subgraph isomorphic
to Mycielski graphs of descending order. However, due to the equivalences
ui,c ↔ vi,c, any subsequent PR inference that argues by way of switching
a vertex ν’s color should include in its witness the same color switch for
all the vertices that are transitively equivalent to ν from the previous steps.
For instance, if a witness contains νc′ ∧ νc, then for each vertex η that is
equivalent to ν it also has to contain ηc′ ∧ ηc. The maximum number of such
vertices for any ν occurring in the proof is Ω(2k).

5. After the PR clauses are introduced for the subgraph isomorphic to M3,
the existence of a k-clique is implied via unit propagation. Figure 4 shows
the equivalent vertices and the implied edges after the last inductive step
when starting from M4. At the end, we simply concatenate a proof of the
pigeonhole principle as before, taking care to include in the witnesses all the
equivalent vertices (as described in the previous step) to each vertex whose
color is switched by a witness.

Fig. 4: Equivalent vertices and implied edges. Groups of equivalent vertices are
highlighted. Dashed edges are implied by unit propagation.

The proof has length O(2kk2), and MYCk has length Θ(3kk). Letting S denote
the length of the formula, the proof has sublinear-length O(Slog3 2(logS)2). ut

12 E. Yolcu et al.

In the PR− proof, the maximum discrepancy is Ω(2k). Letting N be the length of
the proof, this becomes Ω(N/(logN)2). As a result, we cannot rely on Theorem 2,
and the existence of a polynomial-length SPR− proof for Mycielski graph formulas
remains open. While the existence of such a proof is plausible, we conjecture that
it will not be of constant-width as the ones we present.

5 Experimental results

All of the formulas, proofs, and the code for our experiments are available at
https://github.com/emreyolcu/mycielski.

5.1 Proof verification

In order to verify the proofs we described in the previous section, we implemented
two proof generators for MYCk and checked the DPR− and PR− proofs with
dpr-trim for values of k from 5 to 10. Figure 5 shows a plot of the lengths of
the formulas and the proofs, and Table 1 shows their exact sizes.

5 6 7 8 9 10

103

104

105

106

k

#cls
DPR−

PR−

Fig. 5: Plot of the length of the formula
and the lengths of the proofs versus k.

Table 1: Formula and proof sizes.
For each formula MYCk, this ta-
ble shows the number of variables
and clauses in the formula, and the
lengths of the proofs.

k #vars #cls DPR− PR−

5 92 307 1572 600
6 235 1227 7635 2165
7 570 4625 33178 6796
8 1337 16711 134855 19523
9 3064 58551 524456 52816
10 6903 200531 1976271 136905

5.2 Effect of redundant clauses on CDCL performance

Suppose we have a proof search algorithm for DPR− and that the redundant
clauses we introduce in the DPR− proof are discovered automatically. Assuming
they are found by some method, we look at their effect on the efficiency of
CDCL at finding the rest of the proof automatically. In addition, we generate
satisfiable instances of the coloring problem (denoted MYC+

k and stating thatMk

is colorable with k colors) and compare how many of the satisfying assignments
remain after the clauses are introduced. The reduction in the number of solutions
suggests that the added clauses do a significant amount of work in breaking
symmetries.

https://github.com/emreyolcu/mycielski

Mycielski graphs and PR proofs 13

Table 2: Number of solutions left in
MYC+

k after introducing redundant
clauses. PR\BC is the version of the
formula where we add the PR clauses
but not the BC ones. For k ≥ 5, it
takes longer than 24 hours to count
all solutions, so we only included the
results for two small formulas here.

k MYC+
k BC PR\BC PR

3 60 30 36 18
4 163680 12480 6576 792

Table 3: CDCL performance on for-
mulas with additional clauses. Each
cell shows the time (in seconds) it
takes for CaDiCaL to prove unsatisfia-
bility. The cells with dashes indicate
that the solver ran out of time before
finding a proof.

k MYCk BC PR R1 R2

5 0.07 0.04 0.03 0.01 0.00
6 29.53 24.51 1.17 0.03 0.01
7 — — 26.80 0.28 0.02
8 — — 1503 1.33 0.19
9 — — — 22.99 0.88
10 — — — 196.18 12.88

Let us denote by

– BC: the blocked clauses that we add in step 1,
– PR: the PR clauses that we add inductively in step 2,
– R1: the RUP inferences that we add inductively in step 3,
– R2: the RUP inferences that we add inductively in step 4.

We consider extended versions of the formulas where we gradually include more
of the redundant clauses. We cumulatively introduce the redundant clauses from
each step, i.e. when we add the PR clauses we also add the BC clauses.

For the satisfiable formulas MYC+
k , the remaining number of solutions are in

Table 2. We used allsat3 to count the exact number of solutions. Adding only
the BC or PR clauses drastically reduces the number of solutions. Adding them
both leaves a fraction of the solutions.

For the unsatisfiable formulas, we ran CaDiCaL4 [3] with a timeout of 2000
seconds on the original formulas and the versions including the clauses introduced
at each step. The results are in Table 3. These runtimes are somewhat unexpected
as R1 and R2 can be derived from MYCk+PR with relatively few resolution steps.
One would therefore expect the performance on MYCk+PR, MYCk+R1, and
MYCk+R2 to be similar. We study this observation in the next subsection.

5.3 Difficult extended Mycielski graph formulas

The CDCL paradigm has been highly successful, because it has been able to find
short refutations for problems arising from various applications. However, the
above results show that there exist formulas for which CDCL cannot find the
short refutations. In particular, the MYCk+PR formulas have length Θ(3kk) and
there exist resolution refutations of length O(3kk3): Each clause in R1 and R2, of
3 https://github.com/marijnheule/allsat
4 http://fmv.jku.at/cadical/

https://github.com/marijnheule/allsat
http://fmv.jku.at/cadical/

14 E. Yolcu et al.

which there are O(3kk2), can be derived in O(k) steps of resolution. As for the
clique, it is known that PHPk−1 has resolution refutations of length O(2kk3) [4].

This shows that, even if we devise an algorithm to discover the redundant PR
clauses automatically, the Mycielski graph formulas still remain difficult for the
standard tools. After the clauses in BC and PR become part of the formula, the
difficulty lies in deriving the R2 clauses automatically. If we resort to incremental
SAT solving [10] and provide the cubes ui,c ∧ uj,c (negation of each clause in R2)
as assumptions to the solver, the formulas become relatively easily solvable. For
instance, MYC10+PR takes approximately 3 minutes on a single CPU. Although it
is unlikely that a solver can run this efficiently without any explicit guidance, the
small runtime provides evidence that the shortest resolution proof of MYC10+PR
is of modest length.

In this section, we describe a method for discovering useful cubes automatically
and using them to solve the MYCk+PR formulas. While inefficient, with this
method it at least becomes possible to find proofs of these formulas in a matter
of minutes, compared to CDCL which did not succeed even with a timeout of
three days on MYC10+PR. Given a formula F , the below procedure discovers
binary clauses, inserts them to F , and attempts to solve F via CDCL.

1. Iteratively remove the clause that has the largest number of resolution candi-
dates until the formula becomes satisfiable. For MYCk+PR, this corresponds
to simply removing the clause w1 ∨ . . . ∨ wk−1. Call the newly obtained
formula, which is satisfiable, F−.

2. Repeat:
(a) Sample M satisfying assignments for F− using a local search solver (we

used YalSAT5 [2]).
(b) Find all pairs of literals (li, lj) that do not appear together in any of the

solutions sampled so far. Form a list with the cubes li ∧ lj , and shuffle
it in order to avoid ordering the pairs with respect to variable indices.
In the case of MYCk+PR, the clause ui,c ∨ uj,c is implied by F−, hence
(ui,c, uj,c) must be among the pairs found.

(c) If the number of pairs found did not decrease by more than 1 percent
after the latest addition of satisfying assignments, break.

3. Repeat:
(a) Partition the remaining cubes into P pieces. Use P workers in parallel

to perform incremental solving with a limit of L conflicts allowed on
the instances of the formula F using each separate piece as the set of
assumptions. Aggregate a list of refuted cubes.

(b) For each refuted cube B, append B to the formula F .
(c) If the number of refuted cubes is less than half of the previous iteration,

break.
4. Run CDCL on the final formula F that includes negations of all the refuted

cubes.

Table 4 displays the results for formulas with k ∈ {7, . . . , 10} and varying
numbers of parallel workers P .
5 http://fmv.jku.at/yalsat/

http://fmv.jku.at/yalsat/

Mycielski graphs and PR proofs 15

Table 4: Results on finding proofs for MYCk+PR. From left to right, the columns
correspond to the number of samples used for obtaining a list of cubes, the
number of cubes obtained after filtering pairs of literals, time it takes to sample
solutions using a local search solver with 20 workers and filter pairs of literals,
maximum number L of conflicts allowed to the incremental SAT solver, number
of parallel workers P , total time it takes to refute cubes and prove unsatisfiability
of the final formula F , percentage of time spent in the final CDCL run on F ,
number of iterations spent refuting cubes and adding them to the formula.

k #samples #cubes time to
cubes L P

time to
solve final% #iter

7 2000 9675 18.4s 100

1 15.4s 0.39% 2
12 5.7s 0.87% 3
25 5.3s 0.94% 4
50 6.3s 0.80% 4

8 2000 38255 2m 15s 100

1 2m 50s 0.12% 2
12 44.4s 0.43% 4
25 30.6s 0.65% 4
50 33.5s 0.60% 5

9 3000 148624 10m 37s 100

1 38m 40s 0.03% 2
12 7m 4s 0.14% 5
25 5m 22s 0.24% 6
50 3m 26s 0.26% 5

10 3000 568214 35m 18s 100

1 11h 37m 0.003% 3
12 1h 55m 0.04% 6
25 1h 7m 0.33% 5
50 42m 18s 0.32% 6

6 Conclusion

We showed that there exist short DPR−, DSPR−, and PR− proofs of the col-
orability of Mycielski graphs. Interesting questions about the proof complexity
of PR variants remain. For instance, DPR− has not been shown to separate
from ER or Frege, and even simpler questions regarding upper bounds for some
difficult tautologies are open. It is also unknown, although plausible, whether
there exists a polynomial-length SPR− proof of the Mycielski graph formulas.

Apart from our theoretical results, we encountered formulas with short res-
olution proofs for which CDCL requires substantial runtime. We developed an
automated reasoning method to solve these formulas. In future work, we plan to
study whether this method is also effective on other problems that are challenging
for CDCL.

Acknowledgements

This work has been supported by the National Science Foundation (NSF) under
grant CCF-1813993.

16 E. Yolcu et al.

References

[1] The On-Line Encyclopedia of Integer Sequences. Published electronically at
https://oeis.org/A122695

[2] Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the
SAT competition 2017. In: Proceedings of SAT Competition 2017 – Solver
and Benchmark Descriptions. vol. B-2017-1, pp. 14–15 (2017)

[3] Biere, A.: CaDiCaL at the SAT race 2019. In: Proceedings of SAT Race
2019 – Solver and Benchmark Descriptions. vol. B-2019-1, pp. 8–9 (2019)

[4] Buss, S., Pitassi, T.: Resolution and the weak pigeonhole principle. In:
Computer Science Logic, pp. 149–156 (1998)

[5] Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended
resolution. In: Theory and Applications of Satisfiability Testing – SAT 2019.
pp. 71–89 (2019)

[6] Caramia, M., Dell’Olmo, P.: Coloring graphs by iterated local search travers-
ing feasible and infeasible solutions. Discrete Applied Mathematics 156(2),
201–217 (2008)

[7] Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

[8] Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking
predicates for search problems. In: Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning. pp.
148–159 (1996)

[9] Desrosiers, C., Galinier, P., Hertz, A.: Efficient algorithms for finding critical
subgraphs. Discrete Applied Mathematics 156(2), 244–266 (2008)

[10] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving.
Electronic Notes in Theoretical Computer Science 89(4), 543–560 (2003)

[11] Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF
formulas. In: Proceedings of the Conference on Design, Automation and
Test in Europe (DATE 2003). pp. 886–891 (2003)

[12] Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 75–92 (2018)

[13] Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards.
In: NASA Formal Methods. pp. 204–210 (2019)

[14] Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension-free proof systems.
Journal of Automated Reasoning 64(3), 533–554 (2020)

[15] Kullmann, O.: On a generalization of extended resolution. Discrete Applied
Mathematics 96-97, 149–176 (1999)

[16] Marques-Silva, J.P., Sakallah, K.A.: GRASP—a new search algorithm for sat-
isfiability. In: Proceedings of the 1996 IEEE/ACM International Conference
on Computer-Aided Design. pp. 220–227 (1997)

[17] Mycielski, J.: Sur le coloriage des graphs. Colloquium Mathematicae 3(2),
161–162 (1955)

[18] Ramani, A., Aloul, F.A., Markov, I.L., Sakallah, K.A.: Breaking instance-
independent symmetries in exact graph coloring. In: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE 2004). pp.
324–329 (2004)

https://oeis.org/A122695

Mycielski graphs and PR proofs 17

[19] Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking
by simulating Zykov contraction. In: Theory and Applications of Satisfiability
Testing – SAT 2009. pp. 223–236 (2009)

[20] Trick, M.A., Yildiz, H.: A large neighborhood search heuristic for graph
coloring. In: Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. pp. 346–360 (2007)

[21] Van Gelder, A.: Another look at graph coloring via propositional satisfiability.
Discrete Applied Mathematics 156(2), 230–243 (2008)

[22] Vinyals, M.: Hard examples for common variable decision heuristics. In:
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence
(2020)

[23] Zhou, Z., Li, C.M., Huang, C., Xu, R.: An exact algorithm with learning
for the graph coloring problem. Computers and Operations Research 51,
282–301 (2014)

[24] Zhu, Q., Kitchen, N., Kuehlmann, A., Sangiovanni-Vincentelli, A.: SAT
sweeping with local observability don’t-cares. In: Proceedings of the 43rd
Annual Design Automation Conference. pp. 229–234 (2006)

	Mycielski graphs and PR proofs

