
A Flexible Proof Format for SAT
Solver-Elaborator Communication

Seulkee Baek (B), Mario Carneiro, and Marijn J.H. Heule?

Carnegie Mellon University, Pittsburgh, PA, United States
{seulkeeb,mcarneir,mheule}@andrew.cmu.edu

Abstract. We introduce FRAT, a new proof format for unsatisfiable
SAT problems, and its associated toolchain. Compared to DRAT, the
FRAT format allows solvers to include more information in proofs to re-
duce the computational cost of subsequent elaboration to LRAT. The
format is easy to parse forward and backward, and it is extensible to
future proof methods. The provision of optional proof steps allows SAT
solver developers to balance implementation effort against elaboration
time, with little to no overhead on solver time. We benchmark our FRAT
toolchain against a comparable DRAT toolchain and confirm >84% me-
dian reduction in elaboration time and >94% median decrease in peak
memory usage.

Keywords: Satisfiability · Proof format · DRAT · LRAT · FRAT.

1 Introduction

The Boolean satsifiability problem is the problem of determining, for a given
Boolean formula consisting of Boolean variables and connectives, whether there
exists a variable assignment under which the formula evaluates to true. Boolean
satisfiability (SAT) is interesting in part because there are surprisingly diverse
types of problems that can be encoded as Boolean formulas and solved efficiently
by checking their satisfiability. SAT solvers, programs that automatically solve
SAT problems, have been successfully applied to a wide range of areas, including
hardware verification [2], planning [14], and combinatorics [12].

The performance of SAT solvers has taken great strides in recent years,
and modern solvers can often solve problems involving millions of variables and
clauses, which would have been unthinkable a mere 20 years ago [15]. But this
improvement comes at the cost of significant increase in the code complexity
of SAT solvers, which makes it difficult to either assume their correctness on
faith, or certify their program correctness directly. As a result, the ability of
SAT solvers to produce independently verifiable certificates has become a press-
ing necessity. Since there is an obvious certificate format (the satisfying boolean
assignment) for satisfiable problems, the real challenge in proof-producing SAT

? Supported by the National Science Foundation under grant CCF-2010951

2 S. Baek, M. Carneiro, and M.J.H. Heule

solving is in devising a compact proof format for unsatisfiable problems, and
developing a toolchain that efficiently produces and verifies it.

The current de facto standard proof format for unsatisfiable SAT problems
is DRAT [10]. The format, as well as its predecessor DRUP, were designed with
a strong focus on quick adaptation by the community, emphasizing easy proof
emission, practically zero overhead, and reasonable validation speed [11]. The
DRAT format has become the only supported proof format in SAT Competition
and Races since 2014 due to entrants losing interest in alternatives.

DRAT is a clausal proof format [6], which means that a DRAT proof consists
of a sequence of instructions for adding and deleting clauses. It is helpful to think
of a DRAT proof as a program for modifying the ‘active multiset’ of clauses: the
initial active multiset is the clauses of the input problem, and this multiset grows
and shrinks over time as the program is executed step by step. The invariant
throughout program execution is that the active multiset at any point of time is
at least as satisfiable as the initial active multiset. This invariant holds trivially
in the beginning and after a deletion; it is also preserved by addition steps by
either RUP or RAT, which we explain shortly. The last step of a DRAT proof
is the addition of the empty clause, which ensures the unsatisfiability of the
final active multiset, and hence that of the initial active multiset, i.e. the input
problem.

Every addition step in DRAT is either a reverse unit propagation (RUP)
step [6] or a resolution asymmetric tautology (RAT) [13] step. A clause C has the
property AT (asymmetric tautology) with respect to a formula F if F,C `1 ⊥,
which is to say, there is a proof of the empty clause by unit propagation using F
and the negated literals in C. A RUP step that adds C to the active multiset F
is valid if C has property AT with respect to F . A clause l∨C has property RAT
with respect to F if for every clause l ∨D ∈ F , the clause C ∨D has property
AT with respect to F . In this case, C is not logically entailed by F , but F and
F ∧C are equisatisfiable, and a RAT step will add C to the active multiset if C
has property RAT with respect to F . (See [10] for more about the justification
for this proof system.)

DRAT has a number of advantages over formats based on more traditional
proof calculi, such as resolution or analytic tableaux. For SAT solvers, DRAT
proofs are easier to emit because CNF clauses are the native data structures
that the solvers store and manipulate internally. Whenever a solver obtains a new
clause, the clause can be simply streamed out to a proof file without any further
modification. Also, DRAT proofs are more compact than resolution proofs, as
the latter can become infeasibly large for some classes of SAT problems [7].

There is, however, room for further improvement in the DRAT format due to
the information loss incurred by DRAT proofs. Consider, for instance, the SAT
problem and proofs shown in Figure 1. The left column is the input problem
in the DIMACS format, the center column is its DRAT proof, and the right
column is the equivalent proof in the LRAT format, which can be thought of
as an enriched version of DRAT with more information. The numbers before
the first zero on lines without a “d” represent literals: positive numbers denote

A Flexible Proof Format for SAT Solver-Elaborator Communication 3

positive literals, while negative numbers denote negative literals. The first clause
of the input formula is (x1 ∨ x2 ∨ x3), or equivalently 1 2 -3 0 in DIMACS.

The first lines of both DRAT and LRAT proofs are RUP steps for adding the
clause (x1 ∨ x2), written 1 2 0. When an LRAT checker verifies this step, it is
informed of the IDs of active clauses (the trailing numbers 1 6 3) relevant for
unit propagation, in the exact order they should be used. Therefore, the LRAT
checker only has to visit the first, sixth, and third clauses and confirm that,
starting with unit literals x1, x2, they yield the new unit literals x3, x4,⊥. In
contrast, a DRAT checker verifying the same step must add the literals x1, x2

to the active multiset (in this case, the eight initial clauses) and carry out a
blind unit propagation with the whole resulting multiset until contradiction. This
omission of RUP information in DRAT proofs introduces significant overheads
in proof verification. Although the exact figures vary from problem to problem,
checking a DRAT proof typically takes approximately twice as long as solving the
original problem, whereas the verification time for an LRAT proof is negligible
compared to its solution time. This additional cost of checking DRAT proofs also
represents a lost opportunity: when a SAT solver emits a RUP step, it knows
exactly how the new clause was obtained, and this knowledge can (in theory)
be turned into an LRAT-style RUP annotation, which can cut down verification
costs significantly if conveyed to the verifier.

For the DRAT format, a design choice was made not to include such informa-
tion since demanding explicit proofs for all steps turned out to be impractical.
Although it is theoretically possible to always glean the correct RUP annotation
from the solver state, computing this information can be intricate and costly
for some types of inferences (e.g. conflict-clause minimization [22]), making it
harder to support proof logging [25]. Reducing such overheads is particularly
important for solving satisfiable formulas, as proofs are superfluous for them
and the penalty for maintaining such proofs should be minimized. We should
note, however, that proof elaboration need not be an all-or-nothing business; if
it is infeasible to demand 100% elaborated proofs, we can still ask solvers to fill
in as many gaps as it is convenient for them to do so, which would still be a
considerable improvement over handling all of it from the verifier side.

Inclusion of final clauses is another potential area for improvement over the
DRAT format. A DRAT proof typically includes many addition steps that do
not ultimately contribute to the derivation of the empty clause. This is unavoid-
able in the proof emission phase, since a SAT solver cannot know in advance
whether a given clause will be ultimately useful, and must stream out the clause
before it can find out. All such steps, however, should be dropped in the post-
processing phase in order to compress proofs and speed up verification. The
most straightforward way of doing this is processing the proof in reverse order
[6]: when processing a clause Ck+1, identify all the clauses used to derive Ck+1,
mark them as ‘used’, and move on to clause Ck. For each clause, process it if it
is marked as used, and skip it otherwise. The only caveat of this method is that
the postprocessor needs to know which clauses were present at the very end of
the proof, since there is no way to identify which clauses were used to derive the

4 S. Baek, M. Carneiro, and M.J.H. Heule

DIMACS DRAT LRAT

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

1 2 0

d 1 -3 2 0

1 3 0

d 1 4 3 0

1 0

d 1 3 0

d 1 2 0

d 1 -4 -2 0

2 0

d -1 4 2 0

d 2 -4 3 0

0

9 1 2 0 1 6 3 0

9 d 1 0

10 1 3 0 9 8 6 0

10 d 6 0

11 1 0 10 9 4 8 0

11 d 10

9

8 0

12 2 0 11 7 5 3 0

12 d 7

3 0

13 0 11 12 2 4 5 0

Fig. 1. DRAT and LRAT proofs of a SAT problem. All whitespace and alignment is
not significant; we have aligned lines of the DRAT proof with the corresponding LRAT
lines (d steps in LRAT may correspond to multiple DRAT d steps).

empty clause otherwise. Although it is possible to enumerate the final clauses
by a preliminary forward pass through a DRAT proof, this is clearly unnecessary
work since SAT solvers know exactly which clauses are present at the end, and
it is desirable to put this information in the proof in the first place.

2 The FRAT format

To address the above issues, we introduce FRAT, a new proof format designed
to allow fine-grained communication between SAT solvers and elaborators. The
main differences between FRAT and DRAT are:

(1) optional annotation of RUP steps,
(2) inclusion of final clauses, and
(3) identification of clauses by unique IDs.

We’ve already explained the rationale for (1) and (2); (3) is necessary for concise
references to clauses in deletions and RUP step annotations. More specifically,
a FRAT proof consists of the following six types of proof steps:

o: An original step; a clause from the input file. The purpose of these lines is
to name the clauses from the input with identifiers; they are not required
to come in the same order as the file, they are not required to be numbered
in order, and not all steps in the input need appear here. Proof may also
progress (with a and d steps) before all o steps are added.

a, l: An addition step, and an optional LRAT-style unit propagation proof of the
step. The proof, if provided, is a sequence of clauses in the current formula
in the order that they become unit. For solver flexibility, they are allowed to
come out of order, but the elaborator is optimized for the case where they
are correctly ordered. For a RAT step, the negative numbers in the proof

A Flexible Proof Format for SAT Solver-Elaborator Communication 5

refer to the clauses in the active set that contain the negated pivot literal,
followed by the unit propagation proof of the resolvent. See [3] for more
details on the LRAT checking algorithm.

d: A deletion step for deleting the clause with the given ID from the formula.
The literals given must match the literals in the corresponding addition step
up to permutation.

r: A relocation step. The syntax is r 〈ids〉 0, where 〈ids〉 has the form s0, t0,
. . . , sk, tk and must consist of an even number of clause IDs. It indicates
that the active clause with ID si is re-labeled and now has ID ti, for each
0 ≤ i ≤ k. (This is used for solvers that use pointer identity for clauses, but
also do garbage collection to decrease memory fragmentation.)

f: A finalization step. These steps come at the end of a proof, and provide the
list of all active clauses at the end of the proof. The clauses may come in any
order, but every step that has been added and not deleted must be present.
(For best results, clauses should be finalized in roughly reverse order of when
they were added.)

(Our modified version of CaDiCaL also outputs a seventh kind of step,
t 〈todo id〉 0, to collect statistics on code paths that produce a steps without
proofs. See Section 3 for how this information is used.)

Figure 1 is an example from [3], which includes a SAT problem in DIMACS
format, and the proofs of its unsatisfiability in DRAT and LRAT formats. It
shows how proofs are produced and elaborated via the DRAT toolchain. Figure
2 shows the corresponding problem and proofs for the FRAT toolchain. Notice
how the FRAT proof is more verbose than its DRAT counterpart and includes all
the hints for addition steps, which are reused in the subsequent LRAT proof.

Binary FRAT The files shown in Figure 2 are in the text version of the FRAT
format, but for efficiency reasons solvers may also wish to use a binary encoding.
The binary FRAT format is exactly the same in structure, but the integers are
encoded using the same variable-length integer encoding used in binary DRAT [9].
Unsigned numbers are encoded in 7-bit little endian, with the high bit set on
each byte except the last. That is, the number

n = x0 + 27x1 + · · ·+ 27kxk

(with each xi < 27) is encoded as

1x0 1x1 . . . 0xk.

Signed numbers are encoded by mapping n ≥ 0 to f(n) := 2n and −n (with
n > 0) to f(n) := 2n + 1, and then using the unsigned encoding. (Incidentally,
the mapping f is not surjective, as it misses 1. But it is used by other formats
so we have decided not to change it.)

6 S. Baek, M. Carneiro, and M.J.H. Heule

FRAT

o 1 1 2 -3 0

o 2 -1 -2 3 0

o 3 2 3 -4 0

o 4 -2 -3 4 0

o 5 -1 -3 -4 0

o 6 1 3 4 0

o 7 -1 2 4 0

o 8 1 -2 -4 0

a 9 -3 -4 0 l 5 1 8 0

a 10 -4 0 l 9 3 2 8 0

a 11 3 0

a 12 -2 0

a 13 1 0 l 12 11 1 0

a 14 0 l 13 12 10 7 0

f 1 1 2 -3 0

f 2 -2 -1 3 0

f 3 2 3 -4 0

f 4 -2 -3 4 0

f 5 -1 -3 -4 0

f 6 1 3 4 0

f 7 -1 2 4 0

f 8 1 -2 -4 0

f 9 -3 -4 0

f 10 -4 0

f 11 3 0

f 12 -2 0

f 13 1 0

f 14 0

LRAT

9 -3 -4 0 5 1 8 0

9 d 5 0

10 -4 0 9 3 2 8 0

10 d 8 3 9 0

11 3 0 10 6 7 2 0

11 d 2 6 0

12 -2 0 11 10 4 0

12 d 4 0

13 1 0 12 11 1 0

13 d 1 11 0

14 0 13 12 10 7 0

Fig. 2. FRAT and LRAT proofs of a SAT problem. To illustrate that proofs are optional,
we have omitted the proofs of steps 11 and 12 in this example. The steps must still be
legal RAT steps but the elaborator will derive the proof rather than the solver.

2.1 Flexibility and extensibility

The purpose of the FRAT format is for solvers to be able to quickly write down
what they are doing while they are doing it, with the elaborator stage “picking
up the pieces” and preparing the proof for consumption by simpler mechanisms
such as certified LRAT checkers. As such, it is important that we are able to
concisely represent all manner of proof methods used by modern SAT solvers.

The high level syntax of a FRAT file is quite simple: A sequence of “segments”,
each of which begins with a character, followed by zero or more nonzero numbers,
followed by a 0. In the binary version, each segment similarly begins with a
printable character, followed by zero or more nonzero bytes, followed by a zero
byte. (Note that continuation bytes in an unsigned number encoding are always
nonzero.) This means that it is possible to jump into a FRAT file and find segment
boundaries by searching for a nearby zero byte.

A Flexible Proof Format for SAT Solver-Elaborator Communication 7

〈proof〉 ← 〈line〉∗

〈line〉 ← 〈orig〉 | 〈add〉 | 〈del〉 | 〈final〉 | 〈reloc〉
〈add〉 ← 〈add seg〉 | 〈add seg〉 〈hint〉
〈orig〉 ← o 〈id〉 〈literal〉∗ 0

〈add seg〉 ← a 〈id〉 〈literal〉∗ 0
〈del〉 ← d 〈id〉 〈literal〉∗ 0

〈final〉 ← f 〈id〉 〈literal〉∗ 0
〈reloc〉 ← r (〈id〉 〈id〉)∗ 0
〈hint〉 ← l (〈id〉 | −〈id〉)∗ 0
〈id〉 ← 〈pos〉

〈literal〉 ← 〈pos〉 | 〈neg〉
〈neg〉 ← −〈pos〉
〈pos〉 ← [1-9] [0-9]∗

Fig. 3. Context-free grammar for the FRAT format.

text a 9 -3 -4 0 l 5 1 8 0

binary 61 09 07 09 00 6C 0A 02 10 00

Fig. 4. Comparison of binary and text formats for a step. Note that the step ID 9 uses
the unsigned encoding, but literals and LRAT style proof steps use signed encoding.

This is in contrast to binary LRAT, in which add steps are encoded as
a 〈id〉 〈literal〉∗0 (±〈id〉)∗ 0, because a random zero byte could either be the
end of a segment or the middle of an add step. Since 0x61, the ASCII repre-
sentation of a, is also a valid step ID (encoding the signed number −48), in a
sequence such as (a 〈nonzero〉∗ 0)∗, the literals and the steps cannot be locally
disambiguated.

The local disambiguation property is important for our FRAT elaborator,
because it means that we can efficiently parse FRAT files generated by solvers
backward, reading the segments in reverse order so that we can perform backward
checking in a single pass.

DRAT is based on adding clauses that are RAT with respect to the active
formula. It is quite versatile and sufficient for most common cases, covering
CDCL steps, hyper-resolution, unit propagation, blocked clause elimination and
many other techniques. However, we recognize that not all methods can be cast
into this format, or are too expensive to translate into this proof system. In
this work we define only six segment characters (a, d, f, l, o, r), that suffice
to cover methods used by SAT solvers targeting DRAT. However, the format is
forward-compatible with new kinds of proof steps, that can be indicated with
different characters.

8 S. Baek, M. Carneiro, and M.J.H. Heule

For example, CryptoMiniSat [21] is a SAT solver that also supports XOR
clause extraction and reasoning, and can derive new XOR clauses using proof
techniques such as Gaussian elimination. Encoding this in DRAT is quite compli-
cated: The XOR clauses must be Tseitin transformed into CNF, and Gaussian
elimination requires a long resolution proof. Participants in SAT competitions
therefore turn this reasoning method off as producing the DRAT proofs is either
too difficult or the performance gains are canceled out by the overhead.

FRAT resolves this impasse by allowing the solver to express itself with min-
imal encoding overhead. A hypothetical extension to FRAT would add new seg-
ment characters to allow adding and deleting XOR clauses, and a new proof
method for proof by linear algebra on these clauses. The FRAT elaborator would
be extended to support the new step kinds, and it could either perform the
expensive translation into DRAT at that stage (only doing the work when it is
known to be needed for the final proof), or it could pass the new methods on
to some XLRAT backend format that understands these steps natively. Since the
extension is backward compatible, it can be done without impacting any other
FRAT-producing solvers.

3 FRAT-producing solvers

The FRAT proof format is designed to allow conversion of DRAT-producing
solvers into FRAT-producing solvers at minimal cost, both in terms of implemen-
tation effort and impact on runtime efficiency. In order to show the feasibility of
such conversions, we chose two popular SAT solvers, CaDiCaL1 and MiniSat2,
to modify as case studies. The solvers were chosen to demonstrate two different
aspects of feasibility: since MiniSat forms the basis of the majority of modern
SAT solvers, an implementation using MiniSat shows that the format is widely
applicable, and provides code which developers can easily incorporate into a
large number of existing solvers. CaDiCaL, on the other hand, is a cutting-
edge modern solver which employs a wide range of sophisticated optimizations.
A successful conversion of CaDiCaL shows that the technology is scalable, and
is not limited to simpler toy examples.

As mentioned in Section 2, the main solver modifications required for FRAT
production are inclusions of clause IDs, finalization steps, and LRAT proof traces.
The provision of IDs requires some non-trivial modification as many solvers, in-
cluding CaDiCaL and MiniSat, do not natively keep track of clause IDs, and
DRAT proofs use literal lists up to permutation for clause identity. In CaDiCaL,
we added IDs to all clauses, leading to 8 bytes overhead per clause. Additionally,
unit clauses are tracked separately, and ensuring proper ID tracking for unit
clauses resulted in some added code complexity. In MiniSat, we achieved 0 byte
overhead by using the pointer value of clauses as their ID, with unit clauses hav-
ing computed IDs based on the literal. This requires the use of relocation steps
during garbage collection. The output of finalization steps requires identifying

1 https://github.com/digama0/cadical
2 https://github.com/digama0/minisat

https://github.com/digama0/cadical
https://github.com/digama0/minisat

A Flexible Proof Format for SAT Solver-Elaborator Communication 9

the active set from the solver state, which can be subtle depending on the solver
architecture, but is otherwise a trivial task assuming knowledge of the solver.

LRAT trace production is the heart of the work, and requires the solver to
justify each addition step. This modification is relatively easier to apply to Mini-
Sat, as it only adds clauses in a few places, and already tracks the “reasons” for
each literal in the current assignment, which makes the proof trace straightfor-
ward. In contrast, CaDiCaL has over 30 ways to add clauses; in addition to the
main CDCL loop, there are various in-processing and optimization passes that
can create new clauses.

To accommodate this complexity, we leverage the flexibility of the FRAT
format which allows optional hints to focus on the most common clause addi-
tion steps, to reap the majority of runtime advantage with only a few changes.
The FRAT elaborator falls back on the standard elaboration-by-unit propagation
when proofs are not provided, so future work can add more proofs to CaDiCaL
without any changes to the toolchain.

To maximize the efficacy of the modification, we used a simple method to find
places to add proofs. In the first pass, we added support for clause ID tracking
and finalization, and changing the output format to FRAT syntax. Since CaDi-
CaL was already producing DRAT proofs, we can easily identify the addition
and removal steps and replace them with a and d steps. Once this is done, Ca-
DiCaL is producing valid FRAT files which can pass through the elaborator and
get LRAT results, but it will be quite slow since the FRAT elaborator is essentially
acting as a less-optimized version of DRAT-trim at this point.

We then find all code paths that lead to an a step being emitted, and add
an extra call to output a step of the form t 〈todo id〉 0, where 〈todo id〉 is some
unique identifier of this position in the code. The FRAT elaborator is configured
to ignore these steps, so they have no effect, but by running the solver on bench-
marks we can count how many t steps of each kind appear, and so see which
code paths are hottest.

The basic idea is that elaborating a step that has a proof is much faster than
elaborating a step that doesn’t, but the distribution of code paths leading to
add steps is highly skewed, so adding proofs to to the top 3 or 4 paths already
decreases the elaboration time by over 70%. At the time of writing, about one
third of CaDiCaL code paths are covered, and median elaboration time is
about 15% that of DRAT-trim (see Section 5). (This is despite the fact that our
elaborator could stand to improve on low level optimizations, and runs about
twice as slow as DRAT-trim when no proofs are provided.)

4 Elaboration

The main tasks of the FRAT-to-LRAT elaborator3 are provision of missing RUP
step hints, elimination of irrelevant clause additions, and re-labeling clauses with
new IDs. These tasks are performed in two separate ‘passes’ over files, writing

3 The elaborator used for this paper can be found at https://github.com/digama0/
frat/tree/tacas.

https://github.com/digama0/frat/tree/tacas
https://github.com/digama0/frat/tree/tacas

10 S. Baek, M. Carneiro, and M.J.H. Heule

Algorithm 1 First pass (elaboration): FRAT to elaborated reversed FRAT

1: function Elaborate(cert)
2: F ← ∅, revcert← [] B F is a map ID → clause with a bool marking
3: for step in reverse(cert) do
4: case step of
5: o(i, C)⇒
6: C′ ← F.remove(i); assert C′ ' C
7: if C′.marked then revcert← revcert, o(i, C)

8: a(i, C, proof?)⇒
9: C′ ← F.remove(i); assert C′ ' C

10: if C′.marked then
11: steps′ ← case proof? of

12: ε⇒ ProveRAT(F,C)
13: l(steps)⇒ CheckHint(F,C, steps)

14: for j in {j | ±j ∈ steps′} do
15: if ¬Fj .marked then
16: Fj .marked← true
17: revcert← revcert, d(step, Fj)

18: revcert← revcert, a(i, C, l(steps′))

19: d(i, C)⇒ F.insert(i, C,marked: false)
20: f(i, C)⇒ F.insert(i, C,marked: C = ⊥)
21: r(R)⇒
22: R′ ← {(s, t) ∈ R | ∃x.(t, x) ∈ F}
23: F ← F − {(t, Ft) | (s, t) ∈ R′}+ {(s, Ft) | (s, t) ∈ R′}
24: revcert← revcert, r(R′)

25: return revcert

and reading directly to disk (so the entire proof is never in memory at once). In
the first pass, the elaborator reads the FRAT file and produces a temporary file
(which may be stored on disk or in memory depending on configuration). The
temporary file is essentially the original FRAT file with the steps put in reverse
order, while satisfying the following additional conditions:

– All a steps have annotations.
– Every clause introduced by an o, a, or r step ultimately contributes to the

proof of ⊥. Note that we consider an r step as using an old clause with the
old ID and introducing a new clause with the new ID.

– There are no f steps.

Algorithm 1 shows the pseudocode of the first pass, Elaborate(cert). Here,
cert is the FRAT proof obtained from the SAT solver, and the pass works by
iterating over its steps in reverse order, producing the temporary file revcert.
The map F maintains the active formula as a map with unique IDs for each
clause (double inserts and removes to F are always error conditions), and the
effect of each step is replayed backwards to reconstruct the solver’s state at the
point each step was produced.

A Flexible Proof Format for SAT Solver-Elaborator Communication 11

Algorithm 2 Second pass (renumbering): elaborated reversed FRAT to LRAT

1: function Renumber(Forig, revcert)
2: M ← ∅, k ← |Forig|, lrat← [] B M is a map ID → ID
3: for step in reverse(revcert) do
4: case step of
5: o(i, C)⇒ find j such that C ' (Forig)j ; M.insert(i, j)
6: a(i, C, l(steps))⇒
7: k ← k + 1; M.insert(i, k)
8: lrat← lrat, add(k, C, [±Mi | ±i ∈ steps])
9: if C = ⊥ then return lrat

10: d(i, C)⇒ lrat← lrat, del(k,M.remove(i))
11: r(R)⇒M ←M − {(s,Ms) | (s, t) ∈ R}+ {(t,Ms) | (s, t) ∈ R}
12: assert false B no proof of ⊥ found

– All d or f clauses are immediately inserted to F , but (with the exception of
the empty clause) are marked as not necessarily required for the proof, and
the d step is deferred until just before its first use (or rather, just after the
last use).

– ProveRAT(F,C), not given here, checks that C has property RAT with re-
spect to F , and produces a step list in LRAT format (where positive numbers
are clause references in a unit propagation proof, and negative numbers are
used in RAT steps, indicating the clauses to resolve against).

– CheckHint(F,C, steps) does the same thing, but it has been given a candi-
date proof, steps. It will check that steps is a valid proof, and if so, returns
it, but the steps in the unit propagation proof may be out of order (in which
case they are reordered to LRAT conformity), and if the given proof is not
salvageable, it falls back on ProveRAT(F,C) to construct the proof.

In the second pass, Renumber(Forig, revcert) reads the input DIMACS file
and the temporary file from the first pass, and produces the final result in LRAT
format. Not much checking happens in this pass, but we ensure that the o steps
in the FRAT file actually appear (up to permutation) in the input. The state that
is maintained in this pass is a list of all active clause IDs, and the corresponding
list of LRAT IDs (in which original steps are always numbered sequentially in
the file, and add/delete steps use a monotonic counter that is incremented on
each addition step).

The resulting LRAT file can then be verified by any of the verified LRAT
checkers [26] (and our toolchain also includes a built-in LRAT checker for verifi-
cation).

The 2-pass algorithm is used in order to optimize memory usage. The result
of the first pass is streamed out so that the intermediate elaboration result does
not have to be stored in memory simultaneously. Once the temporary file is
streamed out, we need at least one more pass to reverse it (even if the labels did
not need renumbering) since its steps are in reverse order.

12 S. Baek, M. Carneiro, and M.J.H. Heule

5 Test results

We performed benchmarks comparing our FRAT toolchain (modified CaDiCaL
+ FRAT-to-LRAT elaborator written in Rust) against the DRAT toolchain (stan-
dard CaDiCaL + DRAT-trim) and measured their execution times, output file
sizes, and peak memory usages while solving SAT instances in the DIMACS
format and producing their LRAT proofs. All tests were performed on Amazon
EC2 r5a.xlarge instances, running Ubuntu Server 20.04 LTS on 2.5 GHz AMD
EPYC 7000 processors with 32 GB RAM and 512 GB SSD.

The instances used in the benchmark were chosen by selecting all 97 instances
for which default-mode CaDiCaL returned ‘UNSAT’ in the 2019 SAT Race
results. One of these instances was excluded because DRAT-trim exhausted the
available 32GB memory and failed during elaboration. Although this instance
was not used for comparisons below, we note that it offers further evidence of the
FRAT toolchain’s efficient use of memory, since the FRAT-to-LRAT elaboration
of this instance succeeded on the same system. The remaining 96 instances were
used for performance comparison of the two toolchains. 4

Figures 5 and 6 show the time and memory measurements from the bench-
mark. We can see from Figure 5 that the FRAT toolchain is significantly faster
than DRAT toolchain. Although the modified CaDiCaL tends to be slightly
(6%) slower than standard CaDiCaL, that overhead is more than compensated
by a median 84% decrease in elaboration time (the sum over all instances are
1700.47 s in the DRAT toolchain vs. 381.70 s in the FRAT toolchain, so the
average is down by 77%). If we include the time of the respective solvers, the
FRAT + modified CaDiCaL toolchain takes 53.6% of the DRAT + CaDiCaL
toolchain on median. The difference in the toolchains’ time budgets is clear: the
DRAT toolchain spends 42% of its time in solving and 58% in elaboration, while
FRAT spends 85% on solving and only 15% on elaboration.

Figure 6 shows a dramatic difference in peak memory usage between the
FRAT and DRAT toolchains. On median, the FRAT toolchain used only 5.4% as
much peak memory as DRAT. (The average is 318.62 MB, which is 11.98% that
of the DRAT toolchain’s 2659.07 MB, but this is dominated by the really large
instances. The maximum memory usage was 2.99 GB for FRAT and 21.5 GB
for DRAT, but one instance exhausted the available 32 GB in DRAT and is not
included in this figure.) This result is in agreement with our initial expectations:
the FRAT toolchain’s 2-pass elaboration method allows it to limit the number of
clauses held in memory to the size of the active set used by the solver, whereas
the DRAT toolchain loads all clauses in a DRAT file into memory at once during
elaboration. This difference suggests that the FRAT toolchain can be used to
verify instances that would otherwise require more memory than the system
limit on the DRAT toolchain.

There were no noticeable differences in the sizes or verification times of LRAT
proofs produced by the two toolchains. On average, LRAT proofs produced by

4 A CSV of detailed benchmark results can be found at https://github.com/digama0/
frat/blob/tacas/benchmark/benchmark-results.csv.

https://github.com/digama0/frat/blob/tacas/benchmark/benchmark-results.csv
https://github.com/digama0/frat/blob/tacas/benchmark/benchmark-results.csv

A Flexible Proof Format for SAT Solver-Elaborator Communication 13

0 100 200 300 400
0

20

40

60

80

100

Time (minutes)

N
u
m

b
er

o
f

in
st

a
n
ce

s

FRAT total

DRAT total

FRAT elab

DRAT elab

Fig. 5. FRAT vs. DRAT time comparison. The datapoints of ‘FRAT total’ and ‘DRAT
total’ show the number of instances that each toolchain could generate LRAT proofs
for within the given time limit. The datapoints of ‘FRAT elab’ and ‘DRAT elab’ show
the number of instances whose intermediate format proof files (FRAT or DRAT) could
be elaborated to LRAT within the given time limit.

the FRAT toolchain were 1.873% smaller and 3.314% faster5 to check than those
from the DRAT toolchain.

One minor downside of the FRAT toolchain is that it requires the storage of a
temporary file during elaboration, but we do not expect this to be a problem in
practice since the temporary file is typically much smaller than either the FRAT
or LRAT file. In our test cases, the average temporary file size was 28.68% and
47.60% that of FRAT and LRAT files, respectively. In addition, users can run the
elaborator with the -m option to bypass temporary files and write the temporary
data to memory instead, which further improves performance but foregoes the
memory conservation that comes with 2-pass elaboration.

The CaDiCaL modification is only a prototype, and some of its weaknesses
show in the data. The general pattern we observed is that on problems for which
the predicted CaDiCaL code paths were taken, the generated files have a large
number of hints and the elaboration time is negligible (the “FRAT elab” line in
fig. 5); but on problems which make use of the more unusual in-processing op-
erations, many steps with no hints are given to the elaborator, and performance
becomes comparable to DRAT-trim. For solver developers, this means that there

5 One instance was omitted from the LRAT verification time comparison due to what
seems to be a bug in the standard LRAT checker included in DRAT-trim. Detailed
information regarding this instance can be found at https://github.com/digama0/
frat/blob/tacas/benchmark/README.md.

https://github.com/digama0/frat/blob/tacas/benchmark/README.md
https://github.com/digama0/frat/blob/tacas/benchmark/README.md

14 S. Baek, M. Carneiro, and M.J.H. Heule

0 5 10 15 20
0

20

40

60

80

100

Peak memory usage (GB)

N
u
m

b
er

o
f

in
st

a
n
ce

s

FRAT

DRAT

Fig. 6. FRAT vs. DRAT peak memory usage comparison. Each datapoint shows the
number of instances that each toolchain could successfully generate LRAT proofs for
within the given peak memory usage limit.

is a very direct relationship between proof annotation effort and mean solution
+ elaboration time. Currently, elaboration of FRAT files with no annotations
(the worst-case scenario for the FRAT toolchain) typically takes slightly more
than twice as long as elaboration of DRAT files with DRAT-trim, likely due to
missing optimizations from DRAT-trim that could be incorporated, but this only
underscores the effectiveness of adding hints to the format.

6 Related works

As already mentioned, the FRAT format is most closely related to the DRAT
format [8], which it seeks to replace as an intermediate output format for SAT
solvers. It is also dependent on the LRAT format and related tools [3], as the
FRAT toolchain targets LRAT as the final output format.

The GRAT format [16] and toolchain also aims to improve elaboration of
SAT unsatisfiability proofs, but takes a different approach from that of FRAT. It
retains DRAT as the intermediate format, but uses parallel processing and targets
a new final format with more information than LRAT in order to improve overall
performance. GRAT also comes with its own verified checker [17].

Specifying and verifying the program correctness of SAT solvers (sometimes
called the autarkic method, as opposed to the proof-producing skeptical method)
is a radically different approach to ensuring the correctness of SAT solvers. There
have been various efforts to verify nontrivial SAT solvers [18,20,19,4,5]. Although
these solvers have become significantly faster, they cannot compete with the

A Flexible Proof Format for SAT Solver-Elaborator Communication 15

(unverified) state-of-the-art solvers. It is also difficult to maintain and modify
certified solvers. Proving the correctness of nontrivial SAT solvers can provide
new insights about key invariants underlying the used techniques [5].

Generally speaking, devising proof formats for automated reasoning tools
and augmenting the tools with proof output capability is an active research area.
Notable examples outside SAT solving include the LFSC format for SMT solving
[23] and the TSTP format for classical first-order ATPs [24]. In particular, the
recent work on the veriT SMT solver [1] is motivated by similar rationales as
that for the FRAT toolchain; the key insight is that a proof production pipeline
is often easier to optimize on the solver side than on the elaborator side, as the
former has direct access to many types of useful information.

7 Conclusion

The test results show that the FRAT format and toolchain made significant per-
formance gains relative to their DRAT equivalents in both elaboration time and
memory usage. We take this as confirmation of our initial conjectures that (1)
there is a large amount of useful and easily extracted information in SAT solvers
that is left untapped by DRAT proofs, and (2) the use of streaming verification
is the key to verifying very large proofs that cannot be held in memory at once.

The practical ramification is that, provided that solvers produce well-anno-
tated FRAT proofs, the elaborator is no longer a bottleneck in the pipeline.
Typically, when DRAT-trim hangs it does so either by taking excessive time, or
by attempting to read in an entire proof file at once and exhausting memory
(the so-called “uncheckable” proofs that can be produced but not verified). But
FRAT-to-LRAT elaboration is typically faster than FRAT production, and the
memory consumption of the FRAT-to-LRAT elaborator at any given point is
proportional to the memory used by the solver at the same point in the proof.
Since LRAT verification is already efficient, the only remaining limiting factor is
essentially the time and memory usage of the solver itself.

In addition to performance, the other main consideration in the design of the
FRAT format and toolchain was flexibility of use and extension. The encoding
of FRAT files allows them to be read and parsed both backward and forward,
and the format can be modified to include more advanced inferences, as we
have discussed in the example of XOR steps. The optional l steps allow SAT
solvers to decide precisely when they will provide explicit proofs, thereby pro-
moting a workable compromise between implementation complexity and runtime
efficiency. SAT solver developers can begin using the format by producing the
most bare-bones FRAT proofs with no annotations (essentially DRAT proofs with
metadata for original/final clauses) and gradually work toward providing more
complete hints. We hope that this combination of efficiency and flexibility will
motivate performance-minded SAT solver developers to adopt the format and
support more robust proof production, which is presently only an afterthought
in most SAT solvers.

16 S. Baek, M. Carneiro, and M.J.H. Heule

References

1. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-grained proofs
for formula processing. Journal of Automated Reasoning pp. 1–26 (2019)

2. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Proceedings 1999 Design Automation
Conference (Cat. No. 99CH36361). pp. 317–320. IEEE (1999)

3. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: International Conference on Automated
Deduction. pp. 220–236. Springer (2017)

4. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)
NFM. LNCS, vol. 11460, pp. 148–165. Springer (2019)

5. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using imperative HOL. In: Andronick, J., Felty, A.P. (eds.) CPP. pp. 158–
171. ACM (2018)

6. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the conference on Design, Automation and Test in Europe-
Volume 1. p. 10886. IEEE Computer Society (2003)

7. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–
308 (1985)

8. Heule, M.J.H.: The DRAT format and DRAT-trim checker. arXiv preprint
arXiv:1610.06229 (2016)

9. Heule, M.J.H., Biere, A.: Clausal proof compression. In: International Workshop
on the Implementation of Logics (2015)

10. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended resolu-
tion. In: International Conference on Automated Deduction. pp. 345–359. Springer
(2013)

11. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Bridging the gap between easy generation
and efficient verification of unsatisfiability proofs. Softw. Test. Verif. Reliab. 24(8),
593–607 (Sep 2014)

12. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: International Conference
on Theory and Applications of Satisfiability Testing. pp. 228–245. Springer (2016)

13. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 355–370. Springer (2012)

14. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search. In: Proceedings of the National Conference on Artificial Intelli-
gence. pp. 1194–1201 (1996)

15. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 6: Satisfia-
bility. Addison-Wesley Professional (2015)

16. Lammich, P.: The GRAT tool chain. In: International Conference on Theory and
Applications of Satisfiability Testing. pp. 457–463. Springer (2017)

17. Lammich, P.: Efficient verified (un) SAT certificate checking. Journal of Automated
Reasoning pp. 1–20 (2019)

18. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theoretical Computer Science 411(50), 4333–4356 (2010)

19. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver.
In: International Workshop on Verification, Model Checking, and Abstract Inter-
pretation. pp. 363–378. Springer (2012)

A Flexible Proof Format for SAT Solver-Elaborator Communication 17

20. Shankar, N., Vaucher, M.: The mechanical verification of a dpll-based satisfiability
solver. Electronic Notes in Theoretical Computer Science 269, 3 – 17 (2011), pro-
ceedings of the Fifth Logical and Semantic Frameworks, with Applications Work-
shop (LSFA 2010)

21. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July
3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer (2009)

22. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) Theory
and Applications of Satisfiability Testing - SAT 2009. pp. 237–243. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

23. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods in System Design 42(1), 91–118 (2013)

24. Sutcliffe, G., Zimmer, J., Schulz, S.: Tstp data-exchange formats for automated
theorem proving tools. Distributed Constraint Problem Solving and Reasoning in
Multi-Agent Systems 112, 201–215 (2004)

25. Van Gelder, A.: Improved conflict-clause minimization leads to improved proposi-
tional proof traces. In: Proceedings of the 12th International Conference on Theory
and Applications of Satisfiability Testing. p. 141–146. SAT ’09, Springer-Verlag,
Berlin, Heidelberg (2009)

26. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical verification of SAT refutations
with extended resolution. In: International Conference on Interactive Theorem
Proving. pp. 229–244. Springer (2013)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Flexible Proof Format for SAT Solver-Elaborator Communication

