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Abstraction: Introduction

Not all constraints are easy to encode into propositional logic

▶ Abstraction and refinement

▶ Underapproximation

▶ Satisfiability modulo theories

Solution: Only encode a subset of the problem

▶ Skip the constraints that are hard to encode

▶ If the subset is UNSAT, the full problem is UNSAT

▶ If an assignment that satisfies the subset also satisfies the
full problem, then SAT

▶ Otherwise extend the subset (aka refinement)
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Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exist a cycle that visits all vertices exactly once?

Two constraints:

▶ Exactly two edges per vertex: easy cardinality constraints
▶ Exactly one cycle: hard to be compact and arc-consistent

▶ One option is to ignore the constraint: incremental SAT.
▶ Various encodings use O(|V |3). Too large for many graphs.
▶ Effective encodings are quasi-linear in the number of edges.
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Hamiltonian Cycles: Refinement

Only encode: Exactly two edges per vertex

▶ Problem: Solutions can consist of multiple cycles

▶ How to implement refinement for a multi-cycle solution?

Block at least one subcycle

▶ E.g., block the smallest cycle

▶ Only a small number of cycles
need to be blocked in practice

Constrain the cut edges

▶ At least 2 cut edges required

▶ Subcycles are an effective
heuristic to pick the cut
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Common Unfolding Multiple Boxes

(Un)folding boxes along unit lines of polyominoes only

▶ Earlier works (non-SAT): Area ∼ 90

▶ Earlier works (SAT full encoding): Area ∼ 40

▶ Our encoding (SAT abstraction): Area ∼ 180
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Common Unfolidng using Local Constraints [CADE’25]

1. Encode the existence of unfoldings as SAT formulas
2. Use efficient (local) under-approximations for encodings
3. UNSAT → no unfoldings exist
4. SAT → check satisfying assignments

Figure: Common unfolding of 3×3×13 and 3×5×9
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Points in General Position

A finite point set S in the plane is in general position if no
three points in S are on a line.
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Erdős–Szekeres Numbers

A k-gon (in S) is the vertex set of a convex k-gon

5-gon 6-gon

Theorem (Erdős & Szekeres 1935)

∀k ∈ N, ∃ a smallest integer g(k) such that every set of g(k)
points in general position contains a k-gon.

Is SAT solving suitable to answer such questions? Yes!
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Bounds for Small k

Clearly, it takes exactly three points in general position to have
a 3-gon (triangle)

Some sets of 4 points do not for a 4-gon:

How many points imply a 4-gon?
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Upperbound for 4-Gon: g(4) = 5 [Klein, 1932]

Happy ending problem
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Bound Results for 5-Gon and 6-Gon

g(5) = 9

▶ [Kalbfleisch & Stanton ’70]

g(6) = 17

▶ Computer-assisted
proof, 1500 CPU hours
[SzekeresPeters ’06]

▶ One CPU hour using a
SAT solver [Scheucher ’18]

▶ Only 10 seconds using
new encoding

Discrete Geometry 12 / 32



k-Holes

A k-hole (in S) is a k-gon containing no other points of S.

5-hole not a 6-hole

Let h(k) denote the smallest number of points that contain a
k-hole.

Erdős, 1970’s: For k fixed, does every sufficiently large point
set contain k-holes?
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k-Holes Overview

A k-hole (in S) is a k-gon containing no other points of S.

Erdős, 1970’s: For k fixed, does every sufficiently large point
set contain k-holes?

▶ 3 points ⇒ ∃ 3-hole

▶ 5 points ⇒ ∃ 4-hole

▶ 10 points ⇒ ∃ 5-hole [Harborth ’78]

▶ Arbitrarily large point sets with no 7-hole [Horton ’83]

Main open question: what about 6-hole?

▶ Lower bound of 30 [Overmars ’02]

▶ Sufficiently large point sets contain a 6-hole
[Gerken ’08 and Nicolás ’07, independently]
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Lowerbound for 5-Hole: h(5) ≥ 10

All 5-gons in these 9 points have an inner point: h(5) = 10
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Lowerbound for 6-Hole: h(6) ≥ 30

29 points, no 6-hole [Overmars ’02]

▶ Found using simulated annealing... is now easy using SAT

▶ This contains 7-gons. Each 9-gon contains a 6-hole
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No Lowerbound for 7-Hole: Horton’s Construction

21 points, no 7-hole

22 points, no 7-hole

23 points, no 7-hole 25 points, no 7-hole
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Orientation Variables

No explicit coordinates of points

Instead for every triple a < b < c,
one orientation variable Oabc to denote
whether point c is above the line ab

Triple orientations are enough
to express k-gons and k-holes

+

–

a
b

c

d

WLOG points are sorted from left to right

Not all assignments are realizable

▶ Realizability is hard [Mnëv ’88]

▶ Additional clauses eliminate many unrealizable assignments
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▶ Additional clauses eliminate many unrealizable assignments

Discrete Geometry 19 / 32



Symmetry Breaking: Sorted & Rotated Around Point 1

1

2
3

4
5

1

2
3

4
5

place leftmost point at origin

1

2
3

4
5

stretch points to the right to be
within y = x and y = −x

1
2

34
5

rotate by 45 degrees

1

2 3
4

5

projective transformation
(x, y) 7→ (y/(x+ ϵ), 1/(x+ ϵ))
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Realizability Constraints

Under the assumption that points are sorted from left to right

a
b

c

d Oabc Oabd Oacd Obcd

+ + + +

+ + + −
+ + − −
+ − − −
− − − −
− − − +
− − + +
− + + +

Block multiple sign changes with Θ(n4) (ternary) clauses
[Felsner & Weil ’01]
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Comparison to Existing Work

Szekeres and Peters (2006) solved g(6) = 17 in 63 CPU days

▶ Roughly 40 CPU hours on today’s hardware

▶ https://www.cpubenchmark.net/year-on-year.html

SAT solving, using the same abstraction, is much faster

▶ The independent SAT approaches by Marić and Scheucher
required a few CPU hours

▶ Their encodings consist of O(nk) clauses

Our O(n4) encoding for k-gons and k-holes is even faster

▶ g(6) = 17 can be solved in 10 CPU seconds

▶ About 4 orders of magnitude faster than the original proof
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Two New, Symmetric Point Sets without Hexagons
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Inside Variables

We introduce inside variables Ix;abc which are true if and only
if point x is in the triangle abc with a < x < b or b < x < c.

Four possible cases:

a b

c

x

a b

c

x

a b

c

x

a b

c

x

The left two cases with a < x < b:

Ix;abc ↔ ((
Oabc → (Oaxb ∧Oaxc)

)
∧
(
Oabc → (Oaxb ∧Oaxc)

))
The right two cases with b < x < c:

Ix;abc ↔ ((
Oabc → (Oaxc ∧Obxc)

)
∧
(
Oabc → (Oaxc ∧Obxc)

))
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Hole Variables

We introduce hole variables Habc which are true if and only if
no points occur with the triangle abc with a < b < c.

Habc ∨
∨

a<x<c

Ix;abc

∧
a<x<c

Habc ∨ Ix;abc (redundant)

Simple 6-hole encoding:∨
a,b,c∈XHabc ∀ X ⊂ S with |X| = 6
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Empty Hexagon Encoding

Given 6 points, how many empty triangles with these points
guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position:

▶ Requires assignment to four
orientation variables

▶ Includes info which points are
above/below the line a to f

a

b

c

d

e

f
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Empty Hexagon Encoding

Given 6 points, how many empty triangles with these points
guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position: 1

▶ Requires assignment to four
orientation variables

▶ Includes info which points are
above/below the line a to f

a

b

c

d

e

f

b ′
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Verification

The optimization steps are validated or part of the proof

Concurrent solving and proof checking for the first time

▶ The solver pipes the proof to a verified checker

▶ This avoids storing/writing/reading huge files

▶ Verified checker can easily catch up with the solver

CMU students have formalized and verified all parts in Lean
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Everywhere-Unbalanced Point Sets

Everywhere-unbalanced point sets:

▶ For each line through 2+ points,
unbalanced points by at least k

▶ k = 1 is trivial (a triangle)

▶ k = 2 with 12 points by Noga Alon

▶ Conjectured for every finite k

▶ Open: smallest odd configuration

Encoding into SAT:

▶ Per triple: Aabc (c above ab) and Babc (c below ab)

▶ Constraints that enforce unbalancedness

▶ Also realizability constraints
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New, Optimal Result: 21 Points and 2-Unbalanced
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Conclusions

Theorem
h(6) = 30

SAT appears to be the most effective technology to solve a
range of problems in computational geometry

Many interesting open problems:

▶ Minimum number of 4-gons / 5-gons / 6-gons

▶ Determine whether g(7) = 33

▶ Unbalanced configurations (points can be collinear)
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