SAT4MathAbstraction & Discrete Geometry

Marijn J.H. Heule

Summer School Marktoberdorf

August 7, 2025

sat4math.com

Discrete Geometry 1 / 32

Abstraction: Introduction

Not all constraints are easy to encode into propositional logic

- ► Abstraction and refinement
- ► Underapproximation
- ► Satisfiability modulo theories

Solution: Only encode a subset of the problem

- Skip the constraints that are hard to encode
- If the subset is UNSAT, the full problem is UNSAT
- ► If an assignment that satisfies the subset also satisfies the full problem, then SAT
- Otherwise extend the subset (aka refinement)

Discrete Geometry 2 / 32

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):

Does there exist a cycle that visits all vertices exactly once?

Discrete Geometry 3 / 32

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP): Does there exist a cycle that visits all vertices exactly once?

Two constraints:

- Exactly two edges per vertex: easy cardinality constraints
- Exactly one cycle: hard to be compact and arc-consistent
 - ▶ One option is to ignore the constraint: incremental SAT.
 - ▶ Various encodings use $O(|V|^3)$. Too large for many graphs.
 - ► Effective encodings are quasi-linear in the number of edges.

Discrete Geometry 3 / 3

Hamiltonian Cycles: Refinement

Only encode: Exactly two edges per vertex

- ▶ Problem: Solutions can consist of multiple cycles
- ▶ How to implement refinement for a multi-cycle solution?

Block at least one subcycle

- ► E.g., block the smallest cycle
- Only a small number of cycles need to be blocked in practice

Constrain the cut edges

- At least 2 cut edges required
- Subcycles are an effective heuristic to pick the cut

Common Unfolding Multiple Boxes

(Un)folding boxes along unit lines of polyominoes only

- ► Earlier works (non-SAT): Area ~ 90
- ► Earlier works (SAT full encoding): Area ~ 40
- ▶ Our encoding (SAT abstraction): Area ~ 180

Discrete Geometry 5 / 3

Common Unfoliding using Local Constraints [CADE'25]

- 1. Encode the existence of unfoldings as SAT formulas
- 2. Use efficient (local) under-approximations for encodings
- 3. UNSAT \rightarrow no unfoldings exist
- 4. SAT \rightarrow check satisfying assignments

Figure: Common unfolding of $3\times3\times13$ and $3\times5\times9$

Abstraction

Discrete Geometry

SAT Encoding and Results

Empty Hexagon Number

Everywhere Unbalanced

Points in General Position

A finite point set S in the plane is in general position if no three points in S are on a line.

Discrete Geometry 8 / 3

Erdős-Szekeres Numbers

A k-gon (in S) is the vertex set of a convex k-gon

Theorem (Erdős & Szekeres 1935)

 $\forall k \in \mathbb{N}, \exists$ a smallest integer g(k) such that every set of g(k) points in general position contains a k-gon.

Discrete Geometry 9 / 3:

Erdős-Szekeres Numbers

A k-gon (in S) is the vertex set of a convex k-gon

Theorem (Erdős & Szekeres 1935)

 $\forall k \in \mathbb{N}, \exists$ a smallest integer g(k) such that every set of g(k) points in general position contains a k-gon.

Is SAT solving suitable to answer such questions? Yes!

Bounds for Small k

Clearly, it takes exactly three points in general position to have a 3-gon (triangle)

Some sets of 4 points do not for a 4-gon:

Bounds for Small k

Clearly, it takes exactly three points in general position to have a 3-gon (triangle)

Some sets of 4 points do not for a 4-gon:

How many points imply a 4-gon?

Discrete Geometry 11 / 32

Discrete Geometry 11 / 32

Happy ending problem

Bound Results for 5-Gon and 6-Gon

$$g(5) = 9$$

► [Kalbfleisch & Stanton '70]

$$g(6) = 17$$

- ► Computer-assisted proof, 1500 CPU hours [SzekeresPeters '06]
- One CPU hour using a SAT solver [Scheucher '18]
- Only 10 seconds using new encoding

k-Holes

A k-hole (in S) is a k-gon containing no other points of S.

Discrete Geometry 13 / 32

k-Holes

A k-hole (in S) is a k-gon containing no other points of S.

Let h(k) denote the smallest number of points that contain a k-hole.

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

Discrete Geometry 13 / 32

k-Holes Overview

A k-hole (in S) is a k-gon containing no other points of S.

Erdős, 1970's: For k fixed, does every sufficiently large point set contain k-holes?

- ▶ 3 points $\Rightarrow \exists$ 3-hole
- ▶ 5 points $\Rightarrow \exists$ 4-hole
- ▶ 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ► Arbitrarily large point sets with no 7-hole [Horton '83]

Main open question: what about 6-hole?

- ▶ Lower bound of 30 [Overmars '02]
- Sufficiently large point sets contain a 6-hole [Gerken '08 and Nicolás '07, independently]

Discrete Geometry

14 / 32

Lowerbound for 5-Hole: $h(5) \ge 10$

All 5-gons in these 9 points have an inner point: h(5) = 10

Discrete Geometry 15 / 32

Lowerbound for 6-Hole: $h(6) \ge 30$

29 points, no 6-hole [Overmars '02]

- ► Found using simulated annealing... is now easy using SAT
- ▶ This contains 7-gons. Each 9-gon contains a 6-hole

2³ points, no 7-hole

Discrete Geometry

Abstraction

Discrete Geometry

SAT Encoding and Results

Empty Hexagon Number

Everywhere Unbalanced

Orientation Variables

No explicit coordinates of points

Instead for every triple $\alpha < b < c$, one orientation variable O_{abc} to denote whether point c is above the line αb

Triple orientations are enough to express k-gons and k-holes

19 / 32

Discrete Geometry

Orientation Variables

No explicit coordinates of points

Instead for every triple a < b < c, one orientation variable O_{abc} to denote whether point c is above the line ab

Triple orientations are enough to express k-gons and k-holes

WLOG points are sorted from left to right

Not all assignments are realizable

- ► Realizability is hard [Mnëv '88]
- ▶ Additional clauses eliminate many unrealizable assignments

Discrete Geometry 19 / 32

Symmetry Breaking: Sorted & Rotated Around Point 1

place leftmost point at origin

stretch points to the right to be within y = x and y = -x

projective transformation

 $(x,y) \mapsto (y/(x+\epsilon), 1/(x+\epsilon))$

Realizability Constraints

b

Under the assumption that points are sorted from left to right

d

O_{abc}	O_{abd}	O_{acd}	O _{bcd}
+	+	+	+

α

Realizability Constraints

Under the assumption that points are sorted from left to right

$O_{\mathfrak{a}\mathfrak{b}\mathfrak{c}}$	$O_{\mathfrak{a}\mathfrak{b}\mathfrak{d}}$	$O_{\alpha cd} \\$	O_{bcd}
+	+	+	+
+	+	+	_

Realizability Constraints

Under the assumption that points are sorted from left to right

O_{abc}	O _{abd}	O_{acd}	O _{bcd}
+	+	+	+
+	+	+	_
+	+	_	_

Realizability Constraints

Under the assumption that points are sorted from left to right

O_{abc}	O_{abd}	O_{acd}	O _{bcd}
+	+	+	+
+	+	+	_
+	+	_	_
+	_	_	_

Realizability Constraints

Under the assumption that points are sorted from left to right

$O_{\mathfrak{a}\mathfrak{b}\mathfrak{c}}$	$O_{\mathfrak{a}\mathfrak{b}\mathfrak{d}}$	$O_{\alpha cd} \\$	O_{bcd}
+	+	+	+
+	+	+	_
+	+	_	_
+	_	_	_
_	_	_	_
_	_	_	+
_	_	+	+
	+	+	+

Block multiple sign changes with $\Theta(n^4)$ (ternary) clauses [Felsner & Weil '01]

Comparison to Existing Work

Szekeres and Peters (2006) solved g(6) = 17 in 63 CPU days

- ► Roughly 40 CPU hours on today's hardware
- ▶ https://www.cpubenchmark.net/year-on-year.html

SAT solving, using the same abstraction, is much faster

- ▶ The independent SAT approaches by Marić and Scheucher required a few CPU hours
- lacktriangle Their encodings consist of $O(n^k)$ clauses

Our $O(n^4)$ encoding for k-gons and k-holes is even faster

- ▶ g(6) = 17 can be solved in 10 CPU seconds
- ▶ About 4 orders of magnitude faster than the original proof

Discrete Geometry 22 / 32

Two New, Symmetric Point Sets without Hexagons

Abstraction

Discrete Geometry

SAT Encoding and Results

Empty Hexagon Number

Everywhere Unbalanced

Inside Variables

We introduce inside variables $I_{x;abc}$ which are true if and only if point x is in the triangle abc with a < x < b or b < x < c.

Four possible cases:

Discrete Geometry

Inside Variables

We introduce inside variables $I_{x;abc}$ which are true if and only if point x is in the triangle abc with a < x < b or b < x < c.

Four possible cases:

The left two cases with a < x < b:

$$I_{x;abc} \leftrightarrow \left(\left(O_{abc} \rightarrow (\overline{O_{axb}} \wedge O_{axc}) \right) \wedge \left(\overline{O_{abc}} \rightarrow (O_{axb} \wedge \overline{O_{axc}}) \right) \right)$$

The right two cases with b < x < c:

$$I_{x;abc} \leftrightarrow \left(\left(O_{abc} \rightarrow (O_{axc} \wedge \overline{O_{bxc}}) \right) \wedge \left(\overline{O_{abc}} \rightarrow (\overline{O_{axc}} \wedge O_{bxc}) \right) \right)$$

Hole Variables

We introduce hole variables H_{abc} which are true if and only if no points occur with the triangle abc with a < b < c.

$$\begin{array}{c} H_{abc} \vee \bigvee_{a < x < c} I_{x;abc} \\ \\ \bigwedge_{a < x < c} \overline{H_{abc}} \vee \overline{I_{x;abc}} \end{array} \qquad (\mathrm{redundant}) \end{array}$$

Hole Variables

We introduce hole variables H_{abc} which are true if and only if no points occur with the triangle abc with a < b < c.

$$H_{abc} \vee \bigvee_{\alpha < x < c} I_{x;abc}$$

$$\bigwedge_{a < x < c} \overline{H_{abc}} \vee \overline{I_{x;abc}} \qquad (\mathrm{redundant})$$

Simple 6-hole encoding:

$$\bigvee\nolimits_{\alpha,b,c\in X}\overline{H_{\alpha bc}} \quad \ \forall \ X\subset S \ \text{with} \ |X|=6$$

Given 6 points, how many empty triangles with these points guarantee an empty hexagon (possibly among other points)?

Given 6 points, how many empty triangles with these points guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

Discrete Geometry 27 / 3

Given 6 points, how many empty triangles with these points guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position:

- Requires assignment to four orientation variables
- Includes info which points are above/below the line α to f

Discrete Geometry

Given 6 points, how many empty triangles with these points guarantee an empty hexagon (possibly among other points)?

If the points may not be in convex position: 10

If the points are in convex position: 1

- Requires assignment to four orientation variables
- Includes info which points are above/below the line α to f

Discrete Geometry 27 /

Verification

The optimization steps are validated or part of the proof

Concurrent solving and proof checking for the first time

- ▶ The solver pipes the proof to a verified checker
- ► This avoids storing/writing/reading huge files
- Verified checker can easily catch up with the solver

CMU students have formalized and verified all parts in Lean

Discrete Geometry 28 / 32

Abstraction

Discrete Geometry

SAT Encoding and Results

Empty Hexagon Number

Everywhere Unbalanced

Everywhere-Unbalanced Point Sets

Everywhere-unbalanced point sets:

- ► For each line through 2+ points, unbalanced points by at least k
- ightharpoonup k = 1 is trivial (a triangle)
- ightharpoonup k = 2 with 12 points by Noga Alon
- Conjectured for every finite k
- Open: smallest odd configuration

Discrete Geometry 30 /

Everywhere-Unbalanced Point Sets

Everywhere-unbalanced point sets:

- ► For each line through 2+ points, unbalanced points by at least k
- ightharpoonup k = 1 is trivial (a triangle)
- ightharpoonup k = 2 with 12 points by Noga Alon
- Conjectured for every finite k
- Open: smallest odd configuration

Encoding into SAT:

- ▶ Per triple: A_{abc} (c above ab) and B_{abc} (c below ab)
- Constraints that enforce unbalancedness
- Also realizability constraints

Discrete Geometry 30 /

New, Optimal Result: 21 Points and 2-Unbalanced

Conclusions

Theorem

$$h(6) = 30$$

SAT appears to be the most effective technology to solve a range of problems in computational geometry

Many interesting open problems:

- ▶ Minimum number of 4-gons / 5-gons / 6-gons
- ▶ Determine whether g(7) = 33
- Unbalanced configurations (points can be collinear)

Discrete Geometry 32 / 32