
SAT4Math
Introduction & Solvers

Marijn J.H. Heule

Summer School Marktoberdorf August 6, 2025

sat4math.com

SAT4Math Introduction 1 / 27

sat4math.com


AI for Mathematics

Mathematics is the perfect playground to get AI right

▶ Formal methods offers essential logic-based reasoning

▶ Highly trustworthy results thanks to (formal) proofs

SAT4Math Introduction 2 / 27



AI for Mathematics

Mathematics is the perfect playground to get AI right

▶ Formal methods offers essential logic-based reasoning

▶ Highly trustworthy results thanks to (formal) proofs

SAT4Math Introduction 2 / 27



50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2014 Boolean Erdős discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller’s Conjecture

2021 Kaplansky’s Unit Conjecture

2022 Packing Number of Square Grid

2023 Empty Hexagon in Every 30 Points

SAT4Math Introduction 3 / 27



50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2014 Boolean Erdős discrepancy problem (using a SAT solver)

2016 Boolean Pythagorean triples problem (using a SAT solver)

2018 Schur Number Five (using a SAT solver)

2019 Keller’s Conjecture (using a SAT solver)

2021 Kaplansky’s Unit Conjecture (using a SAT solver)

2022 Packing Number of Square Grid (using a SAT solver)

2023 Empty Hexagon in Every 30 Points (using a SAT solver)

SAT4Math Introduction 3 / 27



Breakthrough in SAT Solving in the Last 30 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, Walsh ’09/’21]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]

SAT4Math Introduction 4 / 27



Naive SAT Solving: Truth Table

Γ := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

p q r falsifies eval(Γ)
⊥ ⊥ ⊥ q ∨ r ⊥
⊥ ⊥ ⊤ — ⊤
⊥ ⊤ ⊥ p ∨¬q ⊥
⊥ ⊤ ⊤ p ∨¬q ⊥
⊤ ⊥ ⊥ q ∨ r ⊥
⊤ ⊥ ⊤ ¬r ∨¬p ⊥
⊤ ⊤ ⊥ — ⊤
⊤ ⊤ ⊤ ¬r ∨¬p ⊥

SAT4Math Introduction 5 / 27



Progress of SAT Solvers

0 1,000 2,000 3,000 4,000 5,000
0

100

200

300

CPU time

so
lv
ed

in
st
an

ce
s

Results on the SC2024 Benchmark Suite

kissat-2024
sbva-cadical-2023
kissat-mab-hywalk-2022
kissat-mab-2021
cadical-2019
kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-comsps-drup-2016
maple-lcm-dist-2017
lingeling-2014
abcdsat-2015
glucose-2011
glucose-2012
minisat-2008
cryptominisat-2010
lingeling-2013
precosat-2009
minisat-2006
satelite-gti-2005
rsat-2007
siege-2003
limmat-2002
zchaff-2004

SAT4Math Introduction 6 / 27



Introduction

Satisfiability for Mathematics

SAT Solvers

Computer-Generated Proofs

SAT4Math Tutorials

SAT4Math Introduction 7 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c? Yes

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c? Yes

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c? Yes

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018].

Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c? Yes

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes

SAT4Math Introduction 8 / 27



Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

SAT4Math Introduction 9 / 27



Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].

SAT4Math Introduction 9 / 27



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables pi
with i ∈ {1, 2, . . . , n} such that pi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (pa ∨ pb ∨ pc) and (¬pa ∨¬pb ∨¬pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

SAT4Math Introduction 10 / 27



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables pi
with i ∈ {1, 2, . . . , n} such that pi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (pa ∨ pb ∨ pc) and (¬pa ∨¬pb ∨¬pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

SAT4Math Introduction 10 / 27



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables pi
with i ∈ {1, 2, . . . , n} such that pi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (pa ∨ pb ∨ pc) and (¬pa ∨¬pb ∨¬pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

SAT4Math Introduction 10 / 27



Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables pi
with i ∈ {1, 2, . . . , n} such that pi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (pa ∨ pb ∨ pc) and (¬pa ∨¬pb ∨¬pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

SAT4Math Introduction 10 / 27



Media: “The Largest Math Proof Ever”

SAT4Math Introduction 11 / 27



Introduction

Satisfiability for Mathematics

SAT Solvers

Computer-Generated Proofs

SAT4Math Tutorials

SAT4Math Introduction 12 / 27



SAT Solvers are Complex Tools

Γ

SAT4Math Introduction 13 / 27



SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Local search: Given a full assignment for a formula Γ,
flip the truth values of variables until satisfying Γ.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

SAT4Math Introduction 14 / 27



SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Local search: Given a full assignment for a formula Γ,
flip the truth values of variables until satisfying Γ.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

SAT4Math Introduction 14 / 27



SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Local search: Given a full assignment for a formula Γ,
flip the truth values of variables until satisfying Γ.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

SAT4Math Introduction 14 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

1

p5 = ⊥

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

1

2

p5 = ⊥

p2 = ⊤

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

1

2

6

p5 = ⊥

p2 = ⊤

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤
p3 = ⊤
p3 = ⊥

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤
p3 = ⊤
p3 = ⊥

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤
p3 = ⊤
p3 = ⊥

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤
p3 = ⊤
p3 = ⊥

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

2

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤
p3 = ⊤
p3 = ⊥

p4 = ⊥
p1 = ⊤

SAT4Math Introduction 15 / 27



Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧
(p3 ∨¬p4 ∨ p5) ∧
(¬p2 ∨¬p3 ∨¬p4) ∧
Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

2

p5 = ⊥

p2 = ⊤

p1 = ⊥
p4 = ⊤
p3 = ⊤
p3 = ⊥

p4 = ⊥
p1 = ⊤

SAT4Math Introduction 15 / 27



CDCL Overview

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:

▶ CDCL is notoriously hard to parallelize;

▶ the representation impacts CDCL performance; and

▶ CDCL has exponential runtime on some “simple” problems.

SAT4Math Introduction 16 / 27



CDCL Overview

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:

▶ CDCL is notoriously hard to parallelize;

▶ the representation impacts CDCL performance; and

▶ CDCL has exponential runtime on some “simple” problems.

SAT4Math Introduction 16 / 27



Parallel Computing: Portfolio Solvers

The most commonly used parallel solving paradigm is portfolio:

▶ Run multiple (typically identical) solvers with different
configurations on the same formula; and

▶ Share clauses among the solvers.

Γ CDCL

CDCL

CDCL

The portfolio approach is effective on large “easy” problems,
but has difficulties to solve hard problems (out of memory).

SAT4Math Introduction 17 / 27



Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere ’11]

Cube-and-conquer splits a given problem into millions of
subproblems that are solved independently by CDCL.

Γ

CDCL

Γ1

CDCL

Γ2

CDCL

. . .

CDCL

ΓN−1

CDCL

ΓN

Efficient look-ahead splitting heuristics allow for linear
speedups even when using 1000s of cores.

Cube-and-conquer also integrated in SMT solvers

SAT4Math Introduction 18 / 27



Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere ’11]

Cube-and-conquer splits a given problem into millions of
subproblems that are solved independently by CDCL.

Γ

CDCL

Γ1

CDCL

Γ2

CDCL

. . .

CDCL

ΓN−1

CDCL

ΓN

Efficient look-ahead splitting heuristics allow for linear
speedups even when using 1000s of cores.

Cube-and-conquer also integrated in SMT solvers

SAT4Math Introduction 18 / 27



The Hidden Strength of Cube-and-Conquer

Let N denote the number of leaves in the cube-phase:

▶ the case N = 1 means pure CDCL,
▶ and very large N means pure look-ahead splitting.

Consider the total run-time (y-axis) in dependency on N (x-axis):
▶ typically, first it increases, then
▶ it decreases, but only for a large number of subproblems!

Example with Schur Triples
and 5 colors: a formula with
708 vars and 22608 clauses.

The performance tends to be
optimal when the cube and
conquer times are comparable.

SAT4Math Introduction 19 / 27



Parallel Computing: SAT Competition Cloud Track

Long tradition of SAT competitive events, starting from 1992

▶ 3 competitions in the 90s (1992,1993, 1996)

▶ 17 SAT Competitions (2002–)

▶ 5 SAT Races (2006, 2008, 2010, 2015, 2019)

▶ 1 SAT Challenge (2012)

Since SAT Competition 2020

▶ Cloud Track – evaluate distributed solvers on
the Amazon cloud. Solvers are run on 1600
virtual cores for 1000 seconds. Sponsored by
Amazon. Participants received AWS credit to
develop their solvers.

Winner of the cloud track clearly outperformed sequential winner

SAT4Math Introduction 20 / 27



Effectiveness of Cloud Solvers

0 50 100 150 200
0

100

200

300

wallclock time

so
lv
ed

in
st
an

ce
s

Results on the SC2024 Benchmark Suite

mallobsat (cloud)
kissat-2024
cadical-2019
kissat-mab-hywalk-2022
kissat-mab-2021
kissat-2020
sbva-cadical-2023
lingeling-2014
glucose-2011
maple-lcm-dist-2017
abcdsat-2015
maple-lcm-dist-cb-2018
maple-comsps-drup-2016
glucose-2012
maple-lcm-disc-cb-dl-v3-2019
cryptominisat-2010
minisat-2006
satelite-gti-2005
minisat-2008
lingeling-2013
precosat-2009
siege-2003
rsat-2007
zchaff-2004
limmat-2002

SAT4Math Introduction 21 / 27



Introduction

Satisfiability for Mathematics

SAT Solvers

Computer-Generated Proofs

SAT4Math Tutorials

SAT4Math Introduction 22 / 27



Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Implementations

▶ Lingering doubt about whether result can be trusted

▶ If find bug in tool, must rerun all prior verifications

Formally Verified Tools

▶ Hard to develop

▶ Hard to make scalable

SAT4Math Introduction 23 / 27



Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

▶ Only need to prove individual executions, not entire program

▶ Can have bugs in tool but still trust result
▶ Can we trust the checker?

▶ Simple algorithms and implementation
▶ Ideally formally verified

SAT4Math Introduction 24 / 27



Proof-Generating Tools: Arbitrarily Complex Solvers

Proof-generating tools with verified checkers is a powerful idea:

▶ Don’t worry about correctness or completeness of tools;

▶ Facilitates making tools more complex and efficient; while

▶ Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry

SAT4Math Introduction 25 / 27



Introduction

Satisfiability for Mathematics

SAT Solvers

Computer-Generated Proofs

SAT4Math Tutorials

SAT4Math Introduction 26 / 27



Tutorials on SAT for Mathematics

sat4math.com/tutorials/

DEMO

SAT4Math Introduction 27 / 27

sat4math.com/tutorials/

	Introduction
	Satisfiability for Mathematics
	SAT Solvers
	Computer-Generated Proofs
	SAT4Math Tutorials

