

ICARM Tutorial

Efficient Search for Combinatorial Objects II

Marijn J.H. Heule and Bernardo Subercaseaux

**Institute for Computer-Aided
Reasoning in Mathematics**

<https://icarm.io/> JMM booth 409

Joint Mathematics Meetings

January 6, 2026

sat4math.com/tutorials/

50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2014 Boolean Erdős discrepancy problem (using a SAT solver)

2016 Boolean Pythagorean triples problem (using a SAT solver)

2018 Schur Number Five (using a SAT solver)

2019 Keller's Conjecture (using a SAT solver)

2021 Kaplansky's Unit Conjecture (using a SAT solver)

2022 Packing Number of Square Grid (using a SAT solver)

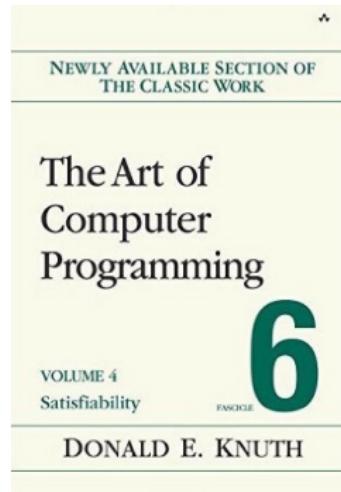
2023 Empty Hexagon in Every 30 Points (using a SAT solver)

Breakthrough in SAT Solving in the Last 30 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid '90s: formulas solvable with thousands of variables and clauses

now: formulas solvable with **millions** of variables and clauses



Edmund Clarke: “*a key technology of the 21st century*”
[Biere, Heule, vanMaaren, Walsh '09/'21]

Donald Knuth: “*evidently a killer app, because it is key to the solution of so many other problems*” [Knuth '15]

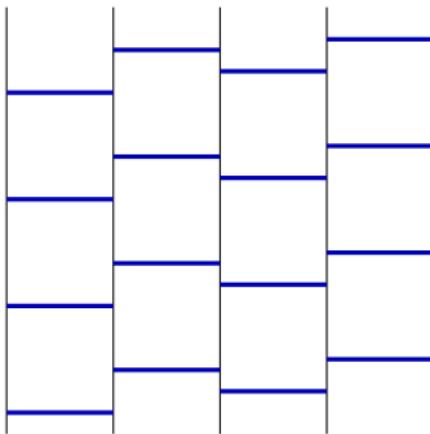
Naive SAT Solving: Truth Table

$$\Gamma := (p \vee \neg q) \wedge (q \vee r) \wedge (\neg r \vee \neg p)$$

p	q	r	falsifies	$\text{eval}(\Gamma)$
⊥	⊥	⊥	$q \vee r$	⊥
⊥	⊥	⊤	—	⊤
⊥	⊤	⊥	$p \vee \neg q$	⊥
⊥	⊤	⊤	$p \vee \neg q$	⊥
⊤	⊥	⊥	$q \vee r$	⊥
⊤	⊥	⊤	$\neg r \vee \neg p$	⊥
⊤	⊤	⊥	—	⊤
⊤	⊤	⊤	$\neg r \vee \neg p$	⊥

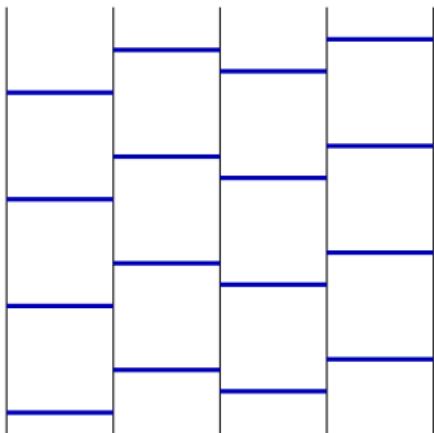
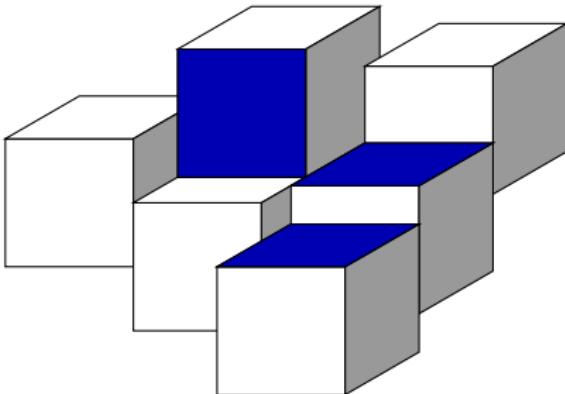
Keller's Conjecture: A Tiling Problem

Consider tiling a floor with **square tiles**, all of the same size. Is it the case that any gap-free tiling results in at least **two fully connected tiles**, i.e., tiles that have an entire edge in common?



Keller's Conjecture: A Tiling Problem

Consider tiling a floor with **square tiles**, all of the same size. Is it the case that any gap-free tiling results in at least **two fully connected tiles**, i.e., tiles that have an entire edge in common?



Keller's Conjecture: Resolved

[Brakensiek, Heule, Mackey, & Narvaez 2019]

In 1930, Ott-Heinrich Keller conjectured that this phenomenon holds in every dimension.

Keller's Conjecture.

For all $n \geq 1$, **every** tiling of the n -dimensional space with unit cubes has two which fully share a face.

Keller's Conjecture: Resolved

[Brakensiek, Heule, Mackey, & Narvaez 2019]

In 1930, Ott-Heinrich Keller conjectured that this phenomenon holds in every dimension.

Keller's Conjecture.

For all $n \geq 1$, **every** tiling of the n -dimensional space with unit cubes has two which fully share a face.

- ▶ Only true for $n \leq 7$

[Wikipedia, CC BY-SA]

GEOMETRY

Computer Search Settles 90-Year-Old Math Problem

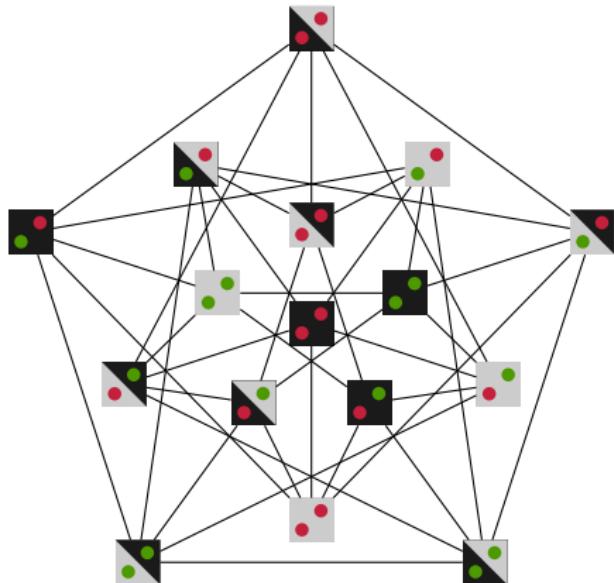
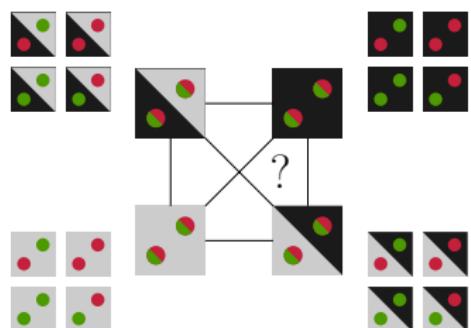
10 |

By translating Keller's conjecture into a computer-friendly search for a type of graph, researchers have finally resolved a problem about covering spaces with tiles.

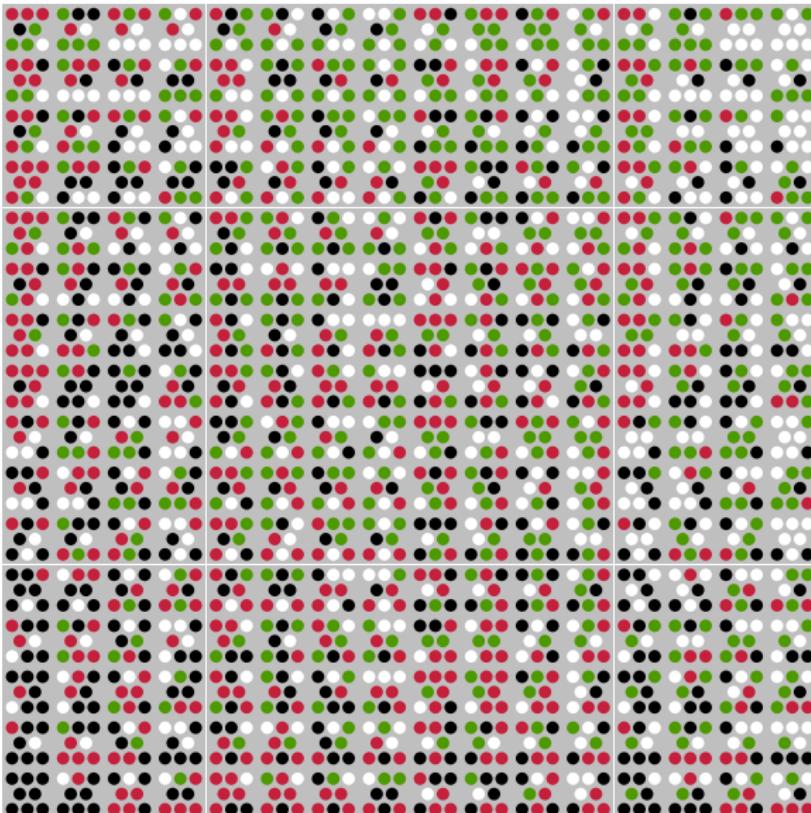
Keller Graphs

Keller's conjecture for dimension n holds if and only if the Keller graph doesn't contain a clique of size 2^n

- ▶ Graph can be partitioned into 2^n independent sets



A Counterexample to Keller's Conjecture (Dimension 8)



A Counterexample to the Unit Conjecture

Theorem ([Gardam 2021])

Let $P = \langle a, b \mid b^{-1}a^2b = a^{-2}, a^{-1}b^2a = b^{-2} \rangle$ be a torsion-free group. Set

$$\begin{aligned} u = & a(a + b + b^{-1}) + a^{-1}(a^{-1} + b + b^{-1}) + \\ & b(b + a + a^{-1}) + b^{-1}(b^{-1} + a + a^{-1}) + \\ & ab(a + b) + a(ab^{-1} + b^{-1}a) + ba(b + a) + b(ba^{-1} + a^{-1}b). \end{aligned}$$

Then $(u + abab)(u + baba) = 1$ in the ring $\mathbb{F}_2[P]$.

- ▶ The non-trivial units differ from published one, but similar
- ▶ Giles Gardam guessed P (the Promislow group)
- ▶ The SAT solver found $(u + abab)$ and $(u + baba)$

Group Ring Arithmetic Example

Example

In $\mathbb{F}_2[\mathbb{Z}/5]$, so $t^5 = 1$, we have $(1 + t + t^4)(1 + t^2 + t^3) = 1$

Group Ring Arithmetic Example

Example

In $\mathbb{F}_2[\mathbb{Z}/5]$, so $t^5 = 1$, we have $(1 + t + t^4)(1 + t^2 + t^3) = 1$

	1	t	t^2	t^3	t^4
1	1	t	t^2	t^3	t^4
t	t	t^2	t^3	t^4	1
t^2	t^2	t^3	t^4	1	t
t^3	t^3	t^4	1	t	t^2
t^4	t^4	1	t	t^2	t^3

Group Ring Arithmetic Example

Example

In $\mathbb{F}_2[\mathbb{Z}/5]$, so $t^5 = 1$, we have $(1 + t + t^4)(1 + t^2 + t^3) = 1$

	1	t	t^2	t^3	t^4
1	1	t	t^2	t^3	t^4
t	t	t^2	t^3	t^4	1
t^2	t^2	t^3	t^4	1	t
t^3	t^3	t^4	1	t	t^2
t^4	t^4	1	t	t^2	t^3

	1	t^2	t^3
1	1	t^2	t^3
t	t	t^3	t^4
t^2	t^4	t^4	t
t^3	t^4	t	t^2

Group Ring Arithmetic Example

Example

In $\mathbb{F}_2[\mathbb{Z}/5]$, so $t^5 = 1$, we have $(1 + t + t^4)(1 + t^2 + t^3) = 1$

	1	t	t^2	t^3	t^4
1	1	t	t^2	t^3	t^4
t	t	t^2	t^3	t^4	1
t^2	t^2	t^3	t^4	1	t
t^3	t^3	t^4	1	t	t^2
t^4	t^4	1	t	t^2	t^3

	1	t^2	t^3
1	1	t^2	t^3
t	t	t^3	t^4
t^2	t^4	t^4	t
t^3	t^4	t	t^2

$$1 + 2t + 2t^2 + 2t^3 + 2t^4 = 1 \quad \text{in } \mathbb{F}_2$$

Group Ring Arithmetic Example

Example

In $\mathbb{F}_2[\mathbb{Z}/5]$, so $t^5 = 1$, we have $(1 + t + t^4)(1 + t^2 + t^3) = 1$

	1	t	t^2	t^3	t^4
1	1	t	t^2	t^3	t^4
t	t	t^2	t^3	t^4	1
t^2	t^2	t^3	t^4	1	t
t^3	t^3	t^4	1	t	t^2
t^4	t^4	1	t	t^2	t^3

	1	t^2	t^3
1	1	t^2	t^3
t	t	t^3	t^4
t^2	t^4	t^4	t
t^3	t^4	t	t^2

$$1 + 2t + 2t^2 + 2t^3 + 2t^4 = 1 \quad \text{in } \mathbb{F}_2$$

Conjecture: Non-trivial units only occur when group is torsion

Group Ring Arithmetic of the Promislow Group

Recall $P = \langle a, b \mid b^{-1}a^2b = a^{-2}, a^{-1}b^2a = b^{-2} \rangle$

	1	a	a^{-1}	b	b^{-1}	a^2	ab	ab^{-1}	a^{-2}	\dots
1	1	a	a^{-1}	b	b^{-1}	a^2	ab	ab^{-1}	a^{-2}	\dots
a	a	a^2	a	ab	ab^{-1}	a^3	a^2b	a^2b^{-1}	a^{-1}	\dots
a^{-1}	a^{-1}	1	a^{-2}	$a^{-1}b$	$a^{-1}b^{-1}$	a	b	b^{-1}	a^{-3}	\dots
b	b	ba	ba^{-1}	b^2	1	ba^2	bab	bab^{-1}	a^2b	\dots
b^{-1}	b^{-1}	$b^{-1}a$	$b^{-1}a^{-1}$	1	b^{-2}	$b^{-1}a^2$	$b^{-1}ab$	$b^{-1}ab^{-1}$	a^2b^{-1}	\dots
a^2	a^2	a^3	a	a^2b	a^2b^{-1}	a^4	a^3b	a^3b^{-1}	1	\dots
ab	ab	aba	aba^{-1}	ab^2	a	$a^{-1}b$	$(ab)^2$	$abab^{-1}$	a^3b	\dots
ab^{-1}	ab^{-1}	$ab^{-1}a$	$ab^{-1}a^{-1}$	a	ab^{-2}	$a^{-1}b^{-1}$	$ab^{-1}ab$	$(ab)^{-2}$	a^3b^{-1}	\dots
a^{-2}	a^{-2}	a	a^{-3}	ba^2	$b^{-1}a^2$	1	$a^{-1}b$	$a^{-1}b^{-1}$	a^{-4}	\dots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

► Select at least one row and at least two columns

Group Ring Arithmetic of the Promislow Group

Recall $P = \langle a, b \mid b^{-1}a^2b = a^{-2}, a^{-1}b^2a = b^{-2} \rangle$

	1	a	a^{-1}	b	b^{-1}	a^2	ab	ab^{-1}	a^{-2}	\dots
1	1	a	a^{-1}	b	b^{-1}	a^2	ab	ab^{-1}	a^{-2}	\dots
a	a	a^2	a	ab	ab^{-1}	a^3	a^2b	a^2b^{-1}	a^{-1}	\dots
a^{-1}	a^{-1}	1	a^{-2}	$a^{-1}b$	$a^{-1}b^{-1}$	a	b	b^{-1}	a^{-3}	\dots
b	b	ba	ba^{-1}	b^2	1	ba^2	bab	bab^{-1}	a^2b	\dots
b^{-1}	b^{-1}	$b^{-1}a$	$b^{-1}a^{-1}$	1	b^{-2}	$b^{-1}a^2$	$b^{-1}ab$	$b^{-1}ab^{-1}$	a^2b^{-1}	\dots
a^2	a^2	a^3	a	a^2b	a^2b^{-1}	a^4	a^3b	a^3b^{-1}	1	\dots
ab	ab	aba	aba^{-1}	ab^2	a	$a^{-1}b$	$(ab)^2$	$abab^{-1}$	a^3b	\dots
ab^{-1}	ab^{-1}	$ab^{-1}a$	$ab^{-1}a^{-1}$	a	ab^{-2}	$a^{-1}b^{-1}$	$ab^{-1}ab$	$(ab)^{-2}$	a^3b^{-1}	\dots
a^{-2}	a^{-2}	a	a^{-3}	ba^2	$b^{-1}a^2$	1	$a^{-1}b$	$a^{-1}b^{-1}$	a^{-4}	\dots
⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮

- ▶ Select at least one row and at least two columns
- ▶ The number of ones should be odd

Group Ring Arithmetic of the Promislow Group

Recall $P = \langle a, b \mid b^{-1}a^2b = a^{-2}, a^{-1}b^2a = b^{-2} \rangle$

	1	a	a^{-1}	b	b^{-1}	a^2	ab	ab^{-1}	a^{-2}	\dots
1	1	a	a^{-1}	b	b^{-1}	a^2	ab	ab^{-1}	a^{-2}	\dots
a	a	a^2	a	ab	ab^{-1}	a^3	a^2b	a^2b^{-1}	a^{-1}	\dots
a^{-1}	a^{-1}	1	a^{-2}	$a^{-1}b$	$a^{-1}b^{-1}$	a	b	b^{-1}	a^{-3}	\dots
b	b	ba	ba^{-1}	b^2	1	ba^2	bab	bab^{-1}	a^2b	\dots
b^{-1}	b^{-1}	$b^{-1}a$	$b^{-1}a^{-1}$	1	b^{-2}	$b^{-1}a^2$	$b^{-1}ab$	$b^{-1}ab^{-1}$	a^2b^{-1}	\dots
a^2	a^2	a^3	a	a^2b	a^2b^{-1}	a^4	a^3b	a^3b^{-1}	1	\dots
ab	ab	aba	aba^{-1}	ab^2	a	$a^{-1}b$	$(ab)^2$	$abab^{-1}$	a^3b	\dots
ab^{-1}	ab^{-1}	$ab^{-1}a$	$ab^{-1}a^{-1}$	a	ab^{-2}	$a^{-1}b^{-1}$	$ab^{-1}ab$	$(ab)^{-2}$	a^3b^{-1}	\dots
a^{-2}	a^{-2}	a	a^{-3}	ba^2	$b^{-1}a^2$	1	$a^{-1}b$	$a^{-1}b^{-1}$	a^{-4}	\dots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

- ▶ Select at least one row and at least two columns
- ▶ The number of ones should be odd
- ▶ Each other element should occur an even number of times

Encoding Exclusive OR

Given a set of Boolean variables x_1, \dots, x_n , how to encode

$$\text{XOR}(x_1, \dots, x_n)$$

into SAT using a **linear number** of binary clauses?

The **direct encoding** requires 2^{n-1} clauses of length n :

$$\bigwedge_{\text{even } \#\neg} (\neg x_1 \vee \neg x_2 \vee \dots \vee \neg x_n)$$

Encoding Exclusive OR

Given a set of Boolean variables x_1, \dots, x_n , how to encode

$$\text{XOR}(x_1, \dots, x_n)$$

into SAT using a **linear number** of binary clauses?

The **direct encoding** requires 2^{n-1} clauses of length n :

$$\bigwedge_{\text{even } \# \neg} (\neg x_1 \vee \neg x_2 \vee \dots \vee \neg x_n)$$

Make it compact: $\text{XOR}(x_1, x_2, x_3, \neg y) \wedge \text{XOR}(x_4, \dots, x_n, y)$

Note: $\text{XOR}(x_1, x_2, x_3, \neg y) \equiv y \leftrightarrow \text{XOR}(x_1, x_2, x_3)$

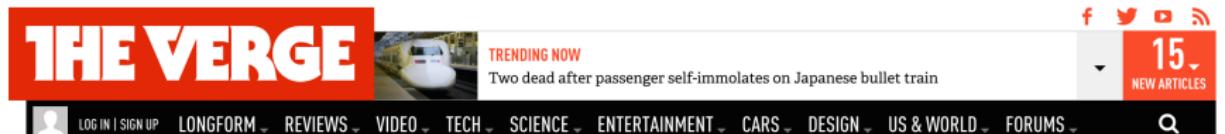
Tradeoff: more variables but fewer clauses!

Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Unit Conjecture Tutorial

Erdős Discrepancy Problem



THE VERGE

TRENDING NOW
Two dead after passenger self-immolates on Japanese bullet train

LOG IN | SIGN UP LONGFORM ▾ REVIEWS ▾ VIDEO ▾ TECH ▾ SCIENCE ▾ ENTERTAINMENT ▾ CARS ▾ DESIGN ▾ US & WORLD ▾ FORUMS ▾

SCIENCE

49 COMMENTS

A computer made a math proof the size of Wikipedia, and humans can't check it

By [valentina.palladino](#) on February 19, 2014 02:56 pm

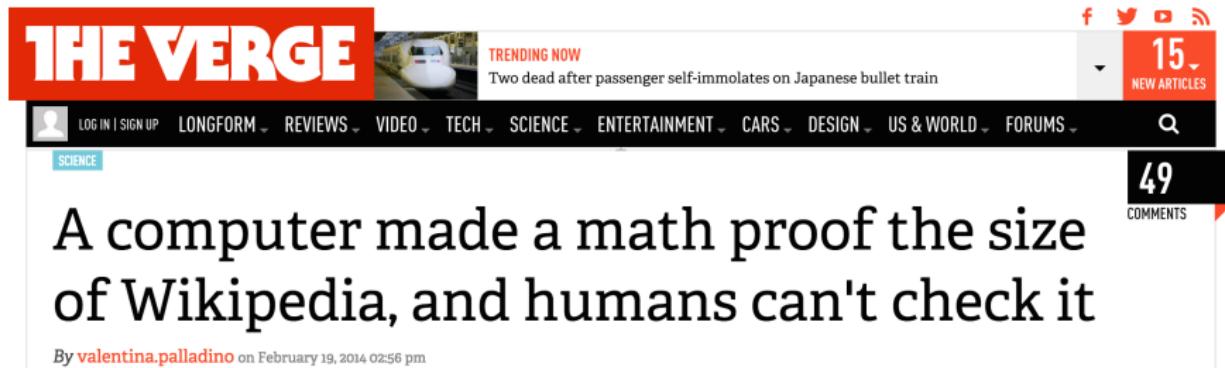
Erdős discrepancy problem with $d = 2$ solved with SAT (2014)

► The general case was solved by Terry Tao in 2015

The conjecture states that there exists no infinite sequence of $-1, +1$ such that for all k, s holds that ($x_i \in \{-1, +1\}$):

$$\left| \sum_{i=1}^s x_{ik} \right| \leq 2$$

Erdős Discrepancy Problem



The Verge website header. The logo 'THE VERGE' is in a large white font on a red background. A small image of a bullet train is to the right of the logo. A red box labeled 'TRENDING NOW' contains the text 'Two dead after passenger self-immolates on Japanese bullet train'. To the right, there are social media icons (Facebook, Twitter, etc.) and a box for '15 NEW ARTICLES'. Below the header is a navigation bar with links: LOG IN | SIGN UP, LONGFORM, REVIEWS, VIDEO, TECH, SCIENCE, ENTERTAINMENT, CARS, DESIGN, US & WORLD, FORUMS, and a search icon. A 'SCIENCE' category is highlighted with a blue box. To the right, there is a '49 COMMENTS' box.

A computer made a math proof the size of Wikipedia, and humans can't check it

By [valentina.palladino](#) on February 19, 2014 02:56 pm

Erdős discrepancy problem with $d = 2$ solved with SAT (2014)

► The general case was solved by Terry Tao in 2015

The conjecture states that there exists no infinite sequence of $-1, +1$ such that for all k, s holds that ($x_i \in \{-1, +1\}$):

$$\left| \sum_{i=1}^s x_{ik} \right| \leq 2$$

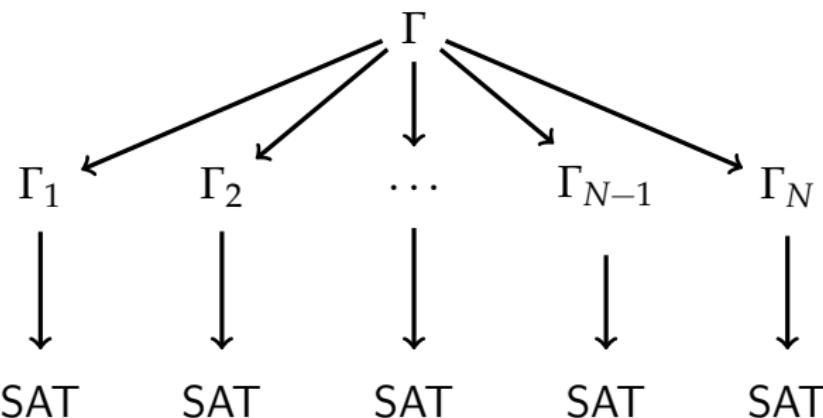
The DRAT proof was 13Gb and checked with the tool DRAT-trim [SAT14]

Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

The Cube-and-Conquer paradigm has two phases:

Cube First a look-ahead solver is employed to split the problem — the splitting tree is cut off appropriately.

Conquer At the leaves of the tree, SAT solvers are employed.



Cube-and-Conquer achieves a **good equal splitting** and the sub-problems are scheduled independently (**easy parallel SAT**).

Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Erdős Discrepancy Tutorial