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50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2014 Boolean Erdős discrepancy problem (using a SAT solver)

2016 Boolean Pythagorean triples problem (using a SAT solver)

2018 Schur Number Five (using a SAT solver)

2019 Keller’s Conjecture (using a SAT solver)

2021 Kaplansky’s Unit Conjecture (using a SAT solver)

2022 Packing Number of Square Grid (using a SAT solver)

2023 Empty Hexagon in Every 30 Points (using a SAT solver)
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Breakthrough in SAT Solving in the Last 30 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, Walsh ’09/’21]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Naive SAT Solving: Truth Table

Γ := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

p q r falsifies eval(Γ)
⊥ ⊥ ⊥ q ∨ r ⊥
⊥ ⊥ ⊤ — ⊤
⊥ ⊤ ⊥ p ∨¬q ⊥
⊥ ⊤ ⊤ p ∨¬q ⊥
⊤ ⊥ ⊥ q ∨ r ⊥
⊤ ⊥ ⊤ ¬r ∨¬p ⊥
⊤ ⊤ ⊥ — ⊤
⊤ ⊤ ⊤ ¬r ∨¬p ⊥
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Keller’s Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is
it the case that any gap-free tiling results in at least two fully
connected tiles, i.e., tiles that have an entire edge in common?
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Keller’s Conjecture: Resolved
[Brakensiek, Heule, Mackey, & Narvaez 2019]

In 1930, Ott-Heinrich Keller
conjectured that this phenomenon holds
in every dimension.

Keller’s Conjecture.
For all n ≥ 1, every tiling of the
n-dimensional space with unit cubes has
two which fully share a face.

▶ Only true for n ≤ 7

[Wikipedia, CC BY-SA]
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Keller Graphs

Keller’s conjecture for dimension n holds if and only if the
Keller graph doesn’t contain a clique of size 2n

▶ Graph can be partitioned into 2n independent sets

?
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A Counterexample to Keller’s Conjecture (Dimension 8)
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A Counterexample to the Unit Conjecture

Theorem ([Gardam 2021])

Let P = ⟨a, b | b–1a2b = a–2, a–1b2a = b–2⟩ be a torsion-free
group. Set

u = a(a + b + b–1) + a–1(a–1 + b + b–1) +

b(b + a + a–1) + b–1(b–1 + a + a–1) +

ab(a + b) + a(ab–1 + b–1a) + ba(b + a) + b(ba–1 + a–1b).

Then (u + abab)(u + baba) = 1 in the ring F2[P].

▶ The non-trivial units differ from published one, but similar

▶ Giles Gardam guessed P (the Promislow group)

▶ The SAT solver found (u + abab) and (u + baba)
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Group Ring Arithmetic Example

Example

In F2[Z/5], so t5 = 1, we have (1 + t + t4)(1 + t2 + t3) = 1

1 t t2 t3 t4

1 1 t t2 t3 t4

t t t2 t3 t4 1
t2 t2 t3 t4 1 t
t3 t3 t4 1 t t2

t4 t4 1 t t2 t3

1 t2 t3

1 1 t2 t3

t t t3 t4

t4 t4 t t2

1 + 2t + 2t2 + 2t3 + 2t4 = 1 in F2

Conjecture: Non-trivial units only occur when group is torsion
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Group Ring Arithmetic of the Promislow Group

Recall P = ⟨a, b | b–1a2b = a–2, a–1b2a = b–2⟩
1 a a–1 b b–1 a2 ab ab–1 a–2 · · ·

1 1 a a–1 b b–1 a2 ab ab–1 a–2 · · ·
a a a2 a ab ab–1 a3 a2b a2b–1 a–1 · · ·

a–1 a–1 1 a–2 a–1b a–1b–1 a b b–1 a–3 · · ·
b b ba ba–1 b2 1 ba2 bab bab–1 a2b · · ·

b–1 b–1 b–1a b–1a–1 1 b–2 b–1a2 b–1ab b–1ab–1 a2b–1 · · ·
a2 a2 a3 a a2b a2b–1 a4 a3b a3b–1 1 · · ·
ab ab aba aba–1 ab2 a a–1b (ab)2 abab–1 a3b · · ·

ab–1 ab–1 ab–1a ab–1a–1 a ab–2 a–1b–1 ab–1ab (ab)–2 a3b–1 · · ·
a–2 a–2 a a–3 ba2 b–1a2 1 a–1b a–1b–1 a–4 · · ·
...

...
...

...
...

...
...

...
...

...

▶ Select at least one row and at least two columns

▶ The number of ones should be odd

▶ Each other element should occur an even number of times
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Encoding Exclusive OR

Given a set of Boolean variables x1, . . . , xn, how to encode

XOR(x1, . . . , xn)

into SAT using a linear number of binary clauses?

The direct encoding requires 2n−1 clauses of length n:

∧
even #¬

(¬x1 ∨¬x2 ∨ · · ·∨¬xn)

Make it compact: XOR (x1, x2, x3,¬y) ∧ XOR (x4, . . . , xn, y)

Note: XOR (x1, x2, x3,¬y) ≡ y ↔ XOR (x1, x2, x3)

Tradeoff: more variables but fewer clauses!
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Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Unit Conjecture Tutorial
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Erdős Discrepancy Problem

Erdős discrepancy problem with d = 2 solved with SAT (2014)

▶ The general case was solved by Terry Tao in 2015

The conjecture states that there exists no infinite sequence of
−1, +1 such that for all k, s holds that (xi ∈ {−1,+1}):∣∣∣∣∣

s∑
i=1

xik

∣∣∣∣∣ ≤ 2

The DRAT proof was 13Gb and checked
with the tool DRAT-trim [SAT14]
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere 2011]

The Cube-and-Conquer paradigm has two phases:

Cube First a look-ahead solver is employed to split the
problem — the splitting tree is cut off appropriately.

Conquer At the leaves of the tree, SAT solvers are employed.

Γ

SAT

Γ1

SAT

Γ2

SAT

. . .

SAT

ΓN−1

SAT

ΓN

Cube-and-Conquer achieves a good equal splitting and the
sub-problems are scheduled independently (easy parallel SAT).
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Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Erdős Discrepancy Tutorial
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