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AI for Mathematics

Mathematics is the perfect playground to get AI right

▶ Formal methods offers essential logic-based reasoning

▶ Highly trustworthy results thanks to (formal) proofs
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50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2014 Boolean Erdős discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller’s Conjecture

2021 Kaplansky’s Unit Conjecture

2022 Packing Number of Square Grid

2023 Empty Hexagon in Every 30 Points
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Breakthrough in SAT Solving in the Last 30 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, Walsh ’09/’21]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Naive SAT Solving: Truth Table

Γ := (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

p q r falsifies eval(Γ)
⊥ ⊥ ⊥ q ∨ r ⊥
⊥ ⊥ ⊤ — ⊤
⊥ ⊤ ⊥ p ∨¬q ⊥
⊥ ⊤ ⊤ p ∨¬q ⊥
⊤ ⊥ ⊥ q ∨ r ⊥
⊤ ⊥ ⊤ ¬r ∨¬p ⊥
⊤ ⊤ ⊥ — ⊤
⊤ ⊤ ⊤ ¬r ∨¬p ⊥
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Progress of SAT Solvers
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Results on the SC2024 Benchmark Suite

kissat-2024
sbva-cadical-2023
kissat-mab-hywalk-2022
kissat-mab-2021
cadical-2019
kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-comsps-drup-2016
maple-lcm-dist-2017
lingeling-2014
abcdsat-2015
glucose-2011
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cryptominisat-2010
lingeling-2013
precosat-2009
minisat-2006
satelite-gti-2005
rsat-2007
siege-2003
limmat-2002
zchaff-2004
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Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

▶ We will prove this during the tutorial.

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes
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Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
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Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables pi
with i ∈ {1, 2, . . . , n} such that pi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (pa ∨ pb ∨ pc) and (¬pa ∨¬pb ∨¬pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker
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Tutorials

Today:

▶ Small Ramsey numbers

▶ Small Schur numbers (if there is time)

Tomorrow (same time, same room):

▶ Kaplansky’s unit problem

▶ Erdős discrepancy problem

sat4math.com/tutorials/
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SAT Solvers are Complex Tools

Γ
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Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Implementations

▶ Lingering doubt about whether the result can be trusted

▶ If a bug is found in a tool, rerun all prior verifications

Formally Verified Tools

▶ Hard to develop

▶ Hard to make scalable
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Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

▶ Only need to prove individual executions, not entire program

▶ Can have bugs in the tool, but still trust the result
▶ Can we trust the checker?

▶ Simple algorithms and implementation
▶ Ideally formally verified
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Proof-Generating Tools: Arbitrarily Complex Solvers

Proof-generating tools with verified checkers is a powerful idea:

▶ Don’t worry about correctness or completeness of tools;

▶ Facilitates making tools more complex and efficient; while

▶ Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally-verified checkers now also used in industry
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First Tutorial: Small Ramsey Numbers

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 46

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking, it requires weeks.

Symmetry breaking validated by proof checker [CADE’15]
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Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Ramsey Numbers Tutorial

ICARM Tutorial I 16 / 17

sat4math.com/tutorials/


Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Schur Numbers Tutorial
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