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Al for Mathematics

A.IL Is Coming for Mathematics, Too Move Over, Mathematicians, Here
For thousands of years, mathematicians have adapted to the Comes AIphaPTOOf

latest advances in logic and reasoning. Are they ready for artificial ALl is getting good at math — and might soon make a worthy
intelligence?

collaborator for humans.
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Al for Mathematics

A.IL Is Coming for Mathematics, Too Move Over, Mathematicians, Here
For thousands of years, mathematicians have adapted to the Comes AIphaPTOOf

latest advances in logic and reasoning. Are they ready for artificial ALl is getting good at math — and might soon make a worthy
intelligence?

collaborator for humans.

Mathematics is the perfect playground to get Al right
» Formal methods offers essential logic-based reasoning
» Highly trustworthy results thanks to (formal) proofs
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50 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem oy
1998 Kepler Conjecture \tﬁ
2014 Boolean Erdés discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller's Conjecture

2021 Kaplansky's Unit Conjecture

2022 Packing Number of Square Grid

2023 Empty Hexagon in Every 30 Points
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Breakthrough in SAT Solving in the Last 30 Years
Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid '90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

o *
[
HANDBOOK S
:: of satisfiability
The Art of
Computer
Programming

VOLUME 4
Satisfiability et

DONALD E, KNUTH

Edmund Clarke: “a key Donald Knuth: “evidently a killer app,
technology of the 21st century”  because it is key to the solution of so
[Biere, Heule, vanMaaren, Walsh '09/'21] many other problems” [Knuth '15]
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Naive SAT Solving: Truth Table

I:
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Progress of SAT Solvers

Results on the SC2024 Benchmark Suite
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Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in @ monochromatic solution of a + b = ¢?

1+1=2 1+2=3 1+3=4
1+4=5 24+2=4 2+3=5
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Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a4+ b = ¢? Yes

1+1=2 1+2=3 1+3=4
1+4=5 24+2=4 2+3=5
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Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a4+ b = ¢? Yes

1+1=2 1+2=3 1+3=4
1+4=5 24+2=4 2+3=5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1,5(k)] can be colored with k colors while avoiding a
monochromatic solution of a +b = ¢ with a,b,c < S(k), while
this is impossible for [1,S(k)+1].

S(1) =1,5(2) =4,5(3) = 13,
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Schur's Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a4+ b = ¢? Yes
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For every positive integer k, there exists a number S(k), such
that [1,5(k)] can be colored with k colors while avoiding a
monochromatic solution of a +b = ¢ with a,b,c < S(k), while
this is impossible for [1,S(k)+1].
S(1) =1,5(2) =4,5(3) = 13,5(4) = 44 [Baumert 1965].

» We will prove this during the tutorial.
We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes
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Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a® + b? = ¢??

3+ 4= 5
82 4+ 152 = 172
102 + 242 = 262
212 4 282 = 352

ICARM Tutorial 1

62 + 82 =102
122 + 162 = 202
202 + 212 = 292
122 4 352 = 372

52 4+ 122 = 132
152 + 202 = 252
182 + 242 = 302
152 + 362 = 392

92 4 122 = 152
72 4 242 = 252
162 + 302 = 342
242 4 322 = 402



Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a® + b? = ¢??

324 42= 52 4 8 =102 524+122=132 924 122 =152
82 4+ 152 =172 122 4+ 162 =202 152 + 202 =252 72 4 242 =252
102 + 242 =262 202 4+ 212 =292 182 4 242 = 302 162 + 30% = 342
212 + 282 =352 122 4+ 352 =372 152 4 362 = 392 242 4 322 = 402

Best lower bound: a bi-coloring of [1,7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
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Pythagorean Triples Problem (Il) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a® + b? = ¢??

A bi-coloring of [1,n] is encoded using Boolean variables p;
with i € {1,2,...,n} such that p; = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a® + b? = ¢?,

two clauses are added: (p, V pp V pc) and (—pa VvV —pp V —pc).
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result in a monochromatic Pythagorean Triple a® + b? = ¢??

A bi-coloring of [1,n] is encoded using Boolean variables p;
with i € {1,2,...,n} such that p; = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a® + b? = ¢?,
two clauses are added: (p, V pp V pc) and (—pa VvV —pp V —pc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1,7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1,7825].

4 CPU years computation, but 2 days on cluster (800 cores)
200 terabytes proof, but validated with verified checker
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Tutorials

Today:
» Small Ramsey numbers
» Small Schur numbers (if there is time)

Tomorrow (same time, same room):
» Kaplansky's unit problem
» Erdos discrepancy problem

sat4math.com/tutorials/
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SAT Solvers are Complex Tools

Proofs

ICARM Tutorial | 11 /17



Automated Reasoning Programs

Reasoning

Formalized
Problem Tool

» Outcome

Standard Implementations
» Lingering doubt about whether the result can be trusted
» If a bug is found in a tool, rerun all prior verifications

Formally Verified Tools
» Hard to develop
» Hard to make scalable
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Proof-Generating Automated Reasoning Programs

Proof CheCker

Formalized Reasonmg

Problem Tool

P Qutcome

Proof-Generating Tools
» Only need to prove individual executions, not entire program

» Can have bugs in the tool, but still trust the result
» Can we trust the checker?

» Simple algorithms and implementation
» |deally formally verified
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Proof-Generating Tools: Arbitrarily Complex Solvers

Proof-generating tools with verified checkers is a powerful idea:
» Don't worry about correctness or completeness of tools;

» Facilitates making tools more complex and efficient; while
» Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler '17]

Formally-verified checkers now also used in industry
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First Tutorial: Small Ramsey Numbers
Ramsey Number R(k): What v
is the smallest n such that any ‘4
graph with 7 vertices has either
a clique or a co-clique of size k?

R(3) =6 ‘
R(4) =18
43 < RES;S% 'A

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking, it requires weeks.

Symmetry breaking validated by proof checker [CADE'15]
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Tutorials on SAT for Mathematics

sat4math.com/tutorials/

Ramsey Numbers Tutorial
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Tutorials on SAT for Mathematics
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Schur Numbers Tutorial
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