
Preprocessing Techniques

Marijn J.H. Heule

http://www.cs.cmu.edu/~mheule/15816-f22/

Automated Reasoning and Satisfiability
September 19, 2022

marijn@cmu.edu 1 / 45

http://www.cs.cmu.edu/~mheule/15816-f22/

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 2 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 3 / 45

Interaction between different solving approaches

encoding

reencoding

preprocessing

inprocessing

Translator

Simplifier

Clause
Learner

It all comes down to adding and removing redundant clauses

marijn@cmu.edu 4 / 45

Interaction between different solving approaches

encoding

reencoding

preprocessing

inprocessing

Translator

Simplifier

Clause
Learner

It all comes down to adding and removing redundant clauses

marijn@cmu.edu 4 / 45

Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

For unsatisfiable formulas, all clauses can be added,
including the empty clause ⊥.

A clause is redundant with respect to a formula if removing it
from the formula preserves unsatisfiability.

For satisfiable formulas, all clauses can be removed.

Challenge regarding redundant clauses:

How to check redundancy in polynomial time?

Ideally find redundant clauses in linear time

marijn@cmu.edu 5 / 45

Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

For unsatisfiable formulas, all clauses can be added,
including the empty clause ⊥.

A clause is redundant with respect to a formula if removing it
from the formula preserves unsatisfiability.

For satisfiable formulas, all clauses can be removed.

Challenge regarding redundant clauses:

How to check redundancy in polynomial time?

Ideally find redundant clauses in linear time

marijn@cmu.edu 5 / 45

Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

For unsatisfiable formulas, all clauses can be added,
including the empty clause ⊥.

A clause is redundant with respect to a formula if removing it
from the formula preserves unsatisfiability.

For satisfiable formulas, all clauses can be removed.

Challenge regarding redundant clauses:

How to check redundancy in polynomial time?

Ideally find redundant clauses in linear time

marijn@cmu.edu 5 / 45

Preprocessing and Inprocessing in Practice

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

R
u

n
ti

m
e

(s
ec

)

Number of solved application benchmarks of SAT Competition 2013

pre- & inprocessing disabled
only clause elimination enabled

base line without clause elimination
Lingeling version aqw (base line)

marijn@cmu.edu 6 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 7 / 45

Tautologies and Subsumption

Definition (Tautology)

A clause C is a tautology if its contains two complementary
literals x and x.

Example

The clause (a∨ b∨ b) is a tautology.

Definition (Subsumption)

Clause C subsumes clause D if and only if C ⊂ D.

Example

The clause (a∨ b) subsumes clause (a∨ b∨ c).

marijn@cmu.edu 8 / 45

Self-Subsuming Resolution

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example

Assume a CNF contains both antecedents
. . . (a∨ b∨ x)(a∨ b∨ c∨ x) . . .

If D is added, then D∨ x can be removed

which in essence removes x from D∨ x
. . . (a∨ b∨ x)(a∨ b∨ c) . . .

Initially in the SATeLite preprocessor, [EenBiere’07]
now common in most solvers (i.e., as pre- and inprocessing)

marijn@cmu.edu 9 / 45

Self-Subsuming Resolution

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example

Assume a CNF contains both antecedents
. . . (a∨ b∨ x)(a∨ b∨ c∨ x) . . .

If D is added, then D∨ x can be removed

which in essence removes x from D∨ x
. . . (a∨ b∨ x)(a∨ b∨ c) . . .

Initially in the SATeLite preprocessor, [EenBiere’07]
now common in most solvers (i.e., as pre- and inprocessing)

marijn@cmu.edu 9 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(a∨b∨ c) ∧ (a∨b∨ c) ∧
(a∨b∨ c) ∧ (a∨b∨ c) ∧
(a∨b∨d) ∧ (a∨b∨d) ∧
(a∨ c∨d) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a∨b∨ c) ∧ (a∨b∨ c) ∧
(a∨b∨d) ∧ (a∨b∨d) ∧
(a∨ c∨d) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a∨b) ∧ (a∨b∨ c) ∧
(a∨b∨d) ∧ (a∨b∨d) ∧
(a∨ c∨d) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a∨b) ∧ (a∨ c) ∧
(a∨b∨d) ∧ (a∨b∨d) ∧
(a∨ c∨d) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a∨b) ∧ (a∨ c) ∧
(a∨b) ∧ (a∨b∨d) ∧
(a∨ c∨d) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a∨b) ∧ (a∨ c) ∧
(a∨b) ∧ (a∨b∨d) ∧
(a∨ c) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a) ∧ (a∨ c) ∧
(a∨b) ∧ (a∨b∨d) ∧
(a∨ c) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
(a) ∧ (a) ∧
(a∨b) ∧ (a∨b∨d) ∧
(a∨ c) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Self-Subsuming Example

Self-Subsuming Resolution

C∨ x D∨ x
D

C ⊆ D (a∨ b∨ x) (a∨ b∨ c∨ x)
(a∨ b∨ c)

resolvent D subsumes second antecedent D∨ x

Example: Remove literals using self-subsumption

(b∨ c) ∧ (a∨b∨ c) ∧
() ∧ (a) ∧
(a∨b) ∧ (a∨b∨d) ∧
(a∨ c) ∧ (a∨ c∨d)

marijn@cmu.edu 10 / 45

Implementing Subsumption

Definition (Subsumption)

Clause C subsumes clause D if and only if C ⊂ D.

Example

The clause (a∨ b) subsumes clause (a∨ b∨ c).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F \ C then

remove C from F

Backward Subsumption

for each clause C in formula F do
remove all clauses D in F that are subsumed by C

marijn@cmu.edu 11 / 45

Implementing Subsumption

Definition (Subsumption)

Clause C subsumes clause D if and only if C ⊂ D.

Example

The clause (a∨ b) subsumes clause (a∨ b∨ c).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F \ C then

remove C from F

Backward Subsumption

for each clause C in formula F do
remove all clauses D in F that are subsumed by C

marijn@cmu.edu 11 / 45

Implementing Subsumption

Definition (Subsumption)

Clause C subsumes clause D if and only if C ⊂ D.

Example

The clause (a∨ b) subsumes clause (a∨ b∨ c).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F \ C then

remove C from F

Backward Subsumption

for each clause C in formula F do
pick a literal x in C
remove all clauses D in Fx that are subsumed by C

marijn@cmu.edu 11 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 12 / 45

Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x∨ a1 ∨ · · ·∨ ai) and
D = (x∨ b1 ∨ · · ·∨ bj), the resolvent of C and D on variable
x (denoted by C ./x D) is (a1 ∨ · · ·∨ ai ∨ b1 ∨ · · ·∨ bj)
Resolution on sets of clauses Fx and Fx (denoted by Fx ./x Fx)
generates all non-tautological resolvents of C ∈ Fx and D ∈ Fx.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

marijn@cmu.edu 13 / 45

Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x∨ a1 ∨ · · ·∨ ai) and
D = (x∨ b1 ∨ · · ·∨ bj), the resolvent of C and D on variable
x (denoted by C ./x D) is (a1 ∨ · · ·∨ ai ∨ b1 ∨ · · ·∨ bj)
Resolution on sets of clauses Fx and Fx (denoted by Fx ./x Fx)
generates all non-tautological resolvents of C ∈ Fx and D ∈ Fx.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

marijn@cmu.edu 13 / 45

Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x∨ a1 ∨ · · ·∨ ai) and
D = (x∨ b1 ∨ · · ·∨ bj), the resolvent of C and D on variable
x (denoted by C ./x D) is (a1 ∨ · · ·∨ ai ∨ b1 ∨ · · ·∨ bj)
Resolution on sets of clauses Fx and Fx (denoted by Fx ./x Fx)
generates all non-tautological resolvents of C ∈ Fx and D ∈ Fx.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

marijn@cmu.edu 13 / 45

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Example of clause distribution
Fx︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Fx


(x∨ a) (a∨ c) (a∨ d) (a∨ a∨ b)
(x∨ b) (b∨ c) (b∨ d) (b∨ a∨ b)

(x∨ e∨ f) (c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)

In the example: |Fx ./ Fx| > |Fx|+ |Fx|

Exponential growth of clauses in general

marijn@cmu.edu 14 / 45

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Example of clause distribution
Fx︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Fx


(x∨ a) (a∨ c) (a∨ d) (a∨ a∨ b)
(x∨ b) (b∨ c) (b∨ d) (b∨ a∨ b)

(x∨ e∨ f) (c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)

In the example: |Fx ./ Fx| > |Fx|+ |Fx|

Exponential growth of clauses in general

marijn@cmu.edu 14 / 45

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Example of clause distribution
Fx︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Fx


(x∨ a) (a∨ c) (a∨ d) (a∨ a∨ b)
(x∨ b) (b∨ c) (b∨ d) (b∨ a∨ b)

(x∨ e∨ f) (c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)

In the example: |Fx ./ Fx| > |Fx|+ |Fx|

Exponential growth of clauses in general

marijn@cmu.edu 14 / 45

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx by Fx ./x Fx

Example of clause distribution
Fx︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Fx


(x∨ a) (a∨ c) (a∨ d) (a∨ a∨ b)
(x∨ b) (b∨ c) (b∨ d) (b∨ a∨ b)

(x∨ e∨ f) (c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)

In the example: |Fx ./ Fx| > |Fx|+ |Fx|

Exponential growth of clauses in general

marijn@cmu.edu 14 / 45

VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(a1, . . . , an) in the
formula and use them to reduce the number of added clauses

Possible gates

gate Gx Gx
AND(a1, . . . , an) (x∨ a1 ∨ · · ·∨ an) (x∨ a1), . . . , (x∨ an)
OR(a1, . . . , an) (x∨ a1), . . . , (x∨ an) (x∨ a1 ∨ · · ·∨ an)
ITE(c, t, f) (x∨ c∨ t), (x∨ c∨ f) (x∨ c∨ t), (x∨ c∨ f)

Variable elimination by substitution [EenBiere07]

Let Rx = Fx \Gx; Rx = Fx \Gx.

Replace Fx ∧ Fx by Gx ./x Rx ∧Gx ./x Rx.
Always less than Fx ./x Fx !

marijn@cmu.edu 15 / 45

VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(a1, . . . , an) in the
formula and use them to reduce the number of added clauses

Possible gates

gate Gx Gx
AND(a1, . . . , an) (x∨ a1 ∨ · · ·∨ an) (x∨ a1), . . . , (x∨ an)
OR(a1, . . . , an) (x∨ a1), . . . , (x∨ an) (x∨ a1 ∨ · · ·∨ an)
ITE(c, t, f) (x∨ c∨ t), (x∨ c∨ f) (x∨ c∨ t), (x∨ c∨ f)

Variable elimination by substitution [EenBiere07]

Let Rx = Fx \Gx; Rx = Fx \Gx.

Replace Fx ∧ Fx by Gx ./x Rx ∧Gx ./x Rx.
Always less than Fx ./x Fx !

marijn@cmu.edu 15 / 45

VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(a1, . . . , an) in the
formula and use them to reduce the number of added clauses

Possible gates

gate Gx Gx
AND(a1, . . . , an) (x∨ a1 ∨ · · ·∨ an) (x∨ a1), . . . , (x∨ an)
OR(a1, . . . , an) (x∨ a1), . . . , (x∨ an) (x∨ a1 ∨ · · ·∨ an)
ITE(c, t, f) (x∨ c∨ t), (x∨ c∨ f) (x∨ c∨ t), (x∨ c∨ f)

Variable elimination by substitution [EenBiere07]

Let Rx = Fx \Gx; Rx = Fx \Gx.

Replace Fx ∧ Fx by Gx ./x Rx ∧Gx ./x Rx.
Always less than Fx ./x Fx !

marijn@cmu.edu 15 / 45

VE by substitution [EenBiere’07]

Example of gate extraction: x = AND(a, b)

Fx = (x∨ c)∧ (x∨ d)∧ (x∨ a∨ b)
Fx = (x∨ a)∧ (x∨ b)∧ (x∨ e∨ f)

Example of substitution
Rx Gx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Gx

{
(x∨ a) (a∨ c) (a∨ d)
(x∨ b) (b∨ c) (b∨ d)

Rx
{
(x∨ e∨ f) (a∨ b∨ e∨ f)

using substitution: |Fx ./ Fx| < |Fx|+ |Fx|

marijn@cmu.edu 16 / 45

VE by substitution [EenBiere’07]

Example of gate extraction: x = AND(a, b)

Fx = (x∨ c)∧ (x∨ d)∧ (x∨ a∨ b)
Fx = (x∨ a)∧ (x∨ b)∧ (x∨ e∨ f)

Example of substitution
Rx Gx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Gx

{
(x∨ a) (a∨ c) (a∨ d)
(x∨ b) (b∨ c) (b∨ d)

Rx
{
(x∨ e∨ f) (a∨ b∨ e∨ f)

using substitution: |Fx ./ Fx| < |Fx|+ |Fx|

marijn@cmu.edu 16 / 45

VE by substitution [EenBiere’07]

Example of gate extraction: x = AND(a, b)

Fx = (x∨ c)∧ (x∨ d)∧ (x∨ a∨ b)
Fx = (x∨ a)∧ (x∨ b)∧ (x∨ e∨ f)

Example of substitution
Rx Gx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x∨ c) (x∨ d) (x∨ a∨ b)

Gx

{
(x∨ a) (a∨ c) (a∨ d)
(x∨ b) (b∨ c) (b∨ d)

Rx
{
(x∨ e∨ f) (a∨ b∨ e∨ f)

using substitution: |Fx ./ Fx| < |Fx|+ |Fx|

marijn@cmu.edu 16 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 17 / 45

Bounded Variable Addition

Main Idea
Given a CNF formula F, can we construct a (semi)logically
equivalent F ′ by introducing a new variable x /∈ VAR(F)
such that |F ′| < |F|?

Reverse of Variable Elimination
For example, replace the clauses

(a∨ c) (a∨ d)
(b∨ c) (b∨ d)

(c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)
by

(x∨ a) (x∨ b) (x∨ e∨ f)
(x∨ c) (x∨ d) (x∨ a∨ b)

Challenge: how to find suitable patterns for replacement?

marijn@cmu.edu 18 / 45

Bounded Variable Addition

Main Idea
Given a CNF formula F, can we construct a (semi)logically
equivalent F ′ by introducing a new variable x /∈ VAR(F)
such that |F ′| < |F|?

Reverse of Variable Elimination
For example, replace the clauses

(a∨ c) (a∨ d)
(b∨ c) (b∨ d)

(c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)
by

(x∨ a) (x∨ b) (x∨ e∨ f)
(x∨ c) (x∨ d) (x∨ a∨ b)

Challenge: how to find suitable patterns for replacement?

marijn@cmu.edu 18 / 45

Bounded Variable Addition

Main Idea
Given a CNF formula F, can we construct a (semi)logically
equivalent F ′ by introducing a new variable x /∈ VAR(F)
such that |F ′| < |F|?

Reverse of Variable Elimination
For example, replace the clauses

(a∨ c) (a∨ d)
(b∨ c) (b∨ d)

(c∨ e∨ f) (d∨ e∨ f) (a∨ b∨ e∨ f)
by

(x∨ a) (x∨ b) (x∨ e∨ f)
(x∨ c) (x∨ d) (x∨ a∨ b)

Challenge: how to find suitable patterns for replacement?

marijn@cmu.edu 18 / 45

Factoring Out Subclauses

Example

Replace

(a∨ b∨ c∨ d) (a∨ b∨ c∨ e) (a∨ b∨ c∨ f)

by

(x∨ d) (x∨ e) (x∨ f) (x∨ a∨ b∨ c)

adds 1 variable and 1 clause reduces number of literals by 2

Not compatible with VE, which would eliminate x immediately!

. . . so this does not work . . .

marijn@cmu.edu 19 / 45

Bounded Variable Addition

Example

Smallest pattern that is compatible: Replace

(a∨ d) (a∨ e)
(b∨ d) (b∨ e)
(c∨ d) (c∨ e)

by

(x∨ a) (x∨ b) (x∨ c)
(x∨ d) (x∨ e)

adds 1 variable removes 1 clause

marijn@cmu.edu 20 / 45

Bounded Variable Addition

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk)
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk)

≡
n∧
i=1

k∧
j=1

(Xi ∨ Lj)

replaced by
n∧
i=1

(y∨ Xi) ∧
k∧
j=1

(y∨ Lj)

Every k clauses share sets of literals Lj

There are n sets of literals Xi that appear in clauses with Lj

Reduction: nk− n− k clauses are removed by
replacement

marijn@cmu.edu 21 / 45

Bounded Variable Addition

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk)
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk)

≡
n∧
i=1

k∧
j=1

(Xi ∨ Lj)

replaced by
n∧
i=1

(y∨ Xi) ∧
k∧
j=1

(y∨ Lj)

Every k clauses share sets of literals Lj

There are n sets of literals Xi that appear in clauses with Lj

Reduction: nk− n− k clauses are removed by
replacement

marijn@cmu.edu 21 / 45

Bounded Variable Addition on AtMostOne (1)

Example encoding of AtMostOne (x1, x2, . . . , xn)

(x1 ∨ x2) ∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5) ∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ x6) ∧ (x2 ∨ x6) ∧ (x3 ∨ x6) ∧ (x4 ∨ x6) ∧ (x5 ∨ x6) ∧
(x1 ∨ x7) ∧ (x2 ∨ x7) ∧ (x3 ∨ x7) ∧ (x4 ∨ x7) ∧ (x5 ∨ x7) ∧
(x1 ∨ x8) ∧ (x2 ∨ x8) ∧ (x3 ∨ x8) ∧ (x4 ∨ x8) ∧ (x5 ∨ x8) ∧
(x1 ∨ x9) ∧ (x2 ∨ x9) ∧ (x3 ∨ x9) ∧ (x4 ∨ x9) ∧ (x5 ∨ x9) ∧
(x1 ∨ x10)∧ (x2 ∨ x10)∧ (x3 ∨ x10)∧ (x4 ∨ x10)∧ (x5 ∨ x10)

Replace (xi∨ xj) with i ∈ {1..5}, j ∈ {6..10} by (xi∨y), (xj∨y)

marijn@cmu.edu 22 / 45

Bounded Variable Addition on AtMostOne (1)

Example encoding of AtMostOne (x1, x2, . . . , xn)

(x1 ∨ x2) ∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5) ∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ x6) ∧ (x2 ∨ x6) ∧ (x3 ∨ x6) ∧ (x4 ∨ x6) ∧ (x5 ∨ x6) ∧
(x1 ∨ x7) ∧ (x2 ∨ x7) ∧ (x3 ∨ x7) ∧ (x4 ∨ x7) ∧ (x5 ∨ x7) ∧
(x1 ∨ x8) ∧ (x2 ∨ x8) ∧ (x3 ∨ x8) ∧ (x4 ∨ x8) ∧ (x5 ∨ x8) ∧
(x1 ∨ x9) ∧ (x2 ∨ x9) ∧ (x3 ∨ x9) ∧ (x4 ∨ x9) ∧ (x5 ∨ x9) ∧
(x1 ∨ x10)∧ (x2 ∨ x10)∧ (x3 ∨ x10)∧ (x4 ∨ x10)∧ (x5 ∨ x10)

Replace (xi∨ xj) with i ∈ {1..5}, j ∈ {6..10} by (xi∨y), (xj∨y)

marijn@cmu.edu 22 / 45

Bounded Variable Addition on AtMostOne (2)

Example encoding of AtMostOne (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4)∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5)∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ y) ∧ (x2 ∨ y) ∧ (x3 ∨ y) ∧ (x4 ∨ y) ∧ (x5 ∨ y) ∧

(x6 ∨ y) ∧ (x7 ∨ y) ∧ (x8 ∨ y) ∧ (x9 ∨ y) ∧ (x10 ∨ y)

Replace matched pattern

(x1 ∨ z)∧ (x2 ∨ z)∧ (x3 ∨ z) ∧
(x4 ∨ z)∧ (x5 ∨ z)∧ (y∨ z)

marijn@cmu.edu 23 / 45

Bounded Variable Addition on AtMostOne (2)

Example encoding of AtMostOne (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ x4)∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x1 ∨ x5)∧ (x2 ∨ x5) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x1 ∨ y) ∧ (x2 ∨ y) ∧ (x3 ∨ y) ∧ (x4 ∨ y) ∧ (x5 ∨ y) ∧

(x6 ∨ y) ∧ (x7 ∨ y) ∧ (x8 ∨ y) ∧ (x9 ∨ y) ∧ (x10 ∨ y)

Replace matched pattern

(x1 ∨ z)∧ (x2 ∨ z)∧ (x3 ∨ z) ∧
(x4 ∨ z)∧ (x5 ∨ z)∧ (y∨ z)

marijn@cmu.edu 23 / 45

Bounded Variable Addition on AtMostOne (3)

Example encoding of AtMostOne (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ z) ∧ (x2 ∨ z) ∧ (x3 ∨ z) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x4 ∨ z) ∧ (x5 ∨ z) ∧ (y∨ z) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x4 ∨ y) ∧ (x5 ∨ y) ∧ (x6 ∨ y) ∧ (x7 ∨ y) ∧ (x8 ∨ y)
(x9 ∨ y) ∧ (x10 ∨ y)

Replace matched pattern

(x6 ∨w)∧ (x7 ∨w)∧ (x8 ∨w) ∧
(x9 ∨w)∧ (x10 ∨w)∧ (y∨w)

marijn@cmu.edu 24 / 45

Bounded Variable Addition on AtMostOne (3)

Example encoding of AtMostOne (x1, x2, . . . , xn)

(x1 ∨ x2)∧ (x9 ∨ x10)∧ (x8 ∨ x10)∧ (x7 ∨ x10)∧ (x6 ∨ x10)∧
(x1 ∨ x3)∧ (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x7 ∨ x9) ∧ (x6 ∨ x9) ∧
(x1 ∨ z) ∧ (x2 ∨ z) ∧ (x3 ∨ z) ∧ (x7 ∨ x8) ∧ (x6 ∨ x8) ∧
(x4 ∨ z) ∧ (x5 ∨ z) ∧ (y∨ z) ∧ (x4 ∨ x5) ∧ (x6 ∨ x7) ∧
(x4 ∨ y) ∧ (x5 ∨ y) ∧ (x6 ∨ y) ∧ (x7 ∨ y) ∧ (x8 ∨ y)
(x9 ∨ y) ∧ (x10 ∨ y)

Replace matched pattern

(x6 ∨w)∧ (x7 ∨w)∧ (x8 ∨w) ∧
(x9 ∨w)∧ (x10 ∨w)∧ (y∨w)

marijn@cmu.edu 24 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 25 / 45

Blocked Clauses [Kullmann 1999]

Definition (Block Clause)

A clause (C∨ x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D∨ x) ∈ F, resolvent C∨D is a tautology.

Example

Consider the formula (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by c

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.

marijn@cmu.edu 26 / 45

Blocked Clauses [Kullmann 1999]

Definition (Block Clause)

A clause (C∨ x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D∨ x) ∈ F, resolvent C∨D is a tautology.

Example

Consider the formula (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by c

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.

marijn@cmu.edu 26 / 45

Blocked Clauses [Kullmann 1999]

Definition (Block Clause)

A clause (C∨ x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D∨ x) ∈ F, resolvent C∨D is a tautology.

Example

Consider the formula (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
First clause is not blocked.
Second clause is blocked by both a and c.
Third clause is blocked by c

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.

marijn@cmu.edu 26 / 45

Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause C in a CNF F, remove C from F.

Example

Consider (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
After removing either (a∨ b∨ c) or (a∨ c), the clause
(a∨ b) becomes blocked (no clause with either b or a).

An extreme case in which BCE removes all clauses!

Proposition

BCE is confluent, i.e., has a unique fixpoint

Blocked clauses stay blocked w.r.t. removal

marijn@cmu.edu 27 / 45

Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause C in a CNF F, remove C from F.

Example

Consider (a∨ b)∧ (a∨ b∨ c)∧ (a∨ c).
After removing either (a∨ b∨ c) or (a∨ c), the clause
(a∨ b) becomes blocked (no clause with either b or a).

An extreme case in which BCE removes all clauses!

Proposition

BCE is confluent, i.e., has a unique fixpoint

Blocked clauses stay blocked w.r.t. removal

marijn@cmu.edu 27 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

(c1)

(c1 ∨ t1 ∨ t2)
(c1 ∨ t1)
(c1 ∨ t2)

(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)
(o0 ∨ t3 ∨ c0)

(t1 ∨ t3 ∨ c0)
(t1 ∨ t3)
(t1 ∨ c0)

(t2 ∨ a0 ∨ b0)
(t2 ∨ a0)
(t2 ∨ b0)

(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)
(t3 ∨ a0 ∨ b0)

a0 b0 c0

and xor

or

and xort3t2

o0

c1

t1

t

¬

marijn@cmu.edu 28 / 45

BCE: Solution Reconstruction

Input:

stack S of eliminated blocked clauses

formula F (without the blocked clauses)

assignment α that satisfies F

Output: an assignment that satisfies F∧ S

1: while S.size () do

2: 〈C, l〉 := S.pop ()

3: if α falsifies C then α := αl

4: end while
5: return α

marijn@cmu.edu 29 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 30 / 45

Hyper Binary Resolution [Bacchus-AAAI02]
Definition (Hyper Binary Resolution Rule)

(x∨ x1 ∨ x2 ∨ · · ·∨ xn) (x1 ∨ x
′) (x2 ∨ x

′) . . . (xn ∨ x ′)

(x∨ x ′)

binary edge

hyper edge

hyper binary edge

x ′

x

x1

. . .x2

xn

x ′

x

Hyper Binary Resolution Rule:

combines multiple resolution steps into one

uses one n-ary clauses and multiple binary clauses

special case hyper unary resolution where x = x ′

marijn@cmu.edu 31 / 45

Hyper Binary Resolution (HBR)

Definition (Hyper Binary Resolution)
Apply the hyper binary resolution rule until fixpoint

Example
Consider
(a∨ b)∧ (a∨ c)∧ (b∨ d)∧ (b∨ e)∧ (c∨ d)∧ (c∨ e)∧ (d∨ e∨ f).

a

b

c

d

e

f

hyper binary resolvents:

(a∨ f), (b∨ f), (c∨ f)

HBR is confluent, i.e., has a unique fixpoint

marijn@cmu.edu 32 / 45

Structural Hashing of AND-gates via HBR

gate g g ⇒ f(g1, . . . gn) g ⇐ f(g1, . . . gn)
“positive” “negative”

g := or(g1, . . . , gn) (g ∨ g1 ∨ · · ·∨ gn) (g ∨ g1),. . . ,(g ∨ gn)
g := and(g1, . . . , gn) (g ∨ g1),. . . ,(g ∨ gn) (g ∨ g1 ∨ · · ·∨ gn)
g := xor(g1, g2) (g ∨ g1 ∨ g2), (g ∨ g1 ∨ g2) (g ∨ g1 ∨ g2), (g ∨ g1 ∨ g2)
g := ite(g1, g2, g3) (g ∨ g1 ∨ g2), (g ∨ g1 ∨ g3) (g ∨ g1 ∨ g2), (g ∨ g1 ∨ g3)

Definition (Structural Hashing of AND-gates)
Given a Boolean circuit with two equivalent gates, merge the gates.

Example

x

a

b

y

x = AND(a,b) : (x∨ a)∧ (x∨ b)∧ (x∨ a∨ b)

y = AND(a,b) : (y∨ a)∧ (y∨ b)∧ (y∨ a∨ b)

the two HBRs (x∨ y) and (x∨ y) express that x = y

marijn@cmu.edu 33 / 45

Non-transitive Hyper Binary Resolution (NHBR)

A problem with classic HBR is that it adds many transitive binary clauses

Example
Consider
(a∨ b)∧ (a∨ c)∧ (b∨ d)∧ (b∨ e)∧ (c∨ d)∧ (c∨ e)∧ (d∨ e∨ f).

a

b

c

d

e

f

adding (b∨ f) or (c∨ f)

makes (a∨ f) transitive

Solution [HeuleJärvisaloBiere 2013]
Add only non-transitive hyper binary resolvents
Can be implemented using an alternative unit propagation style

marijn@cmu.edu 34 / 45

Space Complexity of NHBR: Quadratic

Question regarding complexity [Biere 2009]

Are there formulas where the transitively reduced hyper binary
resolution closure is quadratic in size w.r.t. to the size of the original?

where size = #clauses or size = #literals or size = #variables

Yes!
Consider the formula Fn =

∧
1≤i≤n

(
(xi ∨ v)∧ (xi ∨w)∧ (v∨w∨ yi)

)
x1 x2 . . . xn

v w

y1 y2 . . . yn

#variables: 2n+ 2

#clauses: 3n

#literals: 7n

n2 hyper binary resolvents:

(xi ∨ yj) for 1 ≤ i, j ≤ n

marijn@cmu.edu 35 / 45

Space Complexity of NHBR: Quadratic

Question regarding complexity [Biere 2009]

Are there formulas where the transitively reduced hyper binary
resolution closure is quadratic in size w.r.t. to the size of the original?

where size = #clauses or size = #literals or size = #variables

Yes!
Consider the formula Fn =

∧
1≤i≤n

(
(xi ∨ v)∧ (xi ∨w)∧ (v∨w∨ yi)

)
x1 x2 . . . xn

v w

y1 y2 . . . yn

#variables: 2n+ 2

#clauses: 3n

#literals: 7n

n2 hyper binary resolvents:

(xi ∨ yj) for 1 ≤ i, j ≤ n

marijn@cmu.edu 35 / 45

Space Complexity of NHBR: Quadratic

Question regarding complexity [Biere 2009]

Are there formulas where the transitively reduced hyper binary
resolution closure is quadratic in size w.r.t. to the size of the original?

where size = #clauses or size = #literals or size = #variables

Yes!
Consider the formula Fn =

∧
1≤i≤n

(
(xi ∨ v)∧ (xi ∨w)∧ (v∨w∨ yi)

)
x1 x2 . . . xn

v w

y1 y2 . . . yn

#variables: 2n+ 2

#clauses: 3n

#literals: 7n

n2 hyper binary resolvents:

(xi ∨ yj) for 1 ≤ i, j ≤ n

marijn@cmu.edu 35 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 36 / 45

Redundancy

Redundant clauses:
Removal of C ∈ F preserves unsatisfiability of F

Assign all x ∈ C to false and check for a conflict in F \ {C}

Redundant literals:
Removal of x ∈ C preserves satisfiability of F

Assign all x ′ ∈ C \ {x} to false and check for a conflict in F

Redundancy elimination during pre- and in-processing
Distillation [JinSomenzi2005]

ReVivAl [PietteHamadiSäıs2008]

Unhiding [HeuleJärvisaloBiere2011]

marijn@cmu.edu 37 / 45

Redundancy

Redundant clauses:
Removal of C ∈ F preserves unsatisfiability of F

Assign all x ∈ C to false and check for a conflict in F \ {C}

Redundant literals:
Removal of x ∈ C preserves satisfiability of F

Assign all x ′ ∈ C \ {x} to false and check for a conflict in F

Redundancy elimination during pre- and in-processing
Distillation [JinSomenzi2005]

ReVivAl [PietteHamadiSäıs2008]

Unhiding [HeuleJärvisaloBiere2011]

marijn@cmu.edu 37 / 45

Redundancy

Redundant clauses:
Removal of C ∈ F preserves unsatisfiability of F

Assign all x ∈ C to false and check for a conflict in F \ {C}

Redundant literals:
Removal of x ∈ C preserves satisfiability of F

Assign all x ′ ∈ C \ {x} to false and check for a conflict in F

Redundancy elimination during pre- and in-processing
Distillation [JinSomenzi2005]

ReVivAl [PietteHamadiSäıs2008]

Unhiding [HeuleJärvisaloBiere2011]

marijn@cmu.edu 37 / 45

Unhide: Binary implication graph (BIG)

unhide: use the binary clauses to detect redundant clauses and literals

a b

c d e

f g

h a b

c d e

f g

h

(a∨ c)∧ (a∨ d)∧ (b∨ d)∧ (b∨ e)∧

(c∨ f)∧ (d∨ f)∧ (g∨ f)∧ (f∨ h)∧

(g∨ h)∧ (a∨ e∨ h)∧ (b∨ c∨ h)∧ (a∨ b∨ c∨ d∨ e∨ f∨ g∨ h)︸ ︷︷ ︸
non binary clauses

marijn@cmu.edu 38 / 45

Unhide: Transitive reduction (TRD)

transitive reduction: remove shortcuts in the binary implication graph

a b

c d e

f g

h a b

c d e

f g

h

(a∨ c)∧ (a∨ d)∧ (b∨ d)∧ (b∨ e)∧

(c∨ f)∧ (d∨ f)∧ (g∨ f)∧ (f∨ h)∧

TRD
g→ f→ h

(g∨ h)∧ (a∨ e∨ h)∧ (b∨ c∨ h)∧ (a∨ b∨ c∨ d∨ e∨ f∨ g∨ h)

marijn@cmu.edu 39 / 45

Unhide: Hidden tautology elimination (HTE) (1)

HTE removes clauses that are subsumed by an implication in BIG

a b

c d e

f g

h a b

c d e

f g

h

(a∨ c)∧ (a∨ d)∧ (b∨ d)∧ (b∨ e)∧

(c∨ f)∧ (d∨ f)∧ (g∨ f)∧ (f∨ h)∧

HTE
a→ d→ f→ h

(a∨ e∨ h)∧ (b∨ c∨ h)∧ (a∨ b∨ c∨ d∨ e∨ f∨ g∨ h)

marijn@cmu.edu 40 / 45

Unhide: Hidden tautology elimination (HTE) (2)

HTE removes clauses that are subsumed by an implication in BIG

a b

c d e

f g

h a b

c d e

f g

h

(a∨ c)∧ (a∨ d)∧ (b∨ d)∧ (b∨ e)∧

(c∨ f)∧ (d∨ f)∧ (g∨ f)∧ (f∨ h)∧

HTE
c→ f→ h

(b∨ c∨ h)∧ (a∨ b∨ c∨ d∨ e∨ f∨ g∨ h)

marijn@cmu.edu 41 / 45

Unhide: Hidden literal elimination (HLE)
HLE removes literal using the implication in BIG

a b

c d e

f g

h a b

c d e

f g

h

(a∨ c)∧ (a∨ d)∧ (b∨ d)∧ (b∨ e)∧

(c∨ f)∧ (d∨ f)∧ (g∨ f)∧ (f∨ h)∧

HLE
all but e imply h

also b implies e

(a∨ b∨ c∨ d∨ e∨ f∨ g∨ h)

marijn@cmu.edu 42 / 45

Unhide: TRD + HTE + HLE

unhide: redundancy elimination removes and adds arcs from BIG(F)

a b

c d e

f g

h a b

c d

e

f g

h

(a∨ c)∧ (a∨ d)∧ (b∨ d)∧ (b∨ e)∧

(c∨ f)∧ (d∨ f)∧ (g∨ f)∧ (f∨ h)∧ (e∨ h)

marijn@cmu.edu 43 / 45

Motivation

Subsumption

Variable Elimination

Bounded Variable Addition

Blocked Clause Elimination

Hyper Binary Resolution

Unhiding Redundancy

Concluding Remarks

marijn@cmu.edu 44 / 45

Many Techniques

Many pre- or in-processing techniques in SAT solvers:

(Self-)Subsumption

Variable Elimination

Blocked Clause Elimination

Hyper Binary Resolution

Bounded Variable Addition

Equivalent Literal Substitution

Failed Literal Elimination

Autarky Reasoning

...

... and the list is growing:

Propagation Redundant Clauses [CADE’17]

marijn@cmu.edu 45 / 45

Many Techniques

Many pre- or in-processing techniques in SAT solvers:

(Self-)Subsumption

Variable Elimination

Blocked Clause Elimination

Hyper Binary Resolution

Bounded Variable Addition

Equivalent Literal Substitution

Failed Literal Elimination

Autarky Reasoning

...

... and the list is growing:

Propagation Redundant Clauses [CADE’17]

marijn@cmu.edu 45 / 45

	Motivation
	Subsumption
	Variable Elimination
	Bounded Variable Addition
	Blocked Clause Elimination
	Hyper Binary Resolution
	Unhiding Redundancy
	Concluding Remarks

