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It all comes down to adding and removing redundant clauses
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Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

m For unsatisfiable formulas, all clauses can be added,
including the empty clause L.
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Redundant clauses

A clause is redundant with respect to a formula if adding it to
the formula preserves satisfiability.

m For unsatisfiable formulas, all clauses can be added,
including the empty clause L.

A clause is redundant with respect to a formula if removing it
from the formula preserves unsatisfiability.

m For satisfiable formulas, all clauses can be removed.

Challenge regarding redundant clauses:
m How to check redundancy in polynomial time?
m ldeally find redundant clauses in linear time
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Preprocessing and Inprocessing in Practice
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Subsumption
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Tautologies and Subsumption

Definition (Tautology)

A clause C is a tautology if its contains two complementary
literals x and X.

Example
The clause (a\V b\ b) is a tautology.

Definition (Subsumption)
Clause C subsumes clause D if and only if C C D.

Example
The clause (a V' b) subsumes clause (a \V b\ ¢).
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Self-Subsuming Resolution

Self-Subsuming Resolution

CVx DVx ccD (aVbVx) (aVbVceVX)
D = (aVbVe)

resolvent D subsumes second antecedent D V X
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Self-Subsuming Resolution

Self-Subsuming Resolution

CVx DVx ccD (aVbVx) (aVbVceVX)
D = (aVbVe)

resolvent D subsumes second antecedent D V X

Example

Assume a CNF contains both antecedents
..(avVbVx)(aVbVcVX)...

If D is added, then D \V X can be removed

which in essence removes X from D \V X
...(avVbVx)(aVbVce ...

Initially in the SATeLite preprocessor, [EenBiere'07]
now common in most solvers (i.e., as pre- and inprocessing)
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Self-Subsuming Example

Self-Subsuming Resolution

CVx DVx CcD (aVDbVx) (aVbVceVXx)
D = (aVDbVec)

resolvent D subsumes second antecedent D VX

Example: Remove literals using self-subsumption

(aVbVe) A (avVbVe) A
(@vbVve) A (aVbVe) A
@vbVvd) A (aVvbvd) A
(aVevd) A (aVeVvd)
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Self-Subsuming Resolution
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Self-Subsuming Example

Self-Subsuming Resolution

CVx DVx CcD (aVDbVx) (aVbVceVXx)
D = (aVDbVec)

resolvent D subsumes second antecedent D VX

Example: Remove literals using self-subsumption

( bVe) A (aVbVe) A
(a ) A (a ) A
(@vb ) A (avbVvd)A
(aVe ) A (aVevd)
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Self-Subsuming Example

Self-Subsuming Resolution

CVx DVx CcD (aVDbVx) (aVbVceVXx)
D = (aVDbVec)

resolvent D subsumes second antecedent D VX

Example: Remove literals using self-subsumption

( bVe) A (aVbVe) A
S A A
@Vvb ) A (avbVvd)A
(aVe ) A (aVeVvd)
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Implementing Subsumption

Definition (Subsumption)
Clause C subsumes clause D if and only if C C D.

Example
The clause (a \V b) subsumes clause (a VbV ¢).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F\ C then
remove C from F
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Implementing Subsumption

Definition (Subsumption)
Clause C subsumes clause D if and only if C C D.

Example
The clause (a V' b) subsumes clause (a V' bV ¢).

Forward Subsumption

for each clause C in formula F do
if C is subsumed by a clause D in F\ C then
remove C from F

Backward Subsumption

for each clause C in formula F do
pick a literal x in C
remove all clauses D in F, that are subsumed by C
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Variable Elimination
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Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x V a; V ---V q;) and

D = (xVb;V---\Vbj), the resolvent of C and D on variable
x (denoted by C >y D) is (a1 V-V a; Vb V.-V by)

Resolution on sets of clauses F, and Fx (denoted by F, <, Fx)
generates all non-tautological resolvents of C € F, and D € Fx.
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Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x V a; V ---V q;) and
D = (xVb;V---\Vbj), the resolvent of C and D on variable
x (denoted by C >y D) is (a1 V-V a; Vb V.-V by)

Resolution on sets of clauses F, and Fx (denoted by F, <, Fx)
generates all non-tautological resolvents of C € F, and D € Fx.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and Fx by F, <, Fx

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)
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Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and Fx by F, <, Fx
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Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and Fx by F, <, Fx

Example of clause distribution

(x V¢c) (x V d) (xVaVvb)

XV a (aVc) (aVd) (aVaVvb)

Fx ( (bVe) (b\Vd) (bVaVvhb)
xVeVf)| (cvVeVf) (dVeVvf) (aVvVbVeV)
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Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and Fx by F, <, Fx

Example of clause distribution

(x V) (x V d) (xVaVvb)

xVa (aVe) (aVd) favavb)

Frq | (b\Vec) (b\Vd) e Vb)
xVeVf)| (cvVeVf) (dVeVvf) (aVvVbVeV)
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Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution)
removes a variable x by replacing F, and Fx by F, <, Fx

Example of clause distribution

(x V) (x V d) (xVaVvb)

(xV a) (aVc) (aVd) fe e Vb)

Fx (x V' b) (bVe) (b\Vd) e Vb)
xVeVf)| (cvVeVf) (dVeVvf) (aVvVbVeV)

In the example: |F, < Fg| > |Fy| + |Fyl
Exponential growth of clauses in general
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VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(ay,...,a,) in the
formula and use them to reduce the number of added clauses
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General idea
Detect gates (or definitions) x = GATE(ay,...,a,) in the
formula and use them to reduce the number of added clauses

Possible gates

gate Gy Gx
AND(aj,...,an) (xVaV---Va, &Va),...,(xVa,)
OR(ary...,an) (xVa@)...,(xVa,) EEVaqV---Va,)
ITE(c,t,f) (xVeVit),xVcVf) xVeVi),(xVceVe)
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VE by substitution [EenBiere07]

General idea
Detect gates (or definitions) x = GATE(ay,...,a,) in the
formula and use them to reduce the number of added clauses

Possible gates

gate Gy Gx
AND(aj,...,an) (xVaV---Va, &Va),...,(xVa,)
OR(ary...,an) (xVa@)...,(xVa,) EEVaqV---Va,)
ITE(c,t,f) (xVeVit),xVcVf) xVeVi),(xVceVe)

Variable elimination by substitution [EenBiere07]
Let Ry = Fx \ Gx; Ry = Fx \ Gx.

Replace F, /A Fx by Gy 0, Ry A\ Gx <, R,
Always less than F, <, Fx !
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VE by substitution [EenBiere'07]
Example of gate extraction: x = AND(a,b)

F=xVc)AKXVAA(KxVaVb)
Fr=xVaAERVbAEVeEVT)

marijn@cmu.edu 16 / 45



VE by substitution [EenBiere'07]
Example of gate extraction: x = AND(a,b)
F=xVc)AKXVAA(KxVaVb)
Fr=XVaAKXVDAKXVeVT)

Example of substitution

Ry Gy
(xVc) (x\V d) ) (xVaVvb)

G (xV a) (aVc) (aVd)

1 (xVb) (bVc) (b\Vd)

Re { (xVeVT) (@VbVeV)
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VE by substitution [EenBiere'07]
Example of gate extraction: x = AND(a,b)
F=xVc)AKXVAA(KxVaVb)
Fr=XVaAKXVDAKXVeVT)

Example of substitution

Ry Gy
(xVc) (x\V d) ) (xVaVvb)
G (xV a) (aVc) (aVd)
1 (xVb) (bVc) (b\Vd)
Re { (xVeVT) (@VbVeV)

using substitution: |Fy <1 Fy| < [F| + |Fy
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Bounded Variable Addition
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Bounded Variable Addition

Main ldea
Given a CNF formula F, can we construct a (semi)logically
equivalent F’ by introducing a new variable x ¢ VAR(F)

such that [F/| < |F|?
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Given a CNF formula F, can we construct a (semi)logically
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Reverse of Variable Elimination
For example, replace the clauses
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Bounded Variable Addition

Main Idea
Given a CNF formula F, can we construct a (semi)logically

equivalent F’ by introducing a new variable x ¢ VAR(F)
such that [F/| < |F|?

Reverse of Variable Elimination
For example, replace the clauses

(aVe) (aVd)
(bVe) (b\Vd)
(cVeVf) (dVeVf) (avVbVeV)
by
®Va) (XVb) (XxVeVi
(xVe) (xVvVd) (xVaVvb)

Challenge: how to find suitable patterns for replacement?
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Factoring Out Subclauses

Example
Replace

(aVbVeVd (aVbVceVe) (aVbVeV)

by
(xVd (xVe) (xVf) (xVaVbVece)

adds 1 variable and 1 clause  reduces number of literals by 2
Not compatible with VE, which would eliminate x immediately!

... S0 this does not work ...
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Bounded Variable Addition

Example
Smallest pattern that is compatible: Replace

(aVd) (aVe)
(bvd) (bVe)
(cvd) (cVe)

xVa) (xVb) (xVec)

adds 1 variable removes 1 clause

marijn@cmu.edu
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Bounded Variable Addition

Possible Patterns
(X; VL) ... (X7 V Ly)

Il
.>:

k
AV L)
=1

X, VL) ... (X VL) =1j

o K
replaced by A(yV X)) N AGVL)
=1

j=1

m Every k clauses share sets of literals L;
m There are n sets of literals X; that appear in clauses with L;
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Bounded Variable Addition

Possible Patterns
(X; VL) ... (X7 V Ly)

11l
>z
>
X
<
o

X, VL) ... (X VL) =1j

replaced by A(yV X)) N AGVL)

i=1 j=1

m Every k clauses share sets of literals L;
m There are n sets of literals X; that appear in clauses with L;

m Reduction: nk —n — k clauses are removed by
replacement
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Bounded Variable Addition on AtMostOne (1)

Example encoding of AtMostOne (x1,X2,...,Xn)

(X1 VX2) A (X V Xi10) A (X3 V X10) A (X7 V Xi0) /A
(X1 VX3) A (2 VX3) A (X Vo) A (X7 V Xg) A
(X1 Vx4) N Vx4) N\ (X3VX4) N (X7 VXg) A
(X1 Vxs) A\ (%Vxs) N\ (x3VXs5) A\ (X4 VX5) A
(X1 Vxe) N\ (0 Vxg) N\ (X3VX6) N (X4 VXg) N (X
(X VX)) N (VX)) N (x3VX7) A (X4 VX7) A (X
(X] \/Xg) AN (Xz\/Xg) AN (XgVXg) AN (X4\/X8) A (X
(X] \/Xg) AN (Xz\/Xg) AN (Xg\/Xg) AN (X4\/X9) A (X
(%1 V X10) A (X2 V X10) A (X3 V X10) A\ (X3 V Xi0) A

marijn@cmu.edu
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Bounded Variable Addition on AtMostOne (1)

Example encoding of AtMostOne (x1,X2,...,Xn)

>>>>>>>>

(X1 VX2) A (X V X10) A (Xg V X10) A\ (X7 V X10) A (X6 V Xi0)
(X1 VX3) A (%2 VX3) A (Xg VX)) A (X7 V X9) N (X6 V Xo)
(X1 VX4) N (2 VX)) A (X3V X)) N (X7 VXg) A (X6 V Xg)
(X1 Vxs) A (%VXs) N\ (x3VXs5) A\ (X4 VXs5) N\ (X6 V X7)
(x1 VXe) A (2 VX6) A (X3 VX6) A (X4 VX6) N (X5 V Xe)
X1 VXA (VX)) A GVX)A (X VX)) A (X VX7)
(x1 V) A (X2 Vxg) A (X3 VXg) A (X4\/7 ) N (X5 V Xg)
(1 VXo) A (X2 VXe) A (X3 VX)) A (X1 VXo) A (X5 V Xo)
(%1 V X10) A (X2 V X10) A (X3 V X10) A (Xa V X10) A (X5 V Xi0)

Replace (X; V' X;) with i € {1..5},j € {6..10} by (x; V'y), (X VY)
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Bounded Variable Addition on AtMostOne (2)

Example encoding of AtMostOne (x1,X2,...,Xn)

(%1 V x2) A\ (%o V X10) A (X V X10) A\ (X7 V X10) A (X6 V X10)
(1 VX)A (2 Vx3) A (X8 VX)) A (X7 Vo) A (X6 V Xo)
(X1 VXN (VX)) A (X3 VXa) A (X7 VXs) A (X6 V Xg)
(X1 VX5)A (%2 VXs5) A (X3 VX5) A (X VX5) A (X6 VX7)
X1 Vy) A 2Vy) A (x3Vy A (xaVy) A (%5 Vy)
X VYA 7 VYy) A (xsVY) A (VY A (X0 VTY)

marijn@cmu.edu
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Bounded Variable Addition on AtMostOne (2)

Example encoding of AtMostOne (x1,X2,...,Xn)

(%1 V X2) A\ (%o V X10) A (X V Xi10) A\ (X7 V X10) A (X6 V Xi0) A\
(Y] \/X3)/\ (Xz \/ig) AN (Yg \/fg) AN (Y7\/?9) AN (KG \/?9) AN
(X VXA (VX)) A GV ) A (X7 VX)) A (X6 VXs) A
(Y] \/X5)/\ (Xz\/¥5) A\ (ig \/i5) A\ (f4 \/f5) AN (QG \/77) A\
xiVy A aVy A VY A (xaVy) A (%Vy) A
X VY N VY A (xVY) A (% VY) A(X0VY)

Replace matched pattern
(X Vz) AN VzZ) A (X Vz) A
xsVZ)A (X5 VZ) A (yVZ)
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Bounded Variable Addition on AtMostOne (3)

Example encoding of AtMostOne (x1,X2,...,Xn)

(X1 V' x2) A\ (X9 V X10) A\ (Xg V X10) A (X7 V X10) A (X6 V X10) A
7 V) A (X VES) A (K Vo) A (B VX)) A (Xe VTo) A
(7_(] \/Z) AN (Yz\/Z) AN (Yg,\/Z) AN (§7\/f8) AN (igg\/ig) AN
s Vy N (xsVyl A x%Vy) A (X2 VY) A (xsVY)
(X VY) A (X10 VY)
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Bounded Variable Addition on AtMostOne (3)

Example encoding of AtMostOne (x1,X2,...,Xn)

(%1 VX2) A (%o V X10) A (X5 V X10) A (X7 V X10) A (X6 V X10) A
(X1 VX3) A (%2 VX3) A (Xg VX)) A (X7 VXo) A (X6 VXo) A
(7_(] \/Z) AN (Yz\/z) AN (§3\/Z) AN (§7\/f8) AN (f(; \/Yg) AN
X VZ) A (%:VZ) A (YyVz) AxVxs) A (xVX) A
(X4\/y) (X% Vy) A (% VY) A VY) A (XsVTY)
(X VY) A (%10 VY)

Replace matched pattern

(ig\/W)/\(i7\/W)/\(§8\/W) AN
(Xo VW) A (X150 VW) A (U VW)
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Blocked Clause Elimination
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Blocked Clauses [Kullmann 1999]

Definition (Block Clause)

A clause (CV x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D V X) € F, resolvent CVV D is a tautology.
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Blocked Clauses [Kullmann 1999]

Definition (Block Clause)
A clause (CV x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D V X) € F, resolvent CVV D is a tautology.

Example
Consider the formula (a V' b) A (aV bV E) A (aVc).
First clause is not blocked.
Second clause is blocked by both a and C.
Third clause is blocked by c
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Blocked Clauses [Kullmann 1999]

Definition (Block Clause)

A clause (CV x) is a blocked on x w.r.t. a CNF formula F if
for every clause (D V X) € F, resolvent CVV D is a tautology.

Example
Consider the formula (a V' b) A (aV bV E) A (aVc).
First clause is not blocked.
Second clause is blocked by both a and C.
Third clause is blocked by c

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.
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Blocked Clause Elimination (BCE)

Definition (BCE)
While there is a blocked clause C in a CNF F, remove C from F.

Example
Consider (aVb) A (aVbVE)A(aVec).
After removing either (a\/ b\ €) or (@ V ¢), the clause
(aV b) becomes blocked (no clause with either b or @).

An extreme case in which BCE removes all clauses!
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Blocked Clause Elimination (BCE)

Definition (BCE)
While there is a blocked clause C in a CNF F, remove C from F.

Example
Consider (aVb) A (aVbVE)A(aVec).
After removing either (a\/ b\ €) or (@ V ¢), the clause
(aV b) becomes blocked (no clause with either b or @).

An extreme case in which BCE removes all clauses!

Proposition
BCE is confluent, i.e., has a unique fixpoint

m Blocked clauses stay blocked w.r.t. removal

marijn@cmu.edu 27 / 45



BCE very effective on circuits [JarvisaloBiereHeule'10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding
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BCE: Solution Reconstruction

Input:
m stack S of eliminated blocked clauses
m formula F (without the blocked clauses)

m assignment « that satisfies F
Output: an assignment that satisfies F /A S

1. while S.size () do
2. (C,1) := S.pop ()
3; if o falsifies C then o« := oq

4. end while
5. return o«
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Hyper Binary Resolution
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Hyper Binary Resolution [Bacchus-AAAIQ2]
Definition (Hyper Binary Resolution Rule)

xVx1VxaV---Vxn) X1 VX)) (x2Vx') ... (xn VX))
(x Vx/)

®

binary edge —_
hyper edge e
hyper binary edge @—

Hyper Binary Resolution Rule:
m combines multiple resolution steps into one
m uses one n-ary clauses and multiple binary clauses

m special case hyper unary resolution where x = x’
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Hyper Binary Resolution (HBR)

Definition (Hyper Binary Resolution)
Apply the hyper binary resolution rule until fixpoint

Example

Consider
@VOA@VIA(DVAADVeAEVAAEVe)A(dVeVT).

@ @ hyper binary resolvents:

> @ @Vvf),®Ve), [V

HBR is confluent, i.e., has a unique fixpoint

marijn@cmu.edu 32 /45



Structural Hashing of AND-gates via HBR

gate g H g=f(g1,.-.gn) ‘ g & f(gr,...gn)
“positive” “negative”

g :=OR(g1,...,9n) (gV g1 V---Vgn) (gVar), . ..(gVagn)

g := AND(g1,...,9n) (gVg1)....(gVgn) (gVagrV:.--Vign)

g := XORr(g1, 92) (gVgrVez) (gVgiVga) | (gVagrVgz) (gVgrVgr)

g :=1TE(g1,92,93) (gVvVaiVgz), (gVgiVgs) | (gVgrVgz) (gVgrVgs)

Definition (Structural Hashing of AND-gates)

Given a Boolean circuit with two equivalent gates, merge the gates.

Example
x = AND(a,b) : XV a)A(XVDb)A(xVaVvb)
9 y = AND(a,b) : (TVa)A[GVb)A(yVaVvb)
B
é the two HBRs (X Vy) and (x \V §) express that x =y
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Non-transitive Hyper Binary Resolution (NHBR)

A problem with classic HBR is that it adds many transitive binary clauses

Example
Consider
@Vb)A@V)ADVAA(DVe)AlEVdAlEVe AdVeVT).

adding (b\V f) or (¢ \V f)
> @ makes (@ V f) transitive

Solution [HeuleJarvisaloBiere 2013]

Add only non-transitive hyper binary resolvents
Can be implemented using an alternative unit propagation style
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Space Complexity of NHBR: Quadratic

Question regarding complexity [Biere 2009]

m Are there formulas where the transitively reduced hyper binary
resolution closure is quadratic in size w.r.t. to the size of the original?

m where size = #clauses or size = #literals or size = #variables
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Space Complexity of NHBR: Quadratic

Question regarding complexity [Biere 2009]

m Are there formulas where the transitively reduced hyper binary
resolution closure is quadratic in size w.r.t. to the size of the original?

m where size = #clauses or size = #literals or size = #variables

Yes!
Consider the formula F,, = /\1§i§n ((ii\/\)) A (X Vw)A (V\/W\/yi))

#tvariables: 2n + 2
#£clauses: 3n

"fé #literals: 7n
)

'S

n? hyper binary resolvents:
(xi Vy;) for 1 <i,j <n
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Unhiding Redundancy
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Redundancy
Redundant clauses:

m Removal of C € F preserves unsatisfiability of F
m Assign all x € C to false and check for a conflict in F\ {C}
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Redundancy

Redundant clauses:
m Removal of C € F preserves unsatisfiability of F
m Assign all x € C to false and check for a conflict in F\ {C}

Redundant literals:
m Removal of x € C preserves satisfiability of F
m Assign all x’ € C\ {x} to false and check for a conflict in F

Redundancy elimination during pre- and in-processing

m Distillation [JinSomenzi2005]
m ReVivAl [PietteHamadiSais2008]
m Unhiding [HeuleJarvisaloBiere2011]
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Unhide: Binary implication graph (BIG)

unhide: use the binary clauses to detect redundant clauses and literals

SN N
N
N

VaA@VAADBVAADVe) A
HA@AVHAGVHAFVRA
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Unhide: Transitive reduction (TRD)

transitive reduction: remove shortcuts in the binary implication graph

VAYAS SN,
\f/<—9 / \ e
N NN

@Ve)A@VAADBVAAMDVe A
EVHALAVHAGVHAFVRA
A (@VeVhABVEVR AlaVbVeVdVeVfVgVh)

TRD
g—f—h
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Unhide: Hidden tautology elimination (HTE) (1)

HTE removes clauses that are subsumed by an implication in BIG

SN P
N SN
< NN

h

@Ve)A@Va)AdVaA(DdVe) A
EVHALAVHAGVHAFVRA
VeV A (BVEVRIA (aVbVeVdVeVfVgVh)
HTE

a—d—f—h
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Unhide: Hidden tautology elimination (HTE) (2)

HTE removes clauses that are subsumed by an implication in BIG

SN P
N SN
< NN

h

(@vVeA@va)AbdVvad AdVe) A
CEVHOAN@VHOAGVHAFVRA
eV A (aVbVeVdVeVFVgVh)
HTE

c—f—h
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Unhide: Hidden literal elimination (HLE)

HLE removes literal using the implication in BIG

NN P
N P
< NN

@V A@vVd)A(bVaA(bVe A
CEVHAM@VHOA@GVHAFVR)A
(v e VeV e V £g v h)
HLE
all but e imply h

also b implies e
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Unhide: TRD + HTE + HLE

unhide: redundancy elimination removes and adds arcs from BIG(F)

c/ \d/ \e/ /—>\9
N AN

@Ve)A@Va)AmVA)ADdVe) A
EVHALAVHAGVHAFVRA(eVh)
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Concluding Remarks
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Many Techniques

Many pre- or in-processing techniques in SAT solvers:
m (Self-)Subsumption
m Variable Elimination
m Blocked Clause Elimination
m Hyper Binary Resolution
m Bounded Variable Addition
m Equivalent Literal Substitution
m Failed Literal Elimination
m Autarky Reasoning
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Many pre- or in-processing techniques in SAT solvers:
m (Self-)Subsumption
m Variable Elimination
m Blocked Clause Elimination
m Hyper Binary Resolution
m Bounded Variable Addition
m Equivalent Literal Substitution
m Failed Literal Elimination
m Autarky Reasoning

. and the list is growing:
m Propagation Redundant Clauses [CADE'17]
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