Local Search Techniques

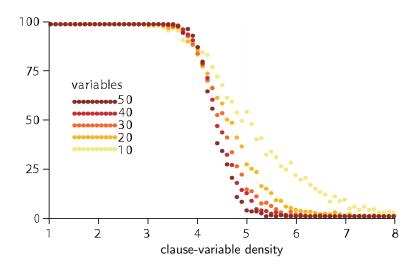
Marijn J.H. Heule

Carnegie Mellon University

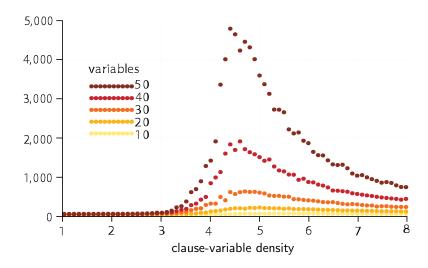
http://www.cs.cmu.edu/~mheule/15816-f20/ https://cmu.zoom.us/j/93095736668 Automated Reasoning and Satisfiability October 5, 2020

Stochastic Local Search

WalkSAT and ProbSAT


Stochastic Local Search

WalkSAT and ProbSAT


Local search solvers are particularly effective (and optimized) on hard uniform random (satisfiable) k-SAT problems

- All clauses have length k
- Variables have the same probability to occur
- Each literal is negated with probability of 50%
- Density is ratio Clauses to Variables

Random 3-SAT: % satisfiable, the phase transition

Random 3-SAT: exponential runtime, the threshold

marijn@cmu.edu 6 / 17

Stochastic Local Search

WalkSAT and ProbSAT

Local Search: Generic structure

Generic structure of local search SAT solvers

```
1. for i in 1 to MAX TRIES do
        \alpha := random initial assignment
       for j in 1 to MAX_STEPS do
3⋅
            if \alpha satisfies \mathcal{F} then
                return satisfiable
5:
            end if
6.
           \alpha := \mathsf{Flip}(\alpha)
       end for
9 end for
10: return unknown
```

Local Search: Global vs Local flips

Global flips

■ Pro: Big improvements

■ Neg: Probabilistic incomplete

Local flips

■ Neg: Small improvements

■ Pos: Probabilistic complete

Stochastic Local Search

WalkSAT and ProbSAT

Local Search: Types of Flips

Select a random unsatisfied clause C

- Free flip
- Random flip
- Heuristic flip

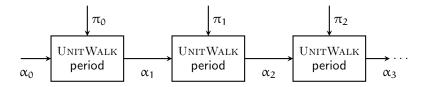
Local Search: WalkSAT Code [Selman, Kautz, and Cohen '93]

FLIP_WALKSAT (α)

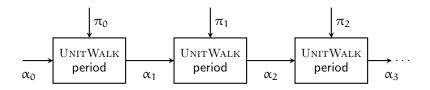
- 1: C:= random falsified clause by $lpha\,\circ\,\mathcal{F}$
- 2: **if** a variable in C can be flipped for free **then**
- α : flip in α that variable
- 4: else
- 5: flip in α with p a random $x_i \in C$
- 6: flip in α with 1-p the "optimal" $x_i \in C$
- 7: end if
- 8: return α

Local Search: ProbSAT [Balint and Schöning '12]

ProbSAT generalizes the WalkSAT code.

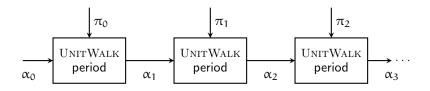

Let $break(x, \alpha)$ denote the number of clauses that are only satisfied by x or \overline{x} under the assignment α

- lacksquare C:= random falsified clause by $lpha\,\circ\,\mathcal{F}$
- randomly pick a variable x in C using weights $c^{-break(x,\alpha)}$
- an effective constant for random 3-SAT: c = 2.5
- \blacksquare update α by flipping x


Stochastic Local Search

WalkSAT and ProbSAT

The UnitWalk Algorithm


The UnitWalk Algorithm

The general idea of a UNITWALK period:

■ Within each unsatisfied clause in $\alpha_i \circ \mathcal{F}$ the assignment to the least important variable (based on π_i) is flipped

The UnitWalk Algorithm

The general idea of a UNITWALK period:

■ Within each unsatisfied clause in $\alpha_i \circ \mathcal{F}$ the assignment to the least important variable (based on π_i) is flipped

For example:

$$m{F} = (x \lor \overline{y}), \ \alpha_0 = \{x = 0, y = 1\}, \ \pi_0 = \{y, x\}$$

$$\begin{array}{lll} \mathcal{F}_{\mathrm{example}} & := & (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3) \wedge \\ & (\overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee x_3 \vee x_4) \wedge (\overline{x}_3 \vee \overline{x}_4) \\ \alpha_{\mathrm{master}} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\mathrm{active}} & := & \{x_1 = *, x_2 = *, x_3 = *, x_4 = *\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

iterative propagate unit clauses in $\alpha_{active} \circ \mathcal{F}_{example}$ extend α_{active} with most important free variable according to π while α_{active} contains *'s

$$\begin{array}{lll} \mathcal{F}_{\mathrm{example}} & := & (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3) \wedge \\ & (\overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee x_3 \vee x_4) \wedge (\overline{x}_3 \vee \overline{x}_4) \\ \alpha_{\mathrm{master}} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\mathrm{active}} & := & \{x_1 = *, x_2 = *, x_3 = *, x_4 = *\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

 \rightarrow iterative propagate unit clauses in $\alpha_{\rm active} \circ \mathcal{F}_{\rm example}$ extend $\alpha_{\rm active}$ with most important free variable according to π while $\alpha_{\rm active}$ contains *'s

Action:

lacksquare no unit clauses in $lpha_{
m active} \circ \mathcal{F}_{
m example}$

$$\begin{array}{lll} \mathcal{F}_{\mathrm{example}} & := & (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3) \wedge \\ & (\overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee x_3 \vee x_4) \wedge (\overline{x}_3 \vee \overline{x}_4) \\ \alpha_{\mathrm{master}} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\mathrm{active}} & := & \{x_1 = *, x_2 = 1, x_3 = *, x_4 = *\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

iterative propagate unit clauses in $\alpha_{\rm active} \ \circ \ \mathcal{F}_{\rm example}$

 \to extend α_{active} with most important free variable according to π while α_{active} contains *'s

Action:

lackextend $lpha_{
m active}$ with $x_2:=1$ (the truth value in $lpha_{
m master}$)

$$\begin{array}{lll} \mathcal{F}_{\mathrm{example}} & := & (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3) \wedge \\ & (\overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee x_3 \vee x_4) \wedge (\overline{x}_3 \vee \overline{x}_4) \\ \alpha_{\mathrm{master}} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\mathrm{active}} & := & \{x_1 = *, x_2 = 1, x_3 = 0, x_4 = *\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

 \rightarrow iterative propagate unit clauses in $\alpha_{\rm active} \circ \mathcal{F}_{\rm example}$ extend $\alpha_{\rm active}$ with most important free variable according to π while $\alpha_{\rm active}$ contains *'s

Action:

■ detected unit clause $\overline{x}_3 \rightarrow x_3 := 0$

$$\begin{array}{lll} \mathcal{F}_{\rm example} & := & (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3) \wedge \\ & (\overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee x_3 \vee x_4) \wedge (\overline{x}_3 \vee \overline{x}_4) \\ \alpha_{\rm master} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\rm active} & := & \{x_1 = *, x_2 = 1, x_3 = 0, x_4 = 0\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

 \rightarrow iterative propagate unit clauses in $\alpha_{\rm active} \circ \mathcal{F}_{\rm example}$ extend $\alpha_{\rm active}$ with most important free variable according to π while $\alpha_{\rm active}$ contains *'s

Action:

- detected unit clauses x_4 and \overline{x}_4 → conflict
- lacksquare assign x_4 to truth value in $lpha_{
 m master}
 ightarrow x_4 := 0$

$$\begin{array}{lll} \mathcal{F}_{\mathrm{example}} & := & (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3) \wedge \\ & (\overline{x}_2 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee x_3 \vee x_4) \wedge (\overline{x}_3 \vee \overline{x}_4) \\ \alpha_{\mathrm{master}} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\mathrm{active}} & := & \{x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

iterative propagate unit clauses in $\alpha_{\rm active} \, \circ \, \mathcal{F}_{\rm example}$

 \to extend α_{active} with most important free variable according to π while α_{active} contains *'s

Action:

lackextend $lpha_{
m active}$ with $x_1:=0$ (the truth value in $lpha_{
m master}$)

$$\begin{array}{lll} \mathcal{F}_{\rm example} & := & (x_1 \lor x_2) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_2 \lor \overline{x}_3) \land \\ & (\overline{x}_2 \lor x_3 \lor \overline{x}_4) \land (\overline{x}_2 \lor x_3 \lor x_4) \land (\overline{x}_3 \lor \overline{x}_4) \\ \alpha_{\rm master} & := & \{x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0\} \\ \alpha_{\rm active} & := & \{x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0\} \\ \pi & := & (x_2, x_1, x_4, x_3) \end{array}$$

do

iterative propagate unit clauses in $\alpha_{active} \circ \mathcal{F}_{example}$ extend α_{active} with most important free variable according to π \rightarrow while α_{active} contains *'s

Action:

lacksquare end of period because all variables are assigned in $lpha_{
m active}$

Local Search Techniques

Marijn J.H. Heule

Carnegie Mellon University

http://www.cs.cmu.edu/~mheule/15816-f20/ https://cmu.zoom.us/j/93095736668 Automated Reasoning and Satisfiability October 5, 2020