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Binary Decision Diagrams

Restricted Form of Branching Program
n Graph representation of Boolean function
n Canonical form
n Simple algorithms to construct & manipulate

Used in SAT, QBF, Model Checking, …
n Bottom-Up Approach

l Construct canonical representation of problem
l Generate solutions

n Compare to Search-Based Methods
l E.g., DPLL, CDCL
l Top-down approaches
l Keep branching on variables until find solution
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Summary: Time Line
Year Contribution
1965 Robinson formulates resolution proof framework

1967 Tseitin formulates extended resolution (ER)
1986 Bryant introduces Binary Decision Diagrams (BDDs)

2003 Zhang & Malik extend SAT solver to generate 
UNSAT proofs

2006 Sinz, Biere, (and Jussila) (SBJ) generate ER proofs 
with BDD-based SAT solver

2020 Bryant & Heule refine and extend SBJ
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Boolean Function 
Representations

Truth Table Decision Tree

n Vertex represents decision
n Follow green (dashed) line for value 0
n Follow red (solid) line for value 1
n Function value determined by leaf value.
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Variable Ordering
n Assign arbitrary total ordering to variables

l e.g.,  x1 < x2 < x3
n Variables must appear in ascending order along all 

paths
OK Not OK

Properties
n No conflicting variable assignments along path
n Simplifies manipulation 
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Reduction Rule #1

Merge equivalent leaves
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Reduction Rule #2
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Reduction Rule #3
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Example OBDD

Initial Graph Reduced Graph

Canonical representation of Boolean function
! For given variable ordering
n Two functions equivalent if and only if graphs isomorphic

l Can be tested in linear time
n Desirable property: simplest form is canonical.
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Example Functions
Constants

Unique unsatisfiable function

Unique tautology1
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Variable

Treat variable
as function
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n No vertex labeled x3

u independent of x3

n Many subgraphs shared 
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More Complex Functions
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Functions
n Add 4-bit words a and b
n Get 4-bit sum S
n Carry output bit Cout

Shared Representation
n Graph with multiple roots
n 31 nodes for 4-bit adder
n 571 nodes for 64-bit adder
n Linear growth!
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Effect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth
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Sample Function Classes
Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

General Experience
n Many tasks have reasonable OBDD representations
n Algorithms remain practical for up to 500,000 node OBDDs
n Heuristic ordering methods generally satisfactory
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Symbolic Manipulation with OBDDs

Strategy
n Represent data as set of OBDDs

l Identical variable orderings
n Express solution method as sequence of symbolic 

operations
l Sequence of constructor & query operations
l Similar style to on-line algorithm

n Implement each operation by OBDD manipulation
l Do all the work in the constructor operations

Key Algorithmic Properties
n Arguments are OBDDs with identical variable orderings
n Result is OBDD with same ordering
n Each step polynomial complexity
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Arguments A, B, op
n A and B: Boolean Functions 

® Represented as OBDDs
n op: Boolean Operation (e.g., ^, &, |)

Apply Operation

Concept
n Basic technique for building OBDD from Boolean formula.

Result
n OBDD representing 

composite function
n A op B
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Optimizations
n Dynamic programming
n Early termination rules
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Apply Result Generation

n Recursive calling structure implicitly defines unreduced BDD
n Apply reduction rules bottom-up as return from recursive calls
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Generating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.
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A ¬ new_var ("a");
B ¬ new_var ("b");
C ¬ new_var ("c");
T1 ¬ And (A, 0, B);
T2  ¬ And (B, C);
Out ¬ Or (T1, T2);
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Boolean Satisfiability Solvers

SAT Solvers Useful & 
Powerful
n Formal verification
n Security verification
n Optimization

Can We Trust Them?
n No!
n Complex software with 

lots of optimizations

SAT
Solver

Boolean
Formula

?

Unsatisfiable

Solution
Checker

Satisfiable

Solution
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Proof Generating Solvers

Unsatisfiability Proof
n Step-by-step proof in 

some logical framework

Proof Checker
n Simple program
n May be formally verified

SAT
Solver

Boolean
Formula

Unsatisfiability proof

Unsatisfiable

Proof
Checker
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Basics

Clauses
n ¬ u ⋁ v ⋁ w Disjunction of literals
n ⊥ Empty clause (False)

Resolution Principle

¬ u ⋁ v ⋁ w ¬ w ⋁ x ⋁ ¬ z

¬ u ⋁ v ⋁ x ⋁ ¬ z

¬ P Q

P ⟶ w w ⟶ Q

P ⟶ Q
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Clausal Resolution Proof

n Prove conjunction of input clauses unsatisfiable
n Add derived clauses

l Each provides list of antecedent clauses that resolve to new clause
n Finish with empty clause

l Proof is series of inferences leading to contradiction

Step Clause Antecedents Formula
1 ¬ v ⋁ w v ⟶ w
2 ¬ v ⋁ ¬ w v ⟶ ¬ w
3 v v
4 ¬ v 1, 2 ¬ v
5 ⊥ 3, 4 v ⋀ ¬ v

Input
clauses

Derived
clauses
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Extended Resolution

Can introduce extension variables
n Variable e that has not yet occurred in proof
n Must introduce defining clauses

l Clauses creating constraint of form e ⟷ F
l Boolean formula F over input and earlier extension variables

n Example: Prove following set of constraints unsatisfiable

n Strategy: Introduce extension variable e such that e ⟷ u ⋀ v

Constraint Clauses
u ⋀ v ⟶ w ¬ u ⋁ ¬ v ⋁ w
u ⋀ v ⟶ ¬ w ¬ u ⋁ ¬ v ⋁ ¬ w
u ⋀ v u v
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ER Proof
Step Clause Antecedents Formula
1 ¬ u ⋁ ¬ v ⋁ w u ⋀ v ⟶ w

2 ¬ u ⋁ ¬ v ⋁ ¬ w u ⋀ v ⟶ ¬ w
3 u u
4 v v
5 e ⋁ ¬ u ⋁ ¬ v u ⋀ v ⟶ e
6 ¬ e ⋁ u e ⟶ u
7 ¬ e ⋁ v e ⟶ v
8 ¬ e ⋁ ¬ v ⋁ w 1, 6 e ⋀ v ⟶ w
9 ¬ e ⋁ w 7, 8 e ⟶ w
10 ¬ e ⋁ ¬ v ⋁ ¬ w 2, 6 e ⋀ v ⟶ ¬ w
11 ¬ e ⋁ ¬ w 7, 10 e ⟶ ¬ w
12 e ⋁ ¬ v 3, 5 v ⟶ e
13 e 4, 12 e
14 ¬ e 9, 11 ¬ e
15 ⊥ 13, 14 e ⋀ ¬ e

Input
clauses

Derived
clauses

Defining
clauses

u ⋀ v
replaced 
with e
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Reduced, Ordered Binary Decision 
Diagrams (BDDs)

n Bryant, 1986

Representation
n Canonical representation of Boolean 

function
n Compact for many useful cases

Algorithms
n Apply(f, g, op) 

l op is Boolean operation (e.g., ∧, ∨, ⊕)
l BDD representation of f op g 

n EQuant(f, V)
l V set of variables
l BDD representation of ∃V f 
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Apply Algorithm Recursion

xu

u0 u1

xv

v0 v1

Apply(u, v, ∧)

xw

w0 w1

Apply(u1, v1, ∧)  ➞ w1

w0Apply(u0, v0, ∧)  ➞

Result

Recursion
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Apply Algorithm Nuances

Stop recursion when hit terminal case
n f ∧ 0 ➞ 0 0 ∧ g ➞ 0
n f ∧ 1 ➞ f 1 ∧ g ➞ g
n f ∧ f ➞ f

Unique Table contains all generated nodes
n [x, u1, u0] ➞ u
n Guarantees canonical form of result

Operation Cache contains previously computed results
n [u, v, ∧] ➞ w
n Guarantees polynomial performance
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Generating ER Proofs
n Create extension variable for each node in BDD

l Notation: Same symbol for node & its extension variable

n Defining clauses create constraint u ⟷ ITE(x, u1, u0)

xu

u0 u1

Clause name Formula Clausal form
HD(u) x ⟶ (u ⟶ u1) ¬ x ⋁ ¬ u ⋁ u1
LD(u) ¬ x ⟶ (u ⟶ u0) x ⋁ ¬ u ⋁ u0
HU(u) x ⟶ (u1⟶ u) ¬ x ⋁ ¬ u1 ⋁ u
LU(u) ¬ x ⟶ (u0⟶ u) x ⋁ ¬ u0 ⋁ u
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Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation
n When Apply(u, v, ∧) returns w, also generate proof u ∧ v ⟶ w
n Store step number in operation cache

Proof Structure
n Assume recursive calls generate proofs

l u1 ∧ v1⟶ w1
l u0 ∧ v0⟶ w0

n Combine with defining clauses for nodes u, v, and w
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Apply Proof Structure

Nuances
n Many special cases when recursive arguments and results 

contain equivalences, 0s, and 1s.

HD(u): x ⟶ (u ⟶ u1)
HD(v): x ⟶ (v ⟶ v1)
HU(w): x ⟶ (w1⟶ w) u1 ∧ v1⟶ w1

x ⟶ (u ∧ v ⟶ w)

LD(u): ¬ x ⟶ (u ⟶ u0)
LD(v): ¬ x ⟶ (v ⟶ v0)
LU(w): ¬ x ⟶ (w0⟶ w) u0 ∧ v0⟶ w0

¬ x ⟶ (u ∧ v ⟶ w)

u ∧ v ⟶ w
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Quantification Operations

Operation EQuant(f, V)
n Critical for obtaining good performance
n Abstract away details of satisfying (partial) solutions

Proof Generation
n Don’t follow recursive structure of algorithms
n Instead, follow with implication test

l EQuant(u, V) ➞ v
l Generate proof u ⟶ v
l Algorithm similar to proof-generating Apply operation
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Overall Structure of Proof
Input Variables

n Generate BDD variable for each input variable

Input Clauses
n Set of input clauses CI
n For each input clause C, generate BDD representation u
n Generate proof C ⊢ u

l Sequence of resolution steps based on linear structure of BDD

Combine Top-Level BDDs
n Apply(u, v, ∧) ➞ w

l Combine proofs CI ⊢ u, CI ⊢ v, and u ∧ v ⟶ w to get CI ⊢ w

n EQuant(u, V) ➞ v
l Combine proofs CI ⊢ u and u ⟶ v to get CI ⊢ v

Completion
n When Apply(u, v, ∧) ➞ 0 have proof CI ⊢ ⊥
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Implementation

Package
n 2000 lines Python code (slow!)
n BDD package + proof generator

Benchmark Generators
n CNF file
n File specifying ordering of variables
n File specifying schedule:

l Defines sequence of conjunctions and quantifications
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Mutilated Chessboard Problem

Definition
n N ⨉ N chessboard with 2 

corners removed
n Cover with tiles, each 

covering one square
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Mutilated Chessboard Problem

Definition
n N ⨉ N chessboard with 2 

corners removed
n Cover with tiles, each covering 

one square

Solutions
n None
n More black squares than white
n Each tile covers one white and 

one black square

Proof
n All resolution proofs of 

exponential size



– 36 –

Encoding as SAT Problem

n Boolean variable for each boundary between two squares
l (N –1) • N – 2 vertical boundaries xi,j
l (N –1) • N – 2 horizontal boundaries yi,j
n Constraints

l For each square, exactly one of its boundary variables = 1
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Column Scanning
Scanning

n Add tiles for each column from left to right

Observation
n When tiling column, only need to know which rows have tiles 

jutting in from left
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Abstraction Via Quantification

Scanning “State”
n Existentially quantify 

variables defining 
earlier boundaries in 
scan

n Xi = Value of vertical 
variables to right of 
column i

∃
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State at column j –1 Column j transition State at column j

Symbolic Computation of State Sets

n Does not redefine underlying problem
n Way to order conjunctions and quantifications

σj(Xj) = ∃Xj−1 [σj−1(Xj−1) ∧ ∃Yj Tj(Xj−1, Yj, Xj)]

σj−1(Xj−1) Tj(Xj−1, Yj, Xj) σj(Xj)
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Representing State Sets

n Number of configurations ∼ 2N

n BDD representation ∼ N 2

n Reaches fixed point after column N / 2
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Chess Proof Complexity

n Problem size ∼ N 2

n Proof size ~ N 2.68
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Observations

Key Insight
n Sinz, Biere, and Jussila
n Capture underlying logic of BDD algorithms as ER proofs

Our Contributions
n Integrate proof generation with Apply operations
n Handle arbitrary existential quantification
n Demonstrate on variety of benchmarks

l Mutilated chessboard
l Pigeonhole principle
l Parity formulas
l Urquhart formulas
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Further Work

Higher Performance Implementation
n Integrate into existing BDD package

More Automation
n Variable ordering
n Conjunction and quantification scheduling

Apply to Other Problems
n Quantified Boolean Formulas

l Extend Boolean formulas with existential and universal quantifiers
l Have formulated approach

n Model checking
n Model counting
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Temporal Logic Model Checking

Verify Reactive Systems
n Construct state machine representation of reactive system

l Nondeterminism expresses range of possible behaviors
l “Product” of component state machines

n Express desired behavior as formula in temporal logic
n Determine whether or not property holds

Traffic Light
Controller

Design

“It is never possible
to have a green
light for both N-S
and E-W.”

Model
Checker

True

False
+ Counterexample
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Model Counting with BDDs

Initial Graph Reduced Graph

Compute density of function
n Fraction of paths leading to leaf 1
n Average of densities of children

But, how to generate a proof?
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