Binary Decision Diagrams
and
Extended Resolution
Proof Generation

Randal E. Bryant
Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

Binary Decision Diagrams

Restricted Form of Branching Program
m Graph representation of Boolean function
m Canonical form
m Simple algorithms to construct & manipulate

Used in SAT, QBF, Model Checking, ...

m Bottom-Up Approach
® Construct canonical representation of problem
® Generate solutions

m Compare to Search-Based Methods
e E.g.,, DPLL, CDCL
® Top-down approaches
® Keep branching on variables until find solution

Summary: Time Line

Contribution

1965

1967
1986

2003

2006

2020

Robinson formulates resolution proof framework

Tseitin formulates extended resolution (ER)

Bryant introduces Binary Decision Diagrams (BDDs)

Zhang & Malik extend SAT solver to generate
UNSAT proofs

Sinz, Biere, (and Jussila) (SBJ) generate ER proofs
with BDD-based SAT solver

Bryant & Heule refine and extend SBJ

Boolean Function
Representations

Truth Table Decision Tree

X1 X9 X3

-Ool_-p=00O0O|™

= QO|I=_pPp-=0=0

m Vertex represents decision

m Follow green (dashed) line for value 0

m Follow red (solid) line for value 1

m Function value determined by leaf value.

Variable Ordering

m Assign arbitrary total ordering to variables
® .9, Xq1<X><X3

m Variables must appear in ascending order along all

paths
Not OK
/ IQD I® /@

Properties
m No conflicting variable assignments along path
m Simplifies manipulation

Reduction Rule #1

Merge equivalent leaves

L ‘ - H

Reduction Rule #2

Merge isomorphic nodes

2% = &%

Reduction Rule #3

Eliminate Redundant Tests

Example OBDD

Initial Graph Reduced Graph

&
0I

1

Canonical representation of Boolean function
2 For given variable ordering

= Two functions equivalent if and only if graphs isomorphic
® Can be tested in linear time

m Desirable property: simplest form is canonical.

Example Functions

Constants

O| Unique unsatisfiable function

1| Unique tautology

Typical Function

B (X{V Xy) A Xy
m No vertex labeled x;
¢ independent of xj

m Many subgraphs shared

Variable

04

Treat variable
as function

0 1

Odd Parity

Linear
representation

More Complex Functions

Functions
m Add 4-bit words a and b
m Get 4-bit sum s
m Carry output bit Cout

Shared Representation
m Graph with multiple roots
m 31 nodes for 4-bit adder
m 571 nodes for 64-bit adder
m Linear growth!

-11 -

Effect of Variable Ordering

(g Aby) v (ay Aby) v (a3 A bs)
Bad Ordering

—12—

Good Ordering

1

Linear Growth

Exponential Growth

Sample Function Classes

Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

General Experience
m Many tasks have reasonable OBDD representations
m Algorithms remain practical for up to 500,000 node OBDDs
m Heuristic ordering methods generally satisfactory

—13-—

Symbolic Manipulation with OBDDs

Strategy

m Represent data as set of OBDDs
® |dentical variable orderings

m Express solution method as sequence of symbolic
operations

® Sequence of constructor & query operations
® Similar style to on-line algorithm

= Implement each operation by OBDD manipulation
® Do all the work in the constructor operations

Key Algorithmic Properties
m Arguments are OBDDs with identical variable orderings
m Result is OBDD with same ordering
m Each step polynomial complexity

—14 —

Apply Operation

Concept
m Basic technique for building OBDD from Boolean formula.
A op B AopB

Arguments A, B, op Result
m A and B: Boolean Functions = OBDD representing
» Represented as OBDDs composite function

= op: Boolean Operation (e.g., *, &, |) mAopB

— 15—

Apply Execution Example

Argument A Argument B Recursive Calls
A1 ’B‘I

[\ \
Az,Bo As,Bo Az,B4
I\

Optimizations
m Dynamic programming
m Early termination rules

—16 -

Apply Result Generation

Recursive Calls Without Reduction With Reduction

A11B1

/ \
As,B>
I\

/ AgBs AgBs

/
I/// \ /1 /
A3,Bo AsBy Ag,By @\
I\ I l
A4,B3 As,By 0 1 0 1

m Recursive calling structure implicitly defines unreduced BDD
m Apply reduction rules bottom-up as return from recursive calls

17 -

Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

Network Evaluation
A T1 <« new_var);
< new_var);
B_[Out < new_var ("c");
C— T2 < And (A, 0, B);

<~ And (B, C);
Out « Or (T1, T2);

Resulting Graphs

A B C

a b C

- 18—

Boolean Satisfiability Solvers

Solution
Checker

Satisfiable

) soi.tior

Unsatisfiable

Boolean
Formula

) -
SAT Solvers Useful & Can We Trust Them?
Powerful = No!
m Formal verification m Complex software with
m Security verification lots of optimizations

m Optimization

—19-—

Proof Generating Solvers

Proof
Checker

Boolean

Formula Unsatisfiable

‘ Unsatisfiability proof
Unsatisfiability Proof Proof Checker
m Step-by-step proofin m Simple program

some logical framework = May be formally verified

—920-—

Basics

Clauses
muVvVw Disjunction of literals
m 1 Empty clause (False)

Resolution Principle

= p Q
P—w “uVvVw “wVxVgz w— 0
“"uVvVxVz

P— 0

—21—

Clausal Resolution Proof

V
Yy

1

o A~ WO N =

“yvVw

“vV-aw

V— W

vV—aw

V

J \

Yy

Input
clauses

-

. Derived

vA-v

clauses

m Prove conjunction of input clauses unsatisfiable

m Add derived clauses

® Each provides list of antecedent clauses that resolve to new clause

m Finish with empty clause

® Proof is series of inferences leading to contradiction

-2 _

Extended Resolution

Can introduce extension variables

— 23—

m Variable ¢ that has not yet occurred in proof

m Must introduce defining clauses
® Clauses creating constraint of form e < F
® Boolean formula F over input and earlier extension variables

m Example: Prove following set of constraints unsatisfiable

ulNv—ow “uV-avVw
uNv—o-w “uV-avV-aw
u/MNv u V

m Strategy: Introduce extension variable ¢ such thate < u A v

ER Proof
Step |Clause | Antecedents |Formula

0 N O O &~ WO N =

G O G G G G (e
o ~ WO N —+ O

“uV-avVw
“yuV-avVaw
u

%
eV-auV-v
eV u
“eVv
“eV-avVw
eV w
“eVAavV-aw
eV w

eV v

e

ne

1

1,6
7,8
2,6
7,10
3,5
4,12
9, 11
13, 14

uNv —mw
ulNv —-w Input
7 clauses
.
<
ulv —e
Definin
e — u > 9
clauses
e —™Yy _J
'\
eNv —w ulv
[],/ replaced
e —mw .
with e
eNv —w
[e — W Derived
y — e clauses
[e
- e
e\-e

Reduced, Ordered Binary Decision
Diagrams (BDDs)

m Bryant, 1986

Representation

m Canonical representation of Boolean
function

m Compact for many useful cases

Algorithms

= Apply(f; g, op)
® op is Boolean operation (e.g., A, V, @)

® BDD representation of fop g
= EQuant(f, 1)

® J/ set of variables
® BDD representation of 3V f

— 25—

Apply Algorithm Recursion

Recursion

Apply(u, v, A)
Apply(uy, v, A) = Q Wi
Apply(ug, vy, A) = wy q

Result

— 26 —

Apply Algorithm Nuances

Stop recursion when hit terminal case

m A0 = 0 ong = 0
mfAl = f INg = g
mfAf 2

Unique Table contains all generated nodes
o [x5 Ui, u()] = u
m Guarantees canonical form of result

Operation Cache contains previously computed results
m{u,v, \|= w

m Guarantees polynomial performance

— 27—

Generating ER Proofs

m Create extension variable for each node in BDD
® Notation: Same symbol for node & its extension variable

m Defining clauses create constraint u < ITE(x, u,, u,)

Clause name m Clausal form

HD (u) x — (u— uy) “xV-uVuy
LD(u) ax — (u— uy) xV-uVuy
HU () x— (uy — u) “xV-ou Vu

LU (u) ax — (ug— u) xV-uyVu

— 28—

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation
m When Apply(u, v, A) returns w, also generate proofu Av—w
m Store step number in operation cache

Proof Structure
m Assume recursive calls generate proofs

.Ml/\Vl_)Wl

o uOAV0—>w0

m Combine with defining clauses for nodes u, v, and w

— 29—

Apply Proof Structure

HD(u): x — (u — u,) LD(u): " x — (u — u,)
HD(v): x — (v —) LD(v): x — (v — vy)
HU(w): x — (w; — w) ugAvy—wy LU(w): "x— (wyg—w) UgAvy—w,
x—(unv—ow) Ax—(unv—ow)
UNY —w
Nuances

m Many special cases when recursive arguments and results
contain equivalences, 0s, and 1s.

—-30 -

Quantification Operations

Operation EQuant(f, 1)
m Critical for obtaining good performance
m Abstract away details of satisfying (partial) solutions

Proof Generation
m Don’t follow recursive structure of algorithms

m Instead, follow with implication test
e EQuant(u, V) = v
® Generate proof u — v
® Algorithm similar to proof-generating Apply operation

31—

Overall Structure of Proof

Input Variables
m Generate BDD variable for each input variable

Input Clauses
m Set of input clauses C,
m For each input clause C, generate BDD representation u

m Generate proof C - u
® Sequence of resolution steps based on linear structure of BDD

Combine Top-Level BDDs

= Apply(u, v, A) = w
® Combine proofs C; - u, C;Fv,andu Av— wtogetC, - w

m EQuant(u, V) = v
® Combine proofs C;Fuandu — vtoget C; v

Completion

4, @ When Apply(u, v, A) = 0 have proof C; + 1

Implementation

Package
m 2000 lines Python code (slow!)
m BDD package + proof generator

Benchmark Generators
m CNF file
m File specifying ordering of variables

m File specifying schedule:
® Defines sequence of conjunctions and quantifications

— 33 —

Mutilated Chessboard Problem

Definition
m N X N chessboard with 2
corners removed

m Cover with tiles, each
covering one square

— 34—

Mutilated Chessboard Problem

— 35—

Definition
m N X N chessboard with 2
corners removed

m Cover with tiles, each covering
one square

Solutions
m None
m More black squares than white

m Each tile covers one white and
one black square

Proof

m All resolution proofs of
exponential size

Encoding as SAT Problem
-

-

m Boolean variable for each boundary between two squares
® (N-1) N —2 vertical boundaries X;j
® (N-1)+N -2 horizontal boundaries y;;
m Constraints
® For each square, exactly one of its boundary variables = 1

— 36 —

Column Scanning

Scanning
m Add tiles for each column from left to right

Observation

m When tiling column, only need to know which rows have tiles
jutting in from left

—37-—

Abstraction Via Quantification
<__ I X

Scanning “State”

m Existentially quantify
variables defining
earlier boundaries in

= X; = Value of vertical . . .
variables to right of v

—a3g-column i

Symbolic Computation of State Sets

State at column j -1 Column transition State at column

o(X) = 3X_, [6,,(X_) ATY, T(X,_ .Y, X))

m Does not redefine underlying problem
m Way to order conjunctions and quantifications

— 39—

Representing State Sets

BDD Sizes by Column

1.E+18

1.E+16

1.E+14

1.E+12

1.E+10

Configurations by Column

—e—N=64
—o—N=32
—o—N=16

1.E+08
N=8
1.E+06

1.E+04 M

1.E+02

16400 B
0

—40 -

—o—N=4

8 16 24 32 40 48 56 64

= Number of configurations ~ 2%V
m BDD representation ~ N2

1200

1000

800

600

400

200

0 e

AR

0

8

m Reaches fixed point after column /2

16

24

32

40

48

56

64

Chess Proof Complexity

Chess Clauses

1E+09

1E+08

1E+07

1E+06

1E+05

Bucket

——Linear
——Column Scan

1E+04 KISSAT

1E+03

4 8 16 32 64 128

m Problem size ~ N2

4 Proof size ~ V268

Observations

Key Insight
m Sinz, Biere, and Jussila
m Capture underlying logic of BDD algorithms as ER proofs

Our Contributions
m Integrate proof generation with Apply operations
m Handle arbitrary existential quantification

m Demonstrate on variety of benchmarks
® Mutilated chessboard
® Pigeonhole principle
® Parity formulas
® Urquhart formulas

—42 —

Further Work

Higher Performance Implementation
m Integrate into existing BDD package

More Automation
m Variable ordering
m Conjunction and quantification scheduling

Apply to Other Problems

m Quantified Boolean Formulas
® Extend Boolean formulas with existential and universal quantifiers
® Have formulated approach

m Model checking
m Model counting

—43 —

Temporal Logic Model Checking

Verify Reactive Systems

m Construct state machine representation of reactive system
® Nondeterminism expresses range of possible behaviors
® “Product” of component state machines

m Express desired behavior as formula in temporal logic
m Determine whether or not property holds

\ —+— True

Model

“It i False
It is never possible Checker | 70—
to have a green / + Counterexample

light for both N-S
and E-W.”

Traffic Light
Controller
Design

— 44 —

Model Counting with BDDs

Initial Graph Reduced Graph

0

Compute density of function
m Fraction of paths leading to leaf 1
m Average of densities of children

But, how to generate a proof?

— 45—

