
Binary Decision Diagrams
and

Extended Resolution
Proof Generation

http://www.cs.cmu.edu/~bryant

Randal E. Bryant
Carnegie Mellon University

– 2 –

Binary Decision Diagrams

Restricted Form of Branching Program
n Graph representation of Boolean function
n Canonical form
n Simple algorithms to construct & manipulate

Used in SAT, QBF, Model Checking, …
n Bottom-Up Approach

l Construct canonical representation of problem
l Generate solutions

n Compare to Search-Based Methods
l E.g., DPLL, CDCL
l Top-down approaches
l Keep branching on variables until find solution

– 3 –

Summary: Time Line
Year Contribution
1965 Robinson formulates resolution proof framework

1967 Tseitin formulates extended resolution (ER)
1986 Bryant introduces Binary Decision Diagrams (BDDs)

2003 Zhang & Malik extend SAT solver to generate
UNSAT proofs

2006 Sinz, Biere, (and Jussila) (SBJ) generate ER proofs
with BDD-based SAT solver

2020 Bryant & Heule refine and extend SBJ

– 4 –

Boolean Function
Representations

Truth Table Decision Tree

n Vertex represents decision
n Follow green (dashed) line for value 0
n Follow red (solid) line for value 1
n Function value determined by leaf value.

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x10
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

– 5 –

Variable Ordering
n Assign arbitrary total ordering to variables

l e.g., x1 < x2 < x3
n Variables must appear in ascending order along all

paths
OK Not OK

Properties
n No conflicting variable assignments along path
n Simplifies manipulation

x1

x2

x3

x1

x3

x3

x2

x1

x1

x1

– 6 –

Reduction Rule #1

Merge equivalent leaves

a a

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

a

– 7 –

Reduction Rule #2

y

x

z

x

Merge isomorphic nodes

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

y

x

z

x

y

x

z

x

– 8 –

Reduction Rule #3

x3

x2

0 1

x3

x2

x1

Eliminate Redundant Tests

y

x

y

x2

0 1

x3

x1

– 9 –

Example OBDD

Initial Graph Reduced Graph

Canonical representation of Boolean function
! For given variable ordering
n Two functions equivalent if and only if graphs isomorphic

l Can be tested in linear time
n Desirable property: simplest form is canonical.

x2

0 1

x3

x1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
(x1 Ú x2) Ù x3

– 10 –

Example Functions
Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

Typical Function

x2

0 1

x4

x1 n (x1 Ú x2) Ù x4

n No vertex labeled x3

u independent of x3

n Many subgraphs shared

– 11 –

More Complex Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

Functions
n Add 4-bit words a and b
n Get 4-bit sum S
n Carry output bit Cout

Shared Representation
n Graph with multiple roots
n 31 nodes for 4-bit adder
n 571 nodes for 64-bit adder
n Linear growth!

– 12 –

Effect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth
0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()(332211 bababa ÙÚÙÚÙ

– 13 –

Sample Function Classes
Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

General Experience
n Many tasks have reasonable OBDD representations
n Algorithms remain practical for up to 500,000 node OBDDs
n Heuristic ordering methods generally satisfactory

– 14 –

Symbolic Manipulation with OBDDs

Strategy
n Represent data as set of OBDDs

l Identical variable orderings
n Express solution method as sequence of symbolic

operations
l Sequence of constructor & query operations
l Similar style to on-line algorithm

n Implement each operation by OBDD manipulation
l Do all the work in the constructor operations

Key Algorithmic Properties
n Arguments are OBDDs with identical variable orderings
n Result is OBDD with same ordering
n Each step polynomial complexity

– 15 –

Arguments A, B, op
n A and B: Boolean Functions

® Represented as OBDDs
n op: Boolean Operation (e.g., ^, &, |)

Apply Operation

Concept
n Basic technique for building OBDD from Boolean formula.

Result
n OBDD representing

composite function
n A op B

A Bop A op B

Þ
0

d

c

b

1

a

0

d

c

b

1

a

0 1

d

c

a

b

0

d

1

c

a

Ú

– 16 –

0 1

d

c

a

B3 B4

B2

B5

B1

Argument A

Operation

Argument B

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls

b

0

d

1

c

a

A4 A5

A3

A2

A6

A1

Apply Execution Example

Optimizations
n Dynamic programming
n Early termination rules

Ú

– 17 –

0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls Without Reduction With Reduction

0

d

c

b

1

a

Apply Result Generation

n Recursive calling structure implicitly defines unreduced BDD
n Apply reduction rules bottom-up as return from recursive calls

– 18 –

Generating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting Graphs

A B C
T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

A ¬ new_var ("a");
B ¬ new_var ("b");
C ¬ new_var ("c");
T1 ¬ And (A, 0, B);
T2 ¬ And (B, C);
Out ¬ Or (T1, T2);

– 19 –

Boolean Satisfiability Solvers

SAT Solvers Useful &
Powerful
n Formal verification
n Security verification
n Optimization

Can We Trust Them?
n No!
n Complex software with

lots of optimizations

SAT
Solver

Boolean
Formula

?

Unsatisfiable

Solution
Checker

Satisfiable

Solution

– 20 –

Proof Generating Solvers

Unsatisfiability Proof
n Step-by-step proof in

some logical framework

Proof Checker
n Simple program
n May be formally verified

SAT
Solver

Boolean
Formula

Unsatisfiability proof

Unsatisfiable

Proof
Checker

– 21 –

Basics

Clauses
n ¬ u ⋁ v ⋁ w Disjunction of literals
n ⊥ Empty clause (False)

Resolution Principle

¬ u ⋁ v ⋁ w ¬ w ⋁ x ⋁ ¬ z

¬ u ⋁ v ⋁ x ⋁ ¬ z

¬ P Q

P ⟶ w w ⟶ Q

P ⟶ Q

– 22 –

Clausal Resolution Proof

n Prove conjunction of input clauses unsatisfiable
n Add derived clauses

l Each provides list of antecedent clauses that resolve to new clause
n Finish with empty clause

l Proof is series of inferences leading to contradiction

Step Clause Antecedents Formula
1 ¬ v ⋁ w v ⟶ w
2 ¬ v ⋁ ¬ w v ⟶ ¬ w
3 v v
4 ¬ v 1, 2 ¬ v
5 ⊥ 3, 4 v ⋀ ¬ v

Input
clauses

Derived
clauses

– 23 –

Extended Resolution

Can introduce extension variables
n Variable e that has not yet occurred in proof
n Must introduce defining clauses

l Clauses creating constraint of form e ⟷ F
l Boolean formula F over input and earlier extension variables

n Example: Prove following set of constraints unsatisfiable

n Strategy: Introduce extension variable e such that e ⟷ u ⋀ v

Constraint Clauses
u ⋀ v ⟶ w ¬ u ⋁ ¬ v ⋁ w
u ⋀ v ⟶ ¬ w ¬ u ⋁ ¬ v ⋁ ¬ w
u ⋀ v u v

– 24 –

ER Proof
Step Clause Antecedents Formula
1 ¬ u ⋁ ¬ v ⋁ w u ⋀ v ⟶ w

2 ¬ u ⋁ ¬ v ⋁ ¬ w u ⋀ v ⟶ ¬ w
3 u u
4 v v
5 e ⋁ ¬ u ⋁ ¬ v u ⋀ v ⟶ e
6 ¬ e ⋁ u e ⟶ u
7 ¬ e ⋁ v e ⟶ v
8 ¬ e ⋁ ¬ v ⋁ w 1, 6 e ⋀ v ⟶ w
9 ¬ e ⋁ w 7, 8 e ⟶ w
10 ¬ e ⋁ ¬ v ⋁ ¬ w 2, 6 e ⋀ v ⟶ ¬ w
11 ¬ e ⋁ ¬ w 7, 10 e ⟶ ¬ w
12 e ⋁ ¬ v 3, 5 v ⟶ e
13 e 4, 12 e
14 ¬ e 9, 11 ¬ e
15 ⊥ 13, 14 e ⋀ ¬ e

Input
clauses

Derived
clauses

Defining
clauses

u ⋀ v
replaced
with e

– 25 –

Reduced, Ordered Binary Decision
Diagrams (BDDs)

n Bryant, 1986

Representation
n Canonical representation of Boolean

function
n Compact for many useful cases

Algorithms
n Apply(f, g, op)

l op is Boolean operation (e.g., ∧, ∨, ⊕)
l BDD representation of f op g

n EQuant(f, V)
l V set of variables
l BDD representation of ∃V f

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

– 26 –

Apply Algorithm Recursion

xu

u0 u1

xv

v0 v1

Apply(u, v, ∧)

xw

w0 w1

Apply(u1, v1, ∧) ➞ w1

w0Apply(u0, v0, ∧) ➞

Result

Recursion

– 27 –

Apply Algorithm Nuances

Stop recursion when hit terminal case
n f ∧ 0 ➞ 0 0 ∧ g ➞ 0
n f ∧ 1 ➞ f 1 ∧ g ➞ g
n f ∧ f ➞ f

Unique Table contains all generated nodes
n [x, u1, u0] ➞ u
n Guarantees canonical form of result

Operation Cache contains previously computed results
n [u, v, ∧] ➞ w
n Guarantees polynomial performance

– 28 –

Generating ER Proofs
n Create extension variable for each node in BDD

l Notation: Same symbol for node & its extension variable

n Defining clauses create constraint u ⟷ ITE(x, u1, u0)

xu

u0 u1

Clause name Formula Clausal form
HD(u) x ⟶ (u ⟶ u1) ¬ x ⋁ ¬ u ⋁ u1
LD(u) ¬ x ⟶ (u ⟶ u0) x ⋁ ¬ u ⋁ u0
HU(u) x ⟶ (u1⟶ u) ¬ x ⋁ ¬ u1 ⋁ u
LU(u) ¬ x ⟶ (u0⟶ u) x ⋁ ¬ u0 ⋁ u

– 29 –

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation
n When Apply(u, v, ∧) returns w, also generate proof u ∧ v ⟶ w
n Store step number in operation cache

Proof Structure
n Assume recursive calls generate proofs

l u1 ∧ v1⟶ w1
l u0 ∧ v0⟶ w0

n Combine with defining clauses for nodes u, v, and w

– 30 –

Apply Proof Structure

Nuances
n Many special cases when recursive arguments and results

contain equivalences, 0s, and 1s.

HD(u): x ⟶ (u ⟶ u1)
HD(v): x ⟶ (v ⟶ v1)
HU(w): x ⟶ (w1⟶ w) u1 ∧ v1⟶ w1

x ⟶ (u ∧ v ⟶ w)

LD(u): ¬ x ⟶ (u ⟶ u0)
LD(v): ¬ x ⟶ (v ⟶ v0)
LU(w): ¬ x ⟶ (w0⟶ w) u0 ∧ v0⟶ w0

¬ x ⟶ (u ∧ v ⟶ w)

u ∧ v ⟶ w

– 31 –

Quantification Operations

Operation EQuant(f, V)
n Critical for obtaining good performance
n Abstract away details of satisfying (partial) solutions

Proof Generation
n Don’t follow recursive structure of algorithms
n Instead, follow with implication test

l EQuant(u, V) ➞ v
l Generate proof u ⟶ v
l Algorithm similar to proof-generating Apply operation

– 32 –

Overall Structure of Proof
Input Variables

n Generate BDD variable for each input variable

Input Clauses
n Set of input clauses CI
n For each input clause C, generate BDD representation u
n Generate proof C ⊢ u

l Sequence of resolution steps based on linear structure of BDD

Combine Top-Level BDDs
n Apply(u, v, ∧) ➞ w

l Combine proofs CI ⊢ u, CI ⊢ v, and u ∧ v ⟶ w to get CI ⊢ w

n EQuant(u, V) ➞ v
l Combine proofs CI ⊢ u and u ⟶ v to get CI ⊢ v

Completion
n When Apply(u, v, ∧) ➞ 0 have proof CI ⊢ ⊥

– 33 –

Implementation

Package
n 2000 lines Python code (slow!)
n BDD package + proof generator

Benchmark Generators
n CNF file
n File specifying ordering of variables
n File specifying schedule:

l Defines sequence of conjunctions and quantifications

– 34 –

Mutilated Chessboard Problem

Definition
n N ⨉ N chessboard with 2

corners removed
n Cover with tiles, each

covering one square

– 35 –

Mutilated Chessboard Problem

Definition
n N ⨉ N chessboard with 2

corners removed
n Cover with tiles, each covering

one square

Solutions
n None
n More black squares than white
n Each tile covers one white and

one black square

Proof
n All resolution proofs of

exponential size

– 36 –

Encoding as SAT Problem

n Boolean variable for each boundary between two squares
l (N –1) • N – 2 vertical boundaries xi,j
l (N –1) • N – 2 horizontal boundaries yi,j
n Constraints

l For each square, exactly one of its boundary variables = 1

– 37 –

Column Scanning
Scanning

n Add tiles for each column from left to right

Observation
n When tiling column, only need to know which rows have tiles

jutting in from left

– 38 –

Abstraction Via Quantification

Scanning “State”
n Existentially quantify

variables defining
earlier boundaries in
scan

n Xi = Value of vertical
variables to right of
column i

∃

– 39 –

State at column j –1 Column j transition State at column j

Symbolic Computation of State Sets

n Does not redefine underlying problem
n Way to order conjunctions and quantifications

σj(Xj) = ∃Xj−1 [σj−1(Xj−1) ∧ ∃Yj Tj(Xj−1, Yj, Xj)]

σj−1(Xj−1) Tj(Xj−1, Yj, Xj) σj(Xj)

– 40 –

Representing State Sets

n Number of configurations ∼ 2N

n BDD representation ∼ N 2

n Reaches fixed point after column N / 2

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

1.E+16

1.E+18

0 8 16 24 32 40 48 56 64

Configurations by Column

N=64
N=32
N=16
N=8
N=4

0

200

400

600

800

1000

1200

0 8 16 24 32 40 48 56 64

BDD Sizes by Column

N=64
N=32
N=16
N=8
N=4

– 41 –

Chess Proof Complexity

n Problem size ∼ N 2

n Proof size ~ N 2.68

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

4 8 16 32 64 128

Chess Clauses

Bucket
Linear
Column Scan
KISSAT

– 42 –

Observations

Key Insight
n Sinz, Biere, and Jussila
n Capture underlying logic of BDD algorithms as ER proofs

Our Contributions
n Integrate proof generation with Apply operations
n Handle arbitrary existential quantification
n Demonstrate on variety of benchmarks

l Mutilated chessboard
l Pigeonhole principle
l Parity formulas
l Urquhart formulas

– 43 –

Further Work

Higher Performance Implementation
n Integrate into existing BDD package

More Automation
n Variable ordering
n Conjunction and quantification scheduling

Apply to Other Problems
n Quantified Boolean Formulas

l Extend Boolean formulas with existential and universal quantifiers
l Have formulated approach

n Model checking
n Model counting

– 44 –

Temporal Logic Model Checking

Verify Reactive Systems
n Construct state machine representation of reactive system

l Nondeterminism expresses range of possible behaviors
l “Product” of component state machines

n Express desired behavior as formula in temporal logic
n Determine whether or not property holds

Traffic Light
Controller

Design

“It is never possible
to have a green
light for both N-S
and E-W.”

Model
Checker

True

False
+ Counterexample

– 45 –

Model Counting with BDDs

Initial Graph Reduced Graph

Compute density of function
n Fraction of paths leading to leaf 1
n Average of densities of children

But, how to generate a proof?

x2

0 1

x3

x1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

𝛒 = 0.5

𝛒 = 0.25

𝛒 = 0.375

