Binary Decision Diagrams and and Extended Resolution Proof Generation

Randal E. Bryant Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

Binary Decision Diagrams

Restricted Form of Branching Program

- Graph representation of Boolean function
- Canonical form
- Simple algorithms to construct & manipulate

Used in SAT, QBF, Model Checking, ...

- Bottom-Up Approach
 - Construct canonical representation of problem
 - Generate solutions
- **Compare to Search-Based Methods**
 - E.g., DPLL, CDCL
 - Top-down approaches
 - Keep branching on variables until find solution

Summary: Time Line

Year	Contribution
1965	Robinson formulates resolution proof framework
1967	Tseitin formulates extended resolution (ER)
1986	Bryant introduces Binary Decision Diagrams (BDDs)
2003	Zhang & Malik extend SAT solver to generate UNSAT proofs
2006	Sinz, Biere, (and Jussila) (SBJ) generate ER proofs with BDD-based SAT solver
2020	Bryant & Heule refine and extend SBJ

Boolean Function Representations

Truth Table

X₁ X₂ X₃ f 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.

Variable Ordering

- Assign arbitrary total ordering to variables
 - e.g., $X_1 < X_2 < X_3$
- Variables must appear in ascending order along all paths

Properties

- No conflicting variable assignments along path
- Simplifies manipulation

Reduction Rule #1

Merge equivalent leaves

Reduction Rule #2

Merge isomorphic nodes

Reduction Rule #3

Eliminate Redundant Tests

Example OBDD

Initial Graph

Reduced Graph

Canonical representation of Boolean function

- For given variable ordering
- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property: *simplest form is canonical*.

Example Functions

Constants

- Unique unsatisfiable function
- 1 Unique tautology

Variable

Treat variable as function

Typical Function

Odd Parity

Linear representation

More Complex Functions

Functions

- Add 4-bit words a and b
- Get 4-bit sum S
- Carry output bit Cout

Shared Representation

- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth!

Effect of Variable Ordering

$$(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$$

Good Ordering

Bad Ordering

Exponential Growth

Sample Function Classes

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	linear	exponential	High
Symmetric	linear	quadratic	None
Multiplication	exponential	exponential	Low

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 500,000 node OBDDs
- Heuristic ordering methods generally satisfactory

Symbolic Manipulation with OBDDs

Strategy

- Represent data as set of OBDDs
 - Identical variable orderings
- Express solution method as sequence of symbolic operations
 - Sequence of constructor & query operations
 - Similar style to on-line algorithm
- Implement each operation by OBDD manipulation
 - Do all the work in the constructor operations

Key Algorithmic Properties

- Arguments are OBDDs with identical variable orderings
- Result is OBDD with same ordering
- Each step polynomial complexity

Apply Operation

Concept

■ Basic technique for building OBDD from Boolean formula.

Arguments A, B, op

- A and B: Boolean Functions
 - Represented as OBDDs
- op: Boolean Operation (e.g., ^, &, |)

Result

- OBDD representing composite function
- A op B

Apply Execution Example

Optimizations

- Dynamic programming
- Early termination rules

Apply Result Generation

- Recursive calling structure implicitly defines unreduced BDD
- Apply reduction rules bottom-up as return from recursive calls

Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

Network

Evaluation

```
A ← new_var ("a");
B ← new_var ("b");
C ← new_var ("c");
T1 ← And (A, 0, B);
T2 ← And (B, C);
Out ← Or (T1, T2);
```


Boolean Satisfiability Solvers

SAT Solvers Useful & Powerful

- Formal verification
- Security verification
- Optimization

Can We Trust Them?

- No!
- Complex software with lots of optimizations

Proof Generating Solvers

Unsatisfiability Proof

Step-by-step proof in some logical framework

Proof Checker

- **Simple program**
- May be formally verified

Basics

Clauses

- $\blacksquare \neg u \lor v \lor w$
- **Disjunction of literals**

■ ⊥

Empty clause (False)

Resolution Principle

Clausal Resolution Proof

Step	Clause	Antecedents	Formula	
1	$\neg v \lor w$		$v \longrightarrow w$]
2	$\neg v \lor \neg w$		$v \longrightarrow \neg w$	Input clauses
3	ν		v	J
4	$\neg v$	1, 2	$\neg v$	Derived
5	1	3, 4	$v \land \neg v$	clauses

- Prove conjunction of input clauses unsatisfiable
- Add derived clauses
 - Each provides list of antecedent clauses that resolve to new clause
- Finish with empty clause
 - Proof is series of inferences leading to contradiction

Extended Resolution

Can introduce extension variables

- Variable *e* that has not yet occurred in proof
- Must introduce *defining clauses*
 - Clauses creating constraint of form $e \leftrightarrow F$
 - Boolean formula F over input and earlier extension variables
- Example: Prove following set of constraints unsatisfiable

Constraint	Clauses	
$u \wedge v \longrightarrow w$	$\neg u \lor \neg v$	V W
$u \wedge v \longrightarrow \neg w$	$\neg u \lor \neg v \lor \neg w$	
$u \wedge v$	u	v

■ Strategy: Introduce extension variable e such that $e \leftrightarrow u \land v$

ER Proof

Step	Clause	Antecedents	Formula	
1	$\neg u \lor \neg v \lor w$		$u \wedge v \longrightarrow w$)
2	$\neg u \lor \neg v \lor \neg w$		$u \wedge v \longrightarrow \neg w$	Input
3	u		u	clauses
4	ν		v	J
5	$e \lor \neg u \lor \neg v$		$u \wedge v \rightarrow e$	D. C.
6	$\neg e \lor u$		$e \longrightarrow u$	Defining clauses
7	$\neg e \lor v$		$e \longrightarrow v$	
8	$\neg e \lor \neg v \lor w$	1, 6	$e \wedge v \rightarrow w$	$u \wedge v$
9	$\neg e \lor w$	7, 8	$e \rightarrow w$	replaced with e
10	$\neg e \lor \neg v \lor \neg w$	2, 6	$e \wedge v \rightarrow \neg w$	
11	$\neg e \lor \neg w$	7, 10	$e \rightarrow \neg w$	Derived
12	$e \lor \neg v$	3, 5	$v \rightarrow e$	clauses
13	e	4, 12	е	Y
14	$\neg e$	9, 11	$\neg e$	
15	1	13, 14	$e \land \neg e$	J

Reduced, Ordered Binary Decision Diagrams (BDDs)

Bryant, 1986

Representation

- Canonical representation of Boolean function
- Compact for many useful cases

Algorithms

- **■** Apply(*f*, *g*, *op*)
 - op is Boolean operation (e.g., ∧, ∨, ⊕)
 - BDD representation of f op g
- **EQuant**(f, V)
 - V set of variables
 - BDD representation of $\exists V f$

Apply Algorithm Recursion

Apply (u, v, \wedge)

Recursion

$$\mathsf{Apply}(u_1,\,v_1,\,\Lambda) \,\,\rightarrow\,\,$$

$$\mathsf{Apply}(u_0, v_0, \Lambda) \to w_0$$

Result

Apply Algorithm Nuances

Stop recursion when hit terminal case

- $\blacksquare f \land 1 \rightarrow f \qquad 1 \land g \rightarrow g$

 $\blacksquare f \land f \rightarrow f$

Unique Table contains all generated nodes

- \blacksquare $[x, u_1, u_0] \rightarrow u$
- Guarantees canonical form of result

Operation Cache contains previously computed results

- $\blacksquare [u, v, \wedge] \rightarrow w$
- Guarantees polynomial performance

Generating ER Proofs

- Create extension variable for each node in BDD
 - Notation: Same symbol for node & its extension variable

■ Defining clauses create constraint $u \leftrightarrow ITE(x, u_1, u_0)$

Clause name	Formula	Clausal form
HD(u)	$x \longrightarrow (u \longrightarrow u_1)$	$\neg x \lor \neg u \lor u_1$
LD(u)	$\neg x \longrightarrow (u \longrightarrow u_0)$	$x \lor \neg u \lor u_0$
HU(u)	$x \longrightarrow (u_1 \longrightarrow u)$	$\neg x \lor \neg u_1 \lor u$
LU(u)	$\neg x \longrightarrow (u_0 \longrightarrow u)$	$x \lor \neg u_0 \lor u$

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- When Apply (u, v, \land) returns w, also generate proof $u \land v \rightarrow w$
- Store step number in operation cache

Proof Structure

- Assume recursive calls generate proofs
 - \bullet $u_1 \wedge v_1 \longrightarrow w_1$
 - \bullet $u_0 \wedge v_0 \longrightarrow w_0$
- Combine with defining clauses for nodes u, v, and w

Apply Proof Structure

$$u \wedge v \longrightarrow w$$

Nuances

Many special cases when recursive arguments and results contain equivalences, 0s, and 1s.

Quantification Operations

Operation EQuant(f, V)

- Critical for obtaining good performance
- Abstract away details of satisfying (partial) solutions

Proof Generation

- Don't follow recursive structure of algorithms
- Instead, follow with implication test
 - EQuant(u, V) \rightarrow v
 - Generate proof $u \rightarrow v$
 - Algorithm similar to proof-generating Apply operation

Overall Structure of Proof

Input Variables

Generate BDD variable for each input variable

Input Clauses

- \blacksquare Set of input clauses C_I
- For each input clause C, generate BDD representation u
- Generate proof $C \vdash u$
 - Sequence of resolution steps based on linear structure of BDD

Combine Top-Level BDDs

- Apply $(u, v, \land) \rightarrow w$
 - Combine proofs $C_I \vdash u$, $C_I \vdash v$, and $u \land v \longrightarrow w$ to get $C_I \vdash w$
- EQuant(u, V) →
 - Combine proofs $C_I \vdash u$ and $u \rightarrow v$ to get $C_I \vdash v$

Completion

■ When Apply $(u, v, \wedge) \rightarrow 0$ have proof $C_I \vdash \bot$

Implementation

Package

- 2000 lines Python code (slow!)
- BDD package + proof generator

Benchmark Generators

- CNF file
- File specifying ordering of variables
- File specifying schedule:
 - Defines sequence of conjunctions and quantifications

Mutilated Chessboard Problem

Definition

- N X N chessboard with 2 corners removed
- Cover with tiles, each covering one square

Mutilated Chessboard Problem

Definition

- N × N chessboard with 2 corners removed
- Cover with tiles, each covering one square

Solutions

- None
- More black squares than white
- Each tile covers one white and one black square

Proof

All resolution proofs of exponential size

Encoding as SAT Problem

- Boolean variable for each boundary between two squares
- $(N-1) \cdot N 2$ vertical boundaries $x_{i,j}$
- $(N-1) \cdot N 2$ horizontal boundaries $y_{i,j}$
- Constraints
 - For each square, exactly one of its boundary variables = 1

Column Scanning

Scanning

Add tiles for each column from left to right

Observation

When tiling column, only need to know which rows have tiles jutting in from left

Abstraction Via Quantification

Scanning "State"

- Existentially quantify variables defining earlier boundaries in scan
- X_i = Value of vertical variables to right of

- 38 -**column** *i*

Symbolic Computation of State Sets

State at column j-1

$$\sigma_{j-1}(X_{j-1})$$

Column *j* transition

$$T_j(X_{j-1}, Y_j, X_j)$$

State at column *j*

$$\sigma_j(X_j)$$

$$\sigma_{j}(X_{j}) = \exists X_{j-1} \left[\sigma_{j-1}(X_{j-1}) \land \exists Y_{j} T_{j}(X_{j-1}, Y_{j}, X_{j}) \right]$$

- Does not redefine underlying problem
- Way to order conjunctions and quantifications

Representing State Sets

- Number of configurations $\sim 2^N$
- BDD representation $\sim N^2$
- Reaches fixed point after column N/2

Chess Proof Complexity

- Problem size $\sim N^2$
- Proof size ~ $N^{2.68}$

Observations

Key Insight

- Sinz, Biere, and Jussila
- Capture underlying logic of BDD algorithms as ER proofs

Our Contributions

- Integrate proof generation with Apply operations
- Handle arbitrary existential quantification
- Demonstrate on variety of benchmarks
 - Mutilated chessboard
 - Pigeonhole principle
 - Parity formulas
 - Urquhart formulas

Further Work

Higher Performance Implementation

■ Integrate into existing BDD package

More Automation

- Variable ordering
- Conjunction and quantification scheduling

Apply to Other Problems

- Quantified Boolean Formulas
 - Extend Boolean formulas with existential and universal quantifiers
 - Have formulated approach
- Model checking
- Model counting

Temporal Logic Model Checking

Verify Reactive Systems

- Construct state machine representation of reactive system
 - Nondeterminism expresses range of possible behaviors
 - "Product" of component state machines
- Express desired behavior as formula in temporal logic
- Determine whether or not property holds

Model Counting with BDDs

Initial Graph

Reduced Graph

Compute *density* of function

- Fraction of paths leading to leaf 1
- Average of densities of children

But, how to generate a proof?