Maximum Satisfiability

Ruben Martins

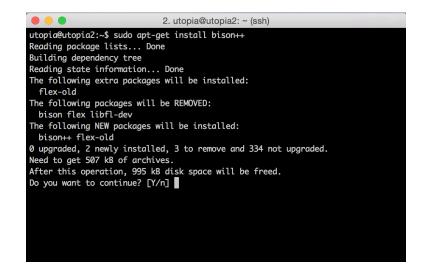
Carnegie Mellon University

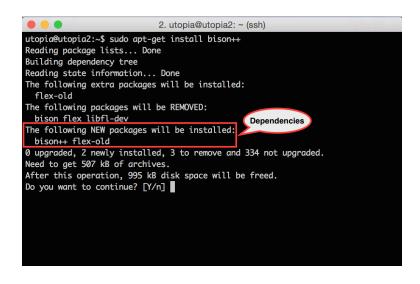
http://www.cs.cmu.edu/~mheule/15816-f19/ Automated Reasoning and Satisfiability, October 1, 2019

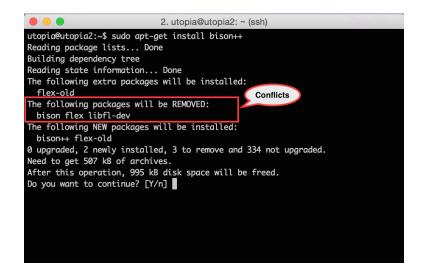
What is Boolean Satisfiability?

- ► Fundamental problem in Computer Science
 - ▶ The first problem to be proven NP-Complete
 - Has a wide range of applications
- ► Formula:

- Boolean Satisfiability (SAT):
 - Is there an assignment of true or false values to variables such that φ evaluates to true?







Package	Dependencies	Conflicts
p_1	$\{p_2 \vee p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	{}
p_3	$\{p_2\}$	$\{p_4\}$
<i>p</i> ₄	$\{p_2 \wedge p_3\}$	{}

- ▶ Set of packages we want to install: $\{p_1, p_2, p_3, p_4\}$
- ▶ Each package p_i has a set of **dependencies**:
 - \triangleright Packages that must be installed for p_i to be installed
- ▶ Each package p_i has a set of **conflicts**:
 - \triangleright Packages that cannot be installed for p_i to be installed

NP Completeness

"I can't find an efficient algorithm, but neither can all these famous people."

NP Completeness

"I can't find an efficient algorithm, but neither can all these famous people."

- ► Giving up?
 - ▶ The problem is NP-hard, so let's develop heuristics or approximation algorithms.

NP Completeness

"I can't find an efficient algorithm, but neither can all these famous people."

- Giving up?
 - ► The problem is NP-hard, so let's develop heuristics or approximation algorithms.
- No! Current tools can find solutions for very large problems!

Package	Dependencies	Conflicts
p_1	$\{p_2 \vee p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	{}
p_3	$\{p_2\}$	$\{p_4\}$
<i>p</i> ₄	$\{p_2 \wedge p_3\}$	{}

Package	Dependencies	Conflicts
p_1	$\{p_2 \vee p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	{}
p_3	$\{p_2\}$	$\{p_4\}$
<i>p</i> ₄	$\{p_2 \wedge p_3\}$	{}

How can we encode this problem to Boolean Satisfiability?

(Hint) Encode dependencies, conflicts, and installing all packages

Package	Dependencies	Conflicts
p_1	$\{p_2 \vee p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	{}
p_3	$\{p_2\}$	$\{p_4\}$
<i>p</i> ₄	$\{p_2 \wedge p_3\}$	{}

- Encoding dependencies:

Package	Dependencies	Conflicts
p_1	$\{p_2 \vee p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	{}
p_3	$\{p_2\}$	$\{p_4\}$
<i>p</i> ₄	$\{p_2 \wedge p_3\}$	{}

- ► Encoding conflicts:

Package	Dependencies	Conflicts
p_1	$\{p_2 \vee p_3\}$	$\{p_4\}$
p_2	$\{p_3\}$	{}
p_3	$\{p_2\}$	$\{p_4\}$
<i>p</i> ₄	$\{p_2 \wedge p_3\}$	{}

- Encoding installing all packages:
 - $\blacktriangleright (p_1) \land (p_2) \land (p_3) \land (p_4)$

Formula φ :

Dependencies $\neg p_1 \lor p_2 \lor p_3 \quad \neg p_2 \lor p_3 \quad \neg p_3 \lor p_2$

Dependencies
$$\neg p_1 \lor p_2 \lor p_3$$
 $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$

Conflicts $\neg p_4 \lor p_2$ $\neg p_4 \lor p_3$ $\neg p_1 \lor \neg p_4$ $\neg p_3 \lor \neg p_4$

Dependencies
$$\neg p_1 \lor p_2 \lor p_3$$
 $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$

Conflicts $\neg p_4 \lor p_2$ $\neg p_4 \lor p_3$ $\neg p_1 \lor \neg p_4$ $\neg p_3 \lor \neg p_4$

Packages p_1 p_2 p_3 p_4

Dependencies
$$\neg p_1 \lor p_2 \lor p_3$$
 $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$

Conflicts $\neg p_4 \lor p_2$ $\neg p_4 \lor p_3$ $\neg p_1 \lor \neg p_4$ $\neg p_3 \lor \neg p_4$

Packages p_1 p_2 p_3 p_4

$$\varphi = (\neg p_1 \lor p_2 \lor p_3) \land (\neg p_2 \lor p_3) \land (\neg p_3 \lor p_2) \land (\neg p_4 \lor p_2) \land (\neg p_4 \lor p_3) \land (\neg p_1 \lor \neg p_4) \land (\neg p_3 \lor \neg p_4) \land (p_1) \land (p_2) \land (p_3) \land (p_4)$$

Formula φ :

Dependencies
$$\neg p_1 \lor p_2 \lor p_3$$
 $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$

Conflicts $\neg p_4 \lor p_2$ $\neg p_4 \lor p_3$ $\neg p_1 \lor \neg p_4$ $\neg p_3 \lor \neg p_4$

Packages p_1 p_2 p_3 p_4

- ► Formula is unsatisfiable
- ► Can you find an unsatisfiable subformula?

(Hint) There are several with 3 clauses!

Dependencies
$$\neg p_1 \lor p_2 \lor p_3$$
 $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$

Conflicts $\neg p_4 \lor p_2$ $\neg p_4 \lor p_3$ $\neg p_1 \lor \neg p_4$ $\neg p_3 \lor \neg p_4$

Packages p_1 p_2 p_3 p_4

- ► Formula is unsatisfiable
- ▶ We cannot install all packages
- ▶ How many packages can we install?

What is Maximum Satisfiability?

- Maximum Satisfiability (MaxSAT):
 - Clauses in the formula are either soft or hard
 - ► Hard clauses: **must** be satisfied (e.g. conflicts, dependencies)
 - Soft clauses: desirable to be satisfied (e.g. package installation)
- ► Goal: Maximize number of satisfied soft clauses

How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:

- What are the hard constraints?
 - (Hint) Dependencies, conflicts or installation packages?
- What are the soft constraints?
 - (Hint) Dependencies, conflicts or installation packages?

How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:

- What are the hard constraints?
 - Dependencies and conflicts
- What are the soft constraints?
 - Installation of packages

MaxSAT Formula:

$$arphi_h$$
 (Hard): $\neg p_1 \lor p_2 \lor p_3$ $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$
$$\neg p_4 \lor p_2 \qquad \neg p_4 \lor p_3 \qquad \neg p_1 \lor \neg p_4 \qquad \neg p_3 \lor \neg p_4$$

$$arphi_s$$
 (Soft): p_1 p_2 p_3 p_4

- ▶ Dependencies and conflicts are encoded as hard clauses
- Installation of packages are encoded as soft clauses
- ▶ Goal: maximize the number of installed packages

MaxSAT Formula:

$$arphi_h$$
 (Hard): $\neg p_1 \lor p_2 \lor p_3$ $\neg p_2 \lor p_3$ $\neg p_3 \lor p_2$
$$\neg p_4 \lor p_2$$
 $\neg p_4 \lor p_3$ $\neg p_1 \lor \neg p_4$ $\neg p_3 \lor \neg p_4$
$$arphi_s$$
 (Soft): p_1 p_2 p_3 p_4

- Dependencies and conflicts are encoded as hard clauses
- Installation of packages are encoded as soft clauses
- Optimal solution (3 out 4 packages are installed)

Why is MaxSAT Important?

- Many real-world applications can be encoded to MaxSAT:
 - Software package upgradeability

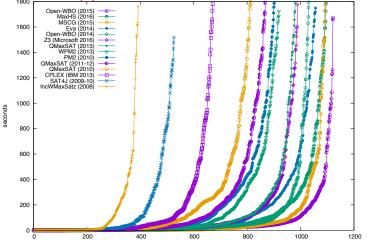
Error localization in C code

Haplotyping with pedigrees

. . . .

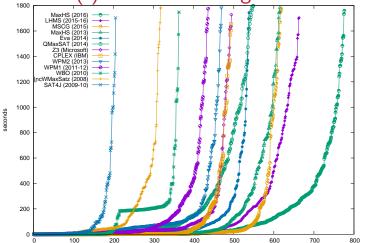
 MaxSAT algorithms are very effective for solving real-word problems

The MaxSAT (r)evolution – Unweighted MaxSAT



- ▶ Best solver can solve 3× more benchmarks than in 2008!
- ▶ Better than tools like CPLEX (IBM) and Z3 (Microsoft)!

The MaxSAT (r)evolution – Weighted MaxSAT

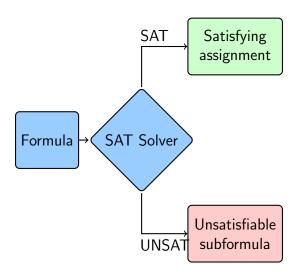


- ► Best solver can solve 2.5× more benchmarks than in 2008!
- Better than tools like CPLEX (IBM) and Z3 (Microsoft)!

Outline

- MaxSAT Algorithms:
 - Upper bound search on the number of unsatisfied soft clauses
 - Lower bound search on the number of unsatisfied soft clauses
- Partitioning in MaxSAT:
 - Use the structure of the problem to guide the search
- Using MaxSAT solvers

SAT Solvers



Satisfying assignment

Formula:

$$x_1$$
 $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$ $\neg x_3 \lor \neg x_1$ $x_2 \lor \neg x_3$

- Satisfying assignment:
 - Assignment to the variables that evaluates the formula to true

Satisfying assignment

Formula:

$$x_1$$
 $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$ $\neg x_3 \lor \neg x_1$ $x_2 \lor \neg x_3$

- Satisfying assignment:
 - Assignment to the variables that evaluates the formula to true
 - $\mu = \{x_1 = 1, x_2 = 1, x_3 = 0\}$

Unsatisfiable subformula

Formula:

$$x_1$$
 x_3 $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$ $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$

Formula is unsatisfiable

Unsatisfiable subformula

Formula:

$$x_1$$
 x_3 $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$ $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$

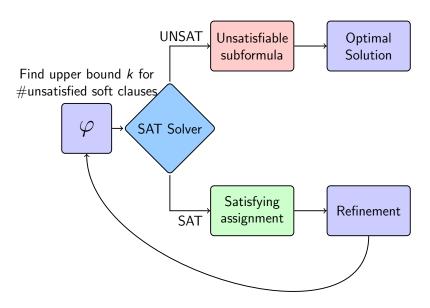
- Formula is unsatisfiable
- Unsatisfiable subformula (core):
 - $\varphi' \subseteq \varphi$, such that φ' is unsatisfiable

MaxSAT Algorithms

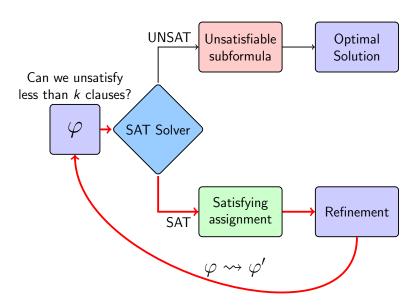
- MaxSAT algorithms build on SAT solver technology
- MaxSAT algorithms use constraints not defined in causal form:
 - ▶ AtMost1 constraints, $\sum_{i=1}^{n} x_i \leq 1$

 - ▶ General cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$ ▶ Pseudo-Boolean constraints, $\sum_{j=1}^{n} a_j x_j \leq k$
- Efficient encodings to CNF
 - Sinz, Totalizer, . . .

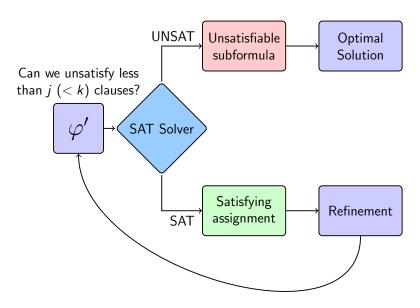
Upper Bound Search for MaxSAT



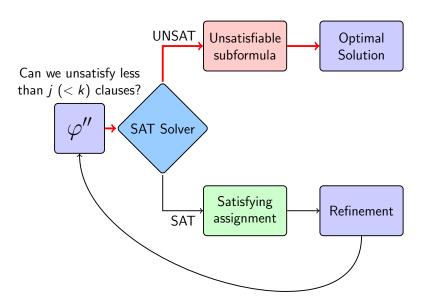
Upper Bound Search for MaxSAT



Upper Bound Search for MaxSAT



Upper Bound Search for MaxSAT



Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

```
\varphi_h (Hard): \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3
```

 φ_s (Soft): x_1 x_3 $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

Linear Search Algorithms SAT-UNSAT

Partial MaxSAT Formula:

 φ_h :

$$\varphi_{\mathfrak{s}}: \quad x_1 \vee r_1 \qquad x_3 \vee r_2 \qquad x_2 \vee \neg x_1 \vee r_3 \qquad \neg x_3 \vee x_1 \vee r_4$$

 $\neg x_2 \lor \neg x_1 \qquad x_2 \lor \neg x_3$

- Relax all soft clauses
- Relaxation variables:
 - $V_R = \{r_1, r_2, r_3, r_4\}$
 - If a soft clause ω_i is **unsatisfied**, then $r_i = 1$
 - If a soft clause ω_i is **satisfied**, then $r_i = 0$

Linear Search Algorithms SAT-UNSAT

$$\varphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1 \lor r_3$ $\neg x_3 \lor x_1 \lor r_4$

$$V_R = \{r_1, r_2, r_3, r_4\}$$

- ► Formula is satisfiable
 - $\nu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\}$
- ▶ Goal: Minimize number of relaxation variables assigned to 1

Can we unsatisfy less than 2 soft clauses?

$$\varphi_h: \qquad \neg x_2 \lor \neg x_1 \qquad x_2 \lor \neg x_3$$

$$\varphi_s: \qquad x_1 \lor r_1 \qquad x_3 \lor r_2 \qquad x_2 \lor \neg x_1 \lor r_3 \qquad \neg x_3 \lor x_1 \lor r_4$$

$$\mu = 2 \qquad V_R = \{r_1, r_2, r_3, r_4\}$$

- n (1/2/3/4)
- $ightharpoonup r_2$ and r_3 were assigned truth value 1:
 - Current solution unsatisfies 2 soft clauses
- Can less than 2 soft clauses be unsatisfied?

Can we unsatisfy less than 2 soft clauses?

$$arphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 1)$$
 $arphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

- Add cardinality constraint that excludes solutions that unsatisfies 2 or more soft clauses:
 - $ightharpoonup CNF(r_1 + r_2 + r_3 + r_4 < 1)$

Can we unsatisfy less than 2 soft clauses? No!

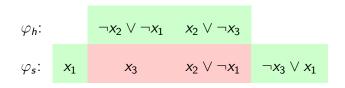
$$arphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 1)$$
 $arphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

- Formula is unsatisfiable:
 - ▶ There are no solutions that unsatisfy 1 or less soft clauses

Can we unsatisfy less than 2 soft clauses? No!

Partial MaxSAT Formula:



$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

▶ Optimal solution: given by the last model and corresponds to unsatisfying 2 soft clauses:

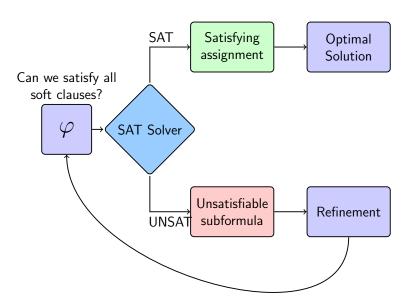
$$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

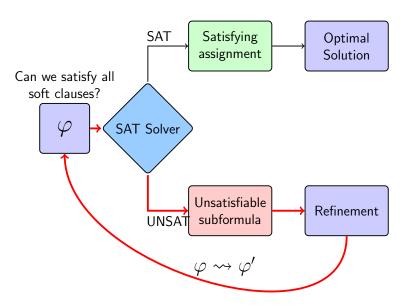
MaxSAT algorithms

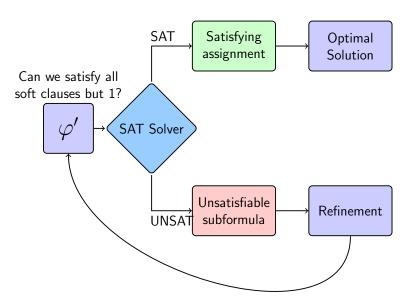
- ▶ We have just seen a search on the **upper bound**
- ▶ What other kind of search can we do to find an optimal solution?

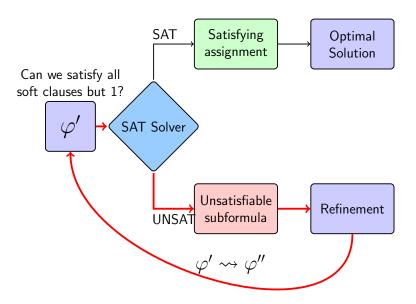
MaxSAT algorithms

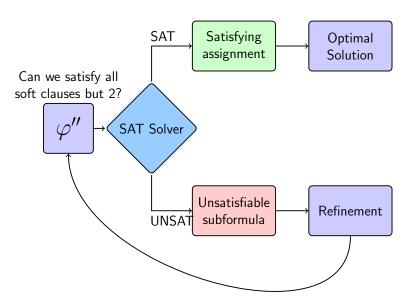
- We have just seen a search on the upper bound
- What other kind of search can we do to find an optimal solution?
- ▶ What if we start searching from the lower bound?

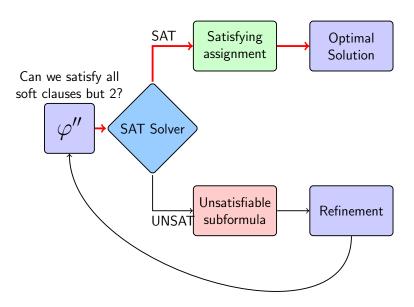












23/41

Linear Search Algorithms UNSAT-SAT

$$\varphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1 \lor r_3$ $\neg x_3 \lor x_1 \lor r_4$

- Relax all soft clauses
- Relaxation variables:
 - $V_R = \{r_1, r_2, r_3, r_4\}$
 - If a soft clause ω_i is **unsatisfied**, then $r_i = 1$
 - ▶ If a soft clause ω_i is **satisfied**, then $r_i = 0$

Can we satisfy all soft clauses?

$$\varphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \text{CNF}(\sum_{r_i \in V_R} r_i \le 0)$$

$$\varphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$$

$$\mu = 2$$
 $V_R = \{r_1, r_2, r_3, r_4\}$

- Add cardinality constraint that excludes solutions that unsatisfies 1 or more soft clauses:
 - ightharpoonup CNF($r_1 + r_2 + r_3 + r_4 < 0$)

Can we satisfy all soft clauses but 1?

$$arphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 0)$$

$$arphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$$

- Formula is unsatisfiable:
 - ► There are no solutions that unsatisfy 0 or less soft clauses
- Add cardinality constraint that excludes solutions that unsatisfies 2 or more soft clauses:
 - $ightharpoonup CNF(r_1 + r_2 + r_3 + r_4 \le 1)$

Can we satisfy all soft clauses but 2?

$$arphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 1)$$
 $arphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$

- Formula is unsatisfiable:
 - ► There are no solutions that unsatisfy 1 or less soft clauses
- Add cardinality constraint that excludes solutions that unsatisfies 3 or more soft clauses:
 - $ightharpoonup CNF(r_1 + r_2 + r_3 + r_4 \le 2)$

Can we satisfy all soft clauses but 2? Yes!

$$arphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \mathsf{CNF}(\sum_{r_i \in V_R} r_i \le 2)$$

$$arphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$$

- Formula is satisfiable:
 - $\mu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\}$
- Optimal solution unsatisfies 2 soft clauses

What are the problems of this algorithm? (Hint) Number of relaxation variables? Size of the cardinality constraint? Other?

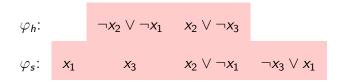
- What are the problems of this algorithm? (Hint) Number of relaxation variables? Size of the cardinality constraint? Other?
- We relax all soft clauses!
- The cardinality constraint contain as many literals as we have soft clauses!
- Can we do better?

Partial MaxSAT Formula:

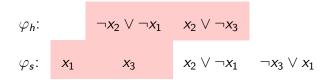
```
\varphi_h (Hard): \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3
```

 φ_s (Soft): x_1 x_3 $x_2 \vee \neg x_1$ $\neg x_3 \vee x_1$

Partial MaxSAT Formula:



Formula is unsatisfiable



- Formula is unsatisfiable
- Identify an unsatisfiable core

$$arphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

- Relax non-relaxed soft clauses in unsatisfiable core:
 - Add cardinality constraint that excludes solutions that unsatisfies 2 or more soft clauses:
 - ► $CNF(r_1 + r_2 \le 1)$
 - Relaxation on demand instead of relaxing all soft clauses eagerly

Partial MaxSAT Formula:

$$arphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

► Formula is unsatisfiable

$$arphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core

$$\varphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + \ldots + r_4 \le 2)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1 \lor r_3$ $\neg x_3 \lor x_1 \lor r_4$

- Relax non-relaxed soft clauses in unsatisfiable core:
 - Add cardinality constraint that excludes solutions that unsatisfies 3 or more soft clauses:
 - ► $CNF(r_1 + r_2 + r_3 + r_4 \le 2)$
 - Relaxation on demand instead of relaxing all soft clauses eagerly

$$arphi_h: \quad \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3 \quad \mathsf{CNF}(r_1 + \ldots + r_4 \le 2)$$

$$\varphi_s: \quad x_1 \lor r_1 \quad x_3 \lor r_2 \quad x_2 \lor \neg x_1 \lor r_3 \quad \neg x_3 \lor x_1 \lor r_4$$

- Formula is satisfiable:
 - $\mu = \{x_1 = 1, x_2 = 0, x_3 = 0, r_1 = 0, r_2 = 1, r_3 = 1, r_4 = 0\}$
- Optimal solution unsatisfies 2 soft clauses

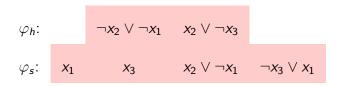
What are the problems of this algorithm? (Hint) Number of relaxation variables? Size of the cardinality constraint? Other?

- What are the problems of this algorithm? (Hint) Number of relaxation variables? Size of the cardinality constraint? Other?
- We must translate cardinality constraints into CNF!
- If the number of literals is large than we may generate a very large formula!
- Can we do better?

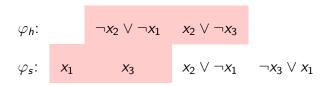
```
\varphi_h (Hard): \neg x_2 \lor \neg x_1 \quad x_2 \lor \neg x_3
```

$$\varphi_s$$
 (Soft): x_1 x_3 $x_2 \vee \neg x_1$ $\neg x_3 \vee x_1$

Partial MaxSAT Formula:



Formula is unsatisfiable



- Formula is unsatisfiable
- Identify an unsatisfiable core

$$arphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

- Relax unsatisfiable core:
 - Add relaxation variables
 - Add AtMost1 constraint

Partial MaxSAT Formula:

$$arphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

Formula is unsatisfiable

$$arphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $CNF(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \neg x_1$ $\neg x_3 \lor x_1$

- Formula is unsatisfiable
- ▶ Identify an unsatisfiable core

$$\varphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ $\mathsf{CNF}(r_3 + \ldots + r_6 \le 1)$ φ_s : $x_1 \lor r_1 \lor r_3$ $x_3 \lor r_2 \lor r_4$ $x_2 \lor \neg x_1 \lor r_5$ $\neg x_3 \lor x_1 \lor r_6$

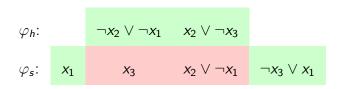
- Relax unsatisfiable core:
 - Add relaxation variables.
 - Add AtMost1 constraint
- Soft clauses may be relaxed multiple times

$$\varphi_h$$
: $\neg x_2 \lor \neg x_1$ $x_2 \lor \neg x_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ $\mathsf{CNF}(r_3 + \ldots + r_6 \le 1)$ φ_s : $x_1 \lor r_1 \lor r_3$ $x_3 \lor r_2 \lor r_4$ $x_2 \lor \neg x_1 \lor r_5$ $\neg x_3 \lor x_1 \lor r_6$

- Formula is satisfiable
- An optimal solution would be:

$$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

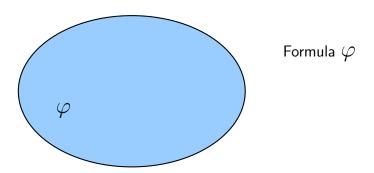
Partial MaxSAT Formula:

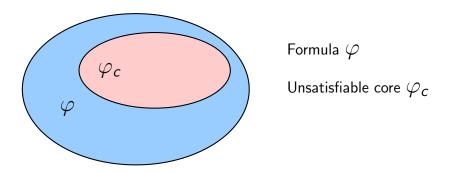


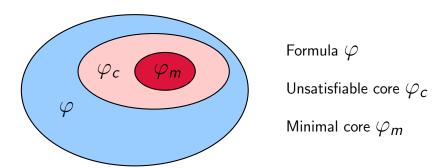
- Formula is satisfiable
- An optimal solution would be:

$$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

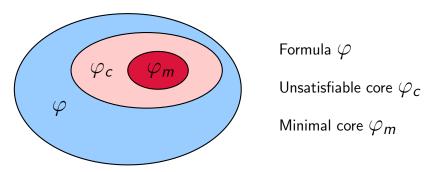
▶ This assignment unsatisfies 2 soft clauses







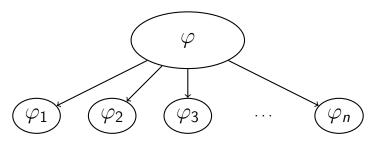
 Unsatisfiable cores found by the SAT solver are not minimal



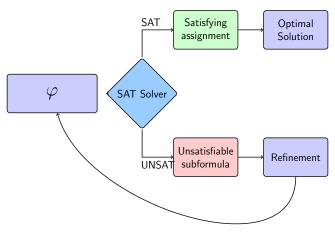
Minimizing unsatisfiable cores is computationally hard

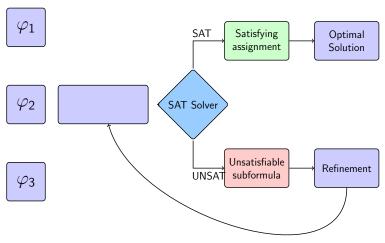
Partitioning in MaxSAT

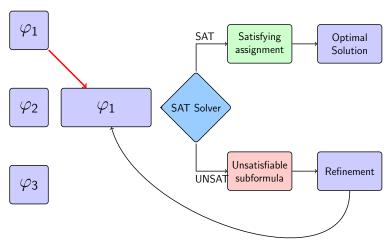
- Partitioning in MaxSAT:
 - Partition the soft clauses into disjoint sets
 - Iteratively increase the size of the MaxSAT formula

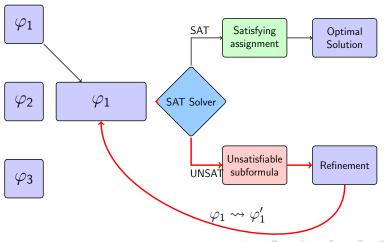


- Advantages:
 - ► Easier formulas for the SAT solver
 - ► Smaller unsatisfiable cores at each iteration

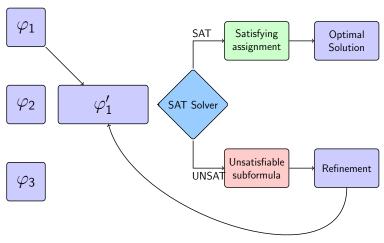


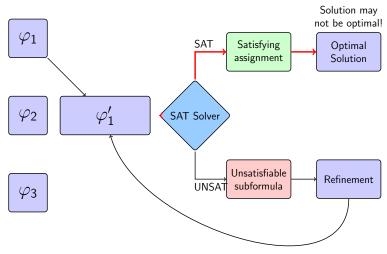


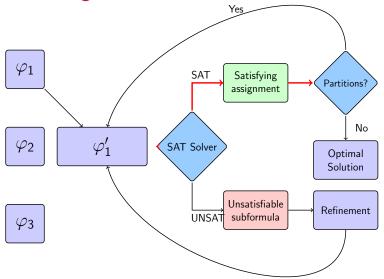


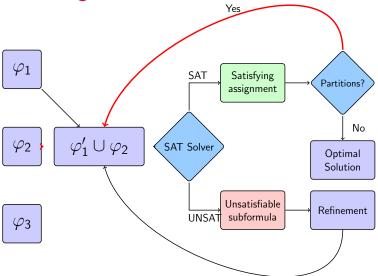


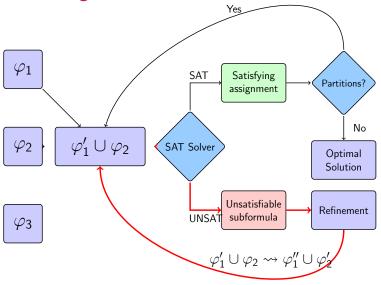
31/41

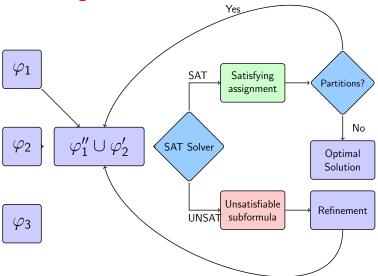


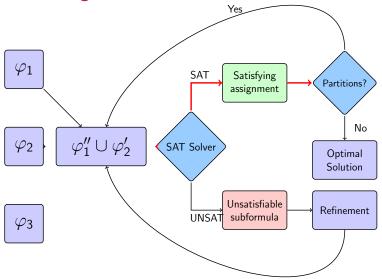


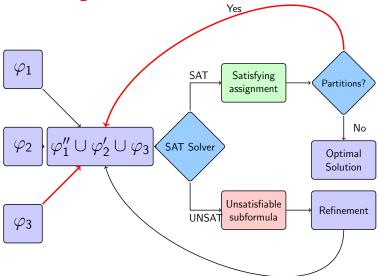


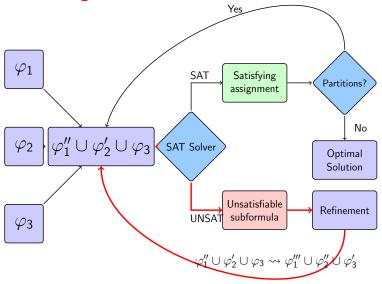


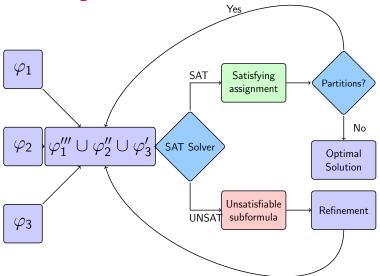


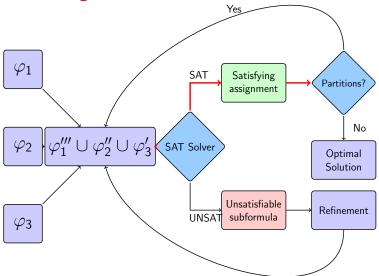


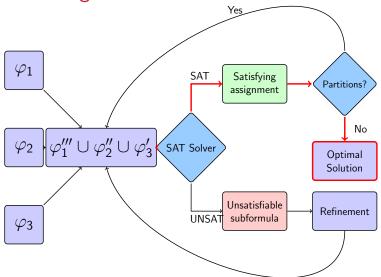






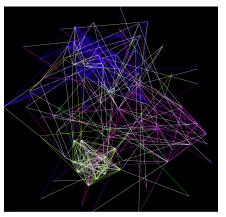






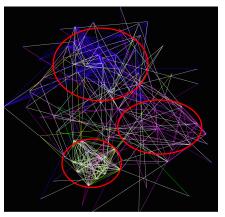
How to Partition Soft Clauses?

- ► **Graph representation** of the MaxSAT formula:
 - Vertices: Variables
 - ▶ Edges: Between variables that appear in the same clause



How to Partition Soft Clauses?

- ► **Graph representation** of the MaxSAT formula:
 - Vertices: Variables
 - ▶ Edges: Between variables that appear in the same clause



Graph representations for MaxSAT

- ▶ There are many ways to represent MaxSAT as a graph:
 - Clause-Variable Incidence Graph (CVIG)
 - Variable Incidence Graph (VIG)
 - Hypergraph
 - Resolution Graph
 - **.** . . .

Graph representations for MaxSAT

- ► There are many ways to represent MaxSAT as a graph:
 - Clause-Variable Incidence Graph (CVIG)
 - Variable Incidence Graph (VIG)
 - Hypergraph
 - Resolution Graph
 - **.** . . .

MaxSAT Formulas as Resolution-based Graphs

- MaxSAT solvers rely on the identification of unsatisfiable cores
- How can we capture sets of clauses that are closely related and are likely to result in unsatisfiable cores?
 - Represent MaxSAT formulas as resolution graphs!
 - Resolution graphs are based on the resolution rule

MaxSAT Formulas as Resolution-based Graphs

- MaxSAT solvers rely on the identification of unsatisfiable cores
- How can we capture sets of clauses that are closely related and are likely to result in unsatisfiable cores?
 - Represent MaxSAT formulas as resolution graphs!
 - Resolution graphs are based on the resolution rule
- Example of the resolution rule:

$$\underline{(x_1 \vee x_2) \quad (\neg x_2 \vee x_3)}$$

- MaxSAT solvers rely on the identification of unsatisfiable cores
- How can we capture sets of clauses that are closely related and are likely to result in unsatisfiable cores?
 - Represent MaxSAT formulas as resolution graphs!
 - Resolution graphs are based on the resolution rule
- Example of the resolution rule:

$$\frac{(x_1 \lor x_2) \quad (\neg x_2 \lor x_3)}{(x_1 \lor x_3)}$$

- Vertices: Represent each clause in the graph
- Edges: There is an edge between two vertices if you can apply the resolution rule between the corresponding clauses

- Vertices: Represent each clause in the graph
- Edges: There is an edge between two vertices if you can apply the resolution rule between the corresponding clauses

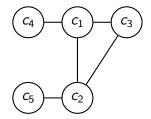
Hard clauses: Soft clauses:

$$c_1 = x_1 \lor x_2$$
 $c_4 = \neg x_1$
 $c_2 = \neg x_2 \lor x_3$ $c_5 = \neg x_3$
 $c_3 = \neg x_1 \lor \neg x_3$

- Vertices: Represent each clause in the graph
- Edges: There is an edge between two vertices if you can apply the resolution rule between the corresponding clauses

Hard clauses: Soft clauses:

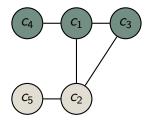
$$c_1 = x_1 \lor x_2$$
 $c_4 = \neg x_1$
 $c_2 = \neg x_2 \lor x_3$ $c_5 = \neg x_3$
 $c_3 = \neg x_1 \lor \neg x_3$



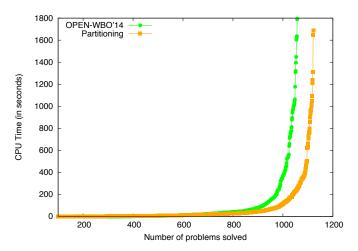
- Vertices: Represent each clause in the graph
- Edges: There is an edge between two vertices if you can apply the resolution rule between the corresponding clauses

Hard clauses: Soft clauses:

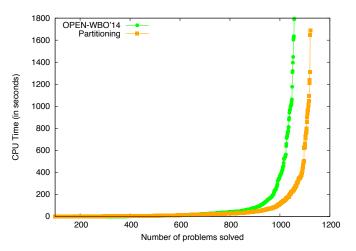
$$c_1 = x_1 \lor x_2$$
 $c_4 = \neg x_1$
 $c_2 = \neg x_2 \lor x_3$ $c_5 = \neg x_3$
 $c_3 = \neg x_1 \lor \neg x_3$



Impact of Partitioning in the MaxSAT Solving



Impact of Partitioning in the MaxSAT Solving



► The techniques in Open-WBO have been **adopted** by other state-of-the-art MaxSAT solvers

Want to try MaxSAT solving?

- Java:
 - ► SAT4J
 - http://www.sat4j.org/

- Python:
 - ► RC2
 - Best solver in 2018 and 2019!
 - ▶ SAT solvers written in C++
 - https://pysathq.github.io

Want to try MaxSAT solving?

- ► C++:
 - MaxHS
 - One of the best solvers for weighted problems!
 - Combines SAT and MIP solvers
 - http://www.maxhs.org/
 - Open-WBO
 - ▶ Winner of multiples tracks in the MaxSAT Competition 2014, 2015 and 2016!
 - https://github.com/sat-group/open-wbo
- Annual competition:
 - http://maxsat-evaluations.github.io
 - Modify a solver today and enter this year competition!

Standard Solver Input Format: DIMACS WCNF

- Variables indexed from 1 to n
- ▶ Negation: -
 - ▶ -3 stands for $\neg x_3$
- 0: special end-of-line character
- One special header "p"-line: p wcnf #vars #clauses top
 - #vars: number of variables
 - #clauses: number of clauses
 - top: "weight" of hard clauses
- Clauses represented as lists of integers
 - Weight is the first number
 - $(\neg x_3 \lor x_1 \lor \neg x_{45})$, weight 2: 2 -3 1 -45 0
- Clause is hard if weight is equal to top

Standard Solver Input Format: DIMACS WCNF

```
Example: pointer analysis domain (pa-2.wcnf):
p wcnf 17997976 23364255 9223372036854775807
142 -11393180 12091478 0
200 -12496389 -1068725 13170751 0
209 -8854604 -8854942 -8854943 -8253894 9864153 0
174 -9406753 -8105076 11844088 0
200 -10403325 -8104972 12524177 0
142 -11987544 12096893 0
37 -10981341 -10980973 10838652 0
209 -9578314 -9579250 -9579251 -8254733 9578317 0
209 -8868994 -8870298 -8870299 -8254157 8868997 0
209 -9387012 -9387508 -9387509 -8253943 9387015 0
174 -9834074 -8106628 12074710 0
200 -10726788 -8105074 12909526 0
9223372036854775807 -13181184 0
9223372036854775807 -13181215 0
```

... truncated 763 MB

Push-Button Solver Technology

Example: \$ open-wbo pa-2.wcnf

Push-Button Solver Technology

```
Example: $ open-wbo pa-2.wcnf
c Open-WBO: a Modular MaxSAT Solver
c Version: MaxSAT Evaluation 2016
c Authors: Ruben Martins, Vasco Manquinho, Ines Lynce
c Contributors: Miguel Neves, Saurabh Joshi, Mikolas Janota
c Problem Type: Weighted
c Number of variables: 17.997.976
c Number of hard clauses: 8,237,870
c Number of soft clauses: 15,126,385
c Parse time: 5.60 s
0 4699
0 4609
o 143
s OPTIMUM FOUND
c Total time: 361.26 s v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...
...17997976
```

References

MaxSAT algorithms:

- Z. Fu, S. Malik. On Solving the Partial MAX-SAT Problem. SAT 2006: 252-265.
- V. Manquinho, J. Marques-Silva, J. Planes. Algorithms for Weighted Boolean Optimization. SAT 2009: 495-508
- J. Marques-Silva, J. Planes. On using unsatisfiability for solving Maximum Satisfiability. Technical report 2007
- R. Martins, S. Joshi, V. Manquinho, I. Lynce. Incremental Cardinality Constraints for MaxSAT. CP 2014: 531-548
- R. Martins, V. Manquinho, I. Lynce. Open-WBO: A Modular MaxSAT Solver. SAT 2014: 438-445
- R. Martins, V. Manquinho, I. Lynce. Community-Based Partitioning for MaxSAT Solving. SAT 2013: 182-191
- M. Neves, R. Martins, M. Janota, I. Lynce, V. Manquinho Exploiting Resolution-Based Representations for MaxSAT Solving. SAT 2015: 272-286
- Jessica Davies, Fahiem Bacchus: Postponing Optimization to Speed Up MAXSAT Solving. CP 2013: 247-262
- Alexey Ignatiev, Antnio Morgado, Joao Marques-Silva: PySAT: A Python Toolkit for Prototyping with SAT Oracles. SAT 2018: 428-437

References

Cardinality and Pseudo-Boolean Encodings:

C. Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP 2005: 827-831

N. Manthey, T. Philipp, P. Steinke. A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized Arc Consistency Is Maintained. KI 2014: 123-134

T. Philipp, P. Steinke. PBLib - A Library for Encoding Pseudo-Boolean Constraints into CNF. SAT 2015: 9-16 http://tools.computational-logic.org/content/pblib.php

Community Structure:

C. Ansótegui, J. Giráldez-Cru, Jordi Levy. The Community Structure of SAT Formulas. SAT 2012: 410-423

Web pages of interest:

MaxSAT Evaluation: http://www.maxsat.udl.cat/ Open-WBO: http://sat.inesc-id.pt/open-wbo/ SAT4J: http://www.sat4j.org/ RC2: https://pysathq.github.io MaxHS: http://www.maxhs.org/ SATGraf: https://bitbucket.org/znewsham/satgraf