Logic and Mechanized Reasoning
Using SMT Solvers

Marijn J.H. Heule

Carnegie
Mellon
University

Logic and Mechanized Reasoning 1/23

SMT-LIB

Example: Magic Squares

Application: Verification

Logic and Mechanized Reasoning 2/23

SMT-LIB

Logic and Mechanized Reasoning 3/23

SMT-LIB: Introduction

Consists of five blocks:

» theory (set-logic ...), e.g. QF_-UF and QF_LIA
» variables, functions, and types (declare-const ...)
» a list of constraints (assert ...)

» solving the problem (check-sat)

P termination the solver (exit)

Logic and Mechanized Reasoning 4/23

SMT-LIB: Introduction

Consists of five blocks:

» theory (set-logic ...), e.g. QF_-UF and QF_LIA
» variables, functions, and types (declare-const ...)
» a list of constraints (assert ...)

» solving the problem (check-sat)

P termination the solver (exit)

Variable and functions:

» (declare-const name type)

» (declare-fun name (inputTypes) outputType)

» (define-fun name (inputTypes) outputType (body))

Logic and Mechanized Reasoning 4/23

SMT-LIB: QF_UF example

Example
Does there exist a satisfying assignment for p /A —p?

(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat) ; should be UNSAT
(exit)

Logic and Mechanized Reasoning 5/23

SMT-LIB: QF_LIA example

Example
Does there exist an integer x that is larger than an integer y?

(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (> x y))
(check-sat) ; should be SAT
(get-model)

(exit)

Logic and Mechanized Reasoning 6 /23

Example: Magic Squares

Logic and Mechanized Reasoning 7/23

Magic Squares: Introduction

A n X n square is called a magic square if each number from 1
to 12 occurs uniquely and the sum of all rows, columns, and
diagonals is the same: (n®+1n)/2

19 12]20]23|—65

17251 3] 6 |14 |—65

8 111922 5 |—65

2412 (10]13]16 [—65

15118214 | 7 [—65

L T T T T A
65 65 65 65 65 65 09

Logic and Mechanized Reasoning 8 /23

Magic Squares: Linear Arithmetic for 3 X 3 Magic Square

(set-logic QF_LIA)
(declare-const m_0_0 Int)
(declare-const m_0_1 Int)

(declare-const m_2_2 Int)
(assert (and (> m_0_0 0) (<= m_0_0 9)))
(assert (and (> m_0_1 0) (<= m_0_1 9)))

(assert (and (> m_2_2 0) (<= m_2_2 9)))

(assert (distinct m_0_0 m_0_1 m_0_2 m_1_0
m_1_1m1.2m20m2_1m2_2))

(assert (= 15 (+ m_0_0 m_0_1 m_0_2)))

(assert (= 15 (+ m_1_ 0 m_1_1 m_1_2)))

(assert (= 15 (+ m_2_.0 m_1_1 m_0_2)))
(check-sat)

(get-model)

(exit)

Logic and Mechanized Reasoning 9/23

Magic Squares: Bitvectors for 3 x 3 Magic Square

(set-logic QF_BV)

(declare-const m_0_0
(declare-const m_0_1

_ BitVec 16))
BitVec 16))

~

(declare-const m_2_2 (_ BitVec 16))

(assert
(assert

(assert
(assert

(assert
(assert

(assert

(and (bvugt m_0_0 #x0000) (bvule m_0_0 #x0009)))
(and (bvugt m_0_1 #x0000) (bvule m_O0_1 #x0009)))

(and (bvugt m_2_2 #x0000) (bvule m_2_2 #x0009)))
(distinct m_0_0 m_0_1 m_0_2 m_1_0
m_1_1m 1.2m2.0m2_1m2_2))
(= #x000f (bvadd m_0_0 m_0_1 m_0_2)))
(= #x000f (bvadd m_1_0 m_1_1 m_1_2)))

(= #x000f (bvadd m_2_0 m_1_1 m_0_2)))

(check-sat)
(get-model)

(exit)

Logic and Mechanized Reasoning

10/ 23

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

Logic and Mechanized Reasoning 11 /23

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning (> m 2.2 0)
into a literal (p &> mp > 0)

Logic and Mechanized Reasoning 11 /23

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning (> m 2.2 0)
into a literal (p &> mp > 0)

QF_LIA: the solver applies (exponentially) many SAT calls

Logic and Mechanized Reasoning 11 /23

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning (> m 2.2 0)
into a literal (p &> mp > 0)

QF_LIA: the solver applies (exponentially) many SAT calls

When using QF_BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m_2_2 0) is turned into many clauses.

Logic and Mechanized Reasoning 11 /23

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning (> m 2.2 0)
into a literal (p &> mp > 0)

QF_LIA: the solver applies (exponentially) many SAT calls

When using QF_BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m_2_2 0) is turned into many clauses.

QF_BV: the solver applies a single SAT call

Logic and Mechanized Reasoning 11/ 23

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning (> m 2.2 0)
into a literal (p &> mp > 0)

QF_LIA: the solver applies (exponentially) many SAT calls

When using QF_BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m_2_2 0) is turned into many clauses.

QF_BV: the solver applies a single SAT call

Compare: n > 5 is hard for QF_LIA, n < 10 is easy for QF _BV

Logic and Mechanized Reasoning 11 /23

Magic Squares: Demo

SAT with assignment:
m22— 2
m21—9
m20—4
mil2e—7
mll—5
m10+—3
m02+—6
mO01—1
m 0.0 +— 8

Square:
816

357
49 2

Logic and Mechanized Reasoning 12 /23

Application: Verification

Logic and Mechanized Reasoning 13 /23

Verification: Equivalence Checking

SAT and SMT solvers are crucial for verification tasks
» Equivalence checking
» Bounded model checking

Equivalence checking:
» Are two hardware/software designs functionally equivalent?
» Does any input to both produces the same output?
» Typically one is unoptimized and the other is optimized

Logic and Mechanized Reasoning 14 /23

Verification: Example of the Power of 3

1 int power3(int in)

2 {
3 int i, out.a;
4 out.a = in;
for (i = 0; i < 2; i++)
6 out.a = out.a * in;
return out-a;

s }

I, = (out0a =

1 int power3new (int in)
2 {
int out-b;

out.b = (in * in) #* in;

7 return out-b;

s }

in0_a) N (outl_a = out0_a x in0_a)/\

(out2_a = outl_a x in0_a)
[y, = out0b = (in0_b x in0_b) x in0_b

To show these programs are equivalent, we must show the

following formula is valid:

in0.a =in0.bN\T,N\T, = out2.a=out0.b

Logic and Mechanized Reasoning

15 /23

Verification: Integers

(set-logic QF_NIA)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

(define-fun gamma_a () Bool

outO_a Int)
outl_a Int)
in0_a Int)
out2_a Int)
outO_b Int)
in0O_b Int)

(and (= outO_a inO_a)

(and (= outl_a (* outO_a in0O_a))
(= out2_a (* outl_a in0_a)))))
(define-fun gamma_b () Bool
(= outO_b (* (* inO_b inO_b) in0_b)))
(define-fun gamma_in () Bool

(= in0_a in0O_b))

(define-fun gamma_out () Bool

(= out2_a outO_b))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))

(check-sat)

Logic and Mechanized Reasoning

16 /23

Verification: Bitvectors

(set-logic QF_BV)

(declare-const outO_a (_
(declare-const outl_a (_
(declare-const inO_a (_
(declare-const out2_a (_
(declare-const outO_b (_
(declare-const inO_b (_

BitVec
BitVec
BitVec
BitVec
BitVec
BitVec

(define-fun gamma_a () Bool

(and (= outO_a inO_a)

(and (= outil_a (bvmul outO_a in0O_a))
(= out2_a (bvmul outl_a in0O_a)))))

(define-fun gamma_b () Bool

(= outO_b (bvmul (bvmul inO_b inO_b) in0O_b)))

(define-fun gamma_in () Bool

(= in0_a in0O_b))
(define-fun gamma_out ()
(= out2_a outO_b))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))

(check-sat)

Logic and Mechanized Reasoning

Bool

128))
128))
128))
128))
128))
128))

17 /23

Verification: Uninterpreted Functions

(set-logic QF_UFBV)

(declare-const outO_a (_
(declare-const outl_a (_
(declare-const inO_a (_
(declare-const out2_a (_
(declare-const outO_b (_
(declare-const inO_b (_

(declare-fun f ((_ BitVec 128) (_ BitVec 128)) (_ BitVec 128))

BitVec
BitVec
BitVec
BitVec
BitVec
BitVec

(define-fun gamma_a () Bool

(and (= outO_a inO_a)

(and (= outl_a (f outO_a inO_a))
(= out2_a (f outi_a in0_a)))))

(define-fun gamma_b () Bool

(= outO_b (£ (£ inO_b inO_b) inO_b)))

(define-fun gamma_in () Bool

(= inO_a inO_b))
(define-fun gamma_out ()
(= out2_a outO_b))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))

(check-sat)

Logic and Mechanized Reasoning

Bool

128))
128))
128))
128))
128))
128))

18 /23

Verification: Popcount

Popcount: count the number of 1's in a bitvector

int popCount32 (unsigned int x) {
x =x - ((x > 1) & 0x55555555) ;
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
X ((x + (x > 4) & OxfOf0of0f) * 0x1010101) >> 24;
return x; }

Logic and Mechanized Reasoning 19 /23

Verification: General Setup

(set-logic QF_BV)
(declare-const x (_ BitVec 32))

(define-fun fast ((x (_ BitVec 32))) (_ BitVec 32)

(define-fun slow ((x (_ BitVec 32))) (_ BitVec 32)

(assert (not (= (fast x) (slow x))))
(check-sat) ; expect UNSAT
(exit)

Logic and Mechanized Reasoning 20 / 23

Verification: Specification

(define-fun slow ((x (_ BitVec 32))) (_ BitVec 32)

(bvadd
(ite
(ite
(ite

(ite
(ite

(= #b1
(= #b1
(= #bl

(= #b1
(= #b1

e
qe
qe
qe
qe

extract
extract
extract

extract
extract

Logic and Mechanized Reasoning

0 0)
1 1)
2)

30 30)
31 31)

x))
x))
x))

x))
x))

#x00000001 #x00000000)
#x00000001 #x00000000)
#x00000001 #x00000000)

#x00000001 #x00000000)
#x00000001 #x00000000)))

21/ 23

Verification: Code conversion

int popCount32 (unsigned int x) {
x = x - ((x > 1) & 0x55555555) ;
X (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = ((x + (x > 4) & 0xf0f0f0f) * 0x1010101) >> 24;
return x; }

(define-fun linel ((x (_ BitVec 32))) (_ BitVec 32)
(bvsub x (bvand (bvlshr x #x00000001) #x55555555)))

(define-fun line2 ((x (_ BitVec 32))) (_ BitVec 32)
(bvadd (bvand x #x33333333)
(bvand (bvlshr x #x00000002) #x33333333)))

(define-fun line3 ((x (_ BitVec 32))) (_ BitVec 32)
(bvlshr (bvmul (bvand (bvadd (bvlshr x #x00000004)
x) #x0f0f0f0f) #x01010101) #x00000018))

(define-fun fast ((x (_ BitVec 32))) (_ BitVec 32)

(line3 (line2 (limel x))))
Logic and Mechanized Reasoning

22 /23

Verification: Demo

#eval (do
let out ¢« callZ3 popcount (verbose
I0 Unit)

Solver replied:
unsat

Logic and Mechanized Reasoning

:= true)

23 /23

	SMT-LIB
	Example: Magic Squares
	Application: Verification

