
Logic and Mechanized Reasoning
Using SMT Solvers

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 23



SMT-LIB

Example: Magic Squares

Application: Verification

Logic and Mechanized Reasoning 2 / 23



SMT-LIB

Example: Magic Squares

Application: Verification

Logic and Mechanized Reasoning 3 / 23



SMT-LIB: Introduction

Consists of five blocks:

▶ theory (set-logic ...), e.g. QF UF and QF LIA

▶ variables, functions, and types (declare-const ...)

▶ a list of constraints (assert ...)

▶ solving the problem (check-sat)

▶ termination the solver (exit)

Variable and functions:

▶ (declare-const name type)

▶ (declare-fun name (inputTypes) outputType)

▶ (define-fun name (inputTypes) outputType (body))

Logic and Mechanized Reasoning 4 / 23



SMT-LIB: Introduction

Consists of five blocks:

▶ theory (set-logic ...), e.g. QF UF and QF LIA

▶ variables, functions, and types (declare-const ...)

▶ a list of constraints (assert ...)

▶ solving the problem (check-sat)

▶ termination the solver (exit)

Variable and functions:

▶ (declare-const name type)

▶ (declare-fun name (inputTypes) outputType)

▶ (define-fun name (inputTypes) outputType (body))

Logic and Mechanized Reasoning 4 / 23



SMT-LIB: QF UF example

Example

Does there exist a satisfying assignment for p ∧¬p?

(set-logic QF_UF)

(declare-const p Bool)

(assert (and p (not p)))

(check-sat) ; should be UNSAT

(exit)

Logic and Mechanized Reasoning 5 / 23



SMT-LIB: QF LIA example

Example

Does there exist an integer x that is larger than an integer y?

(set-logic QF_LIA)

(declare-const x Int)

(declare-const y Int)

(assert (> x y))

(check-sat) ; should be SAT

(get-model)

(exit)

Logic and Mechanized Reasoning 6 / 23



SMT-LIB

Example: Magic Squares

Application: Verification

Logic and Mechanized Reasoning 7 / 23



Magic Squares: Introduction

A n × n square is called a magic square if each number from 1
to n2 occurs uniquely and the sum of all rows, columns, and
diagonals is the same: (n3 + n)/2

1 9 12 20 23

17 25 3 6 14

8 11 19 22 5

24 2 10 13 16

15 18 21 4 7 65

65

65

65

65

65 65 65 65 65 6565

Logic and Mechanized Reasoning 8 / 23



Magic Squares: Linear Arithmetic for 3 × 3 Magic Square

(set-logic QF_LIA)

(declare-const m_0_0 Int)

(declare-const m_0_1 Int)

...

(declare-const m_2_2 Int)

(assert (and (> m_0_0 0) (<= m_0_0 9)))

(assert (and (> m_0_1 0) (<= m_0_1 9)))

...

(assert (and (> m_2_2 0) (<= m_2_2 9)))

(assert (distinct m_0_0 m_0_1 m_0_2 m_1_0

m_1_1 m_1_2 m_2_0 m_2_1 m_2_2))

(assert (= 15 (+ m_0_0 m_0_1 m_0_2)))

(assert (= 15 (+ m_1_0 m_1_1 m_1_2)))

...

(assert (= 15 (+ m_2_0 m_1_1 m_0_2)))

(check-sat)

(get-model)

(exit)

Logic and Mechanized Reasoning 9 / 23



Magic Squares: Bitvectors for 3 × 3 Magic Square

(set-logic QF_BV)

(declare-const m_0_0 (_ BitVec 16))

(declare-const m_0_1 (_ BitVec 16))

...

(declare-const m_2_2 (_ BitVec 16))

(assert (and (bvugt m_0_0 #x0000) (bvule m_0_0 #x0009)))

(assert (and (bvugt m_0_1 #x0000) (bvule m_0_1 #x0009)))

...

(assert (and (bvugt m_2_2 #x0000) (bvule m_2_2 #x0009)))

(assert (distinct m_0_0 m_0_1 m_0_2 m_1_0

m_1_1 m_1_2 m_2_0 m_2_1 m_2_2))

(assert (= #x000f (bvadd m_0_0 m_0_1 m_0_2)))

(assert (= #x000f (bvadd m_1_0 m_1_1 m_1_2)))

...

(assert (= #x000f (bvadd m_2_0 m_1_1 m_0_2)))

(check-sat)

(get-model)

(exit)

Logic and Mechanized Reasoning 10 / 23



Magic Squares: Theory Differences

The SMT-LIB formula for QF BV and QF LIA looks similar...

The QF LIA abstracts the problem by turning (> m 2 2 0)

into a literal (p↔ m2,2 > 0)

QF LIA: the solver applies (exponentially) many SAT calls

When using QF BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m 2 2 0) is turned into many clauses.

QF BV: the solver applies a single SAT call

Compare: n ≥ 5 is hard for QF LIA, n ≤ 10 is easy for QF BV

Logic and Mechanized Reasoning 11 / 23



Magic Squares: Theory Differences

The SMT-LIB formula for QF BV and QF LIA looks similar...

The QF LIA abstracts the problem by turning (> m 2 2 0)

into a literal (p↔ m2,2 > 0)

QF LIA: the solver applies (exponentially) many SAT calls

When using QF BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m 2 2 0) is turned into many clauses.

QF BV: the solver applies a single SAT call

Compare: n ≥ 5 is hard for QF LIA, n ≤ 10 is easy for QF BV

Logic and Mechanized Reasoning 11 / 23



Magic Squares: Theory Differences

The SMT-LIB formula for QF BV and QF LIA looks similar...

The QF LIA abstracts the problem by turning (> m 2 2 0)

into a literal (p↔ m2,2 > 0)

QF LIA: the solver applies (exponentially) many SAT calls

When using QF BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m 2 2 0) is turned into many clauses.

QF BV: the solver applies a single SAT call

Compare: n ≥ 5 is hard for QF LIA, n ≤ 10 is easy for QF BV

Logic and Mechanized Reasoning 11 / 23



Magic Squares: Theory Differences

The SMT-LIB formula for QF BV and QF LIA looks similar...

The QF LIA abstracts the problem by turning (> m 2 2 0)

into a literal (p↔ m2,2 > 0)

QF LIA: the solver applies (exponentially) many SAT calls

When using QF BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m 2 2 0) is turned into many clauses.

QF BV: the solver applies a single SAT call

Compare: n ≥ 5 is hard for QF LIA, n ≤ 10 is easy for QF BV

Logic and Mechanized Reasoning 11 / 23



Magic Squares: Theory Differences

The SMT-LIB formula for QF BV and QF LIA looks similar...

The QF LIA abstracts the problem by turning (> m 2 2 0)

into a literal (p↔ m2,2 > 0)

QF LIA: the solver applies (exponentially) many SAT calls

When using QF BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m 2 2 0) is turned into many clauses.

QF BV: the solver applies a single SAT call

Compare: n ≥ 5 is hard for QF LIA, n ≤ 10 is easy for QF BV

Logic and Mechanized Reasoning 11 / 23



Magic Squares: Theory Differences

The SMT-LIB formula for QF BV and QF LIA looks similar...

The QF LIA abstracts the problem by turning (> m 2 2 0)

into a literal (p↔ m2,2 > 0)

QF LIA: the solver applies (exponentially) many SAT calls

When using QF BV, the solver applies bitblasting: every bit in
each bitvector is turned into a propositional variable. Each
constraint, such as (> m 2 2 0) is turned into many clauses.

QF BV: the solver applies a single SAT call

Compare: n ≥ 5 is hard for QF LIA, n ≤ 10 is easy for QF BV

Logic and Mechanized Reasoning 11 / 23



Magic Squares: Demo

SAT with assignment:

m 2 2 7→ 2

m 2 1 7→ 9

m 2 0 7→ 4

m 1 2 7→ 7

m 1 1 7→ 5

m 1 0 7→ 3

m 0 2 7→ 6

m 0 1 7→ 1

m 0 0 7→ 8

Square:

8 1 6

3 5 7

4 9 2

Logic and Mechanized Reasoning 12 / 23



SMT-LIB

Example: Magic Squares

Application: Verification

Logic and Mechanized Reasoning 13 / 23



Verification: Equivalence Checking

SAT and SMT solvers are crucial for verification tasks

▶ Equivalence checking

▶ Bounded model checking

Equivalence checking:

▶ Are two hardware/software designs functionally equivalent?

▶ Does any input to both produces the same output?

▶ Typically one is unoptimized and the other is optimized

Logic and Mechanized Reasoning 14 / 23



Verification: Example of the Power of 3

Γa ≡ (out0 a = in0 a)∧ (out1 a = out0 a × in0 a)∧
(out2 a = out1 a × in0 a)

Γb ≡ out0 b = (in0 b × in0 b)× in0 b

To show these programs are equivalent, we must show the
following formula is valid:

in0 a = in0 b ∧ Γa ∧ Γb =⇒ out2 a = out0 b

Logic and Mechanized Reasoning 15 / 23



Verification: Integers

(set-logic QF_NIA)

(declare-const out0_a Int)

(declare-const out1_a Int)

(declare-const in0_a Int)

(declare-const out2_a Int)

(declare-const out0_b Int)

(declare-const in0_b Int)

(define-fun gamma_a () Bool

(and (= out0_a in0_a)

(and (= out1_a (* out0_a in0_a))

(= out2_a (* out1_a in0_a)))))

(define-fun gamma_b () Bool

(= out0_b (* (* in0_b in0_b) in0_b)))

(define-fun gamma_in () Bool

(= in0_a in0_b))

(define-fun gamma_out () Bool

(= out2_a out0_b ))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))

(check-sat)

Logic and Mechanized Reasoning 16 / 23



Verification: Bitvectors

(set-logic QF_BV)

(declare-const out0_a (_ BitVec 128))

(declare-const out1_a (_ BitVec 128))

(declare-const in0_a (_ BitVec 128))

(declare-const out2_a (_ BitVec 128))

(declare-const out0_b (_ BitVec 128))

(declare-const in0_b (_ BitVec 128))

(define-fun gamma_a () Bool

(and (= out0_a in0_a)

(and (= out1_a (bvmul out0_a in0_a))

(= out2_a (bvmul out1_a in0_a)))))

(define-fun gamma_b () Bool

(= out0_b (bvmul (bvmul in0_b in0_b) in0_b)))

(define-fun gamma_in () Bool

(= in0_a in0_b))

(define-fun gamma_out () Bool

(= out2_a out0_b ))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))

(check-sat)

Logic and Mechanized Reasoning 17 / 23



Verification: Uninterpreted Functions

(set-logic QF_UFBV)

(declare-const out0_a (_ BitVec 128))

(declare-const out1_a (_ BitVec 128))

(declare-const in0_a (_ BitVec 128))

(declare-const out2_a (_ BitVec 128))

(declare-const out0_b (_ BitVec 128))

(declare-const in0_b (_ BitVec 128))

(declare-fun f ((_ BitVec 128) (_ BitVec 128)) (_ BitVec 128))

(define-fun gamma_a () Bool

(and (= out0_a in0_a)

(and (= out1_a (f out0_a in0_a))

(= out2_a (f out1_a in0_a)))))

(define-fun gamma_b () Bool

(= out0_b (f (f in0_b in0_b) in0_b)))

(define-fun gamma_in () Bool

(= in0_a in0_b))

(define-fun gamma_out () Bool

(= out2_a out0_b ))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))

(check-sat)

Logic and Mechanized Reasoning 18 / 23



Verification: Popcount

Popcount: count the number of 1’s in a bitvector

int popCount32 (unsigned int x) {

x = x - ((x >> 1) & 0x55555555);

x = (x & 0x33333333) + ((x >> 2) & 0x33333333);

x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;

return x; }

Logic and Mechanized Reasoning 19 / 23



Verification: General Setup

(set-logic QF_BV)

(declare-const x (_ BitVec 32))

(define-fun fast ((x (_ BitVec 32))) (_ BitVec 32)

...

(define-fun slow ((x (_ BitVec 32))) (_ BitVec 32)

...

(assert (not (= (fast x) (slow x))))

(check-sat) ; expect UNSAT

(exit)

Logic and Mechanized Reasoning 20 / 23



Verification: Specification

(define-fun slow ((x (_ BitVec 32))) (_ BitVec 32)

(bvadd

(ite (= #b1 ((_ extract 0 0) x)) #x00000001 #x00000000)

(ite (= #b1 ((_ extract 1 1) x)) #x00000001 #x00000000)

(ite (= #b1 ((_ extract 2 2) x)) #x00000001 #x00000000)

...

(ite (= #b1 ((_ extract 30 30) x)) #x00000001 #x00000000)

(ite (= #b1 ((_ extract 31 31) x)) #x00000001 #x00000000)))

Logic and Mechanized Reasoning 21 / 23



Verification: Code conversion

int popCount32 (unsigned int x) {

x = x - ((x >> 1) & 0x55555555);

x = (x & 0x33333333) + ((x >> 2) & 0x33333333);

x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;

return x; }

(define-fun line1 ((x (_ BitVec 32))) (_ BitVec 32)

(bvsub x (bvand (bvlshr x #x00000001) #x55555555)))

(define-fun line2 ((x (_ BitVec 32))) (_ BitVec 32)

(bvadd (bvand x #x33333333)

(bvand (bvlshr x #x00000002) #x33333333)))

(define-fun line3 ((x (_ BitVec 32))) (_ BitVec 32)

(bvlshr (bvmul (bvand (bvadd (bvlshr x #x00000004)

x) #x0f0f0f0f) #x01010101) #x00000018))

(define-fun fast ((x (_ BitVec 32))) (_ BitVec 32)

(line3 (line2 (line1 x))))
Logic and Mechanized Reasoning 22 / 23



Verification: Demo

#eval (do

let out ← callZ3 popcount (verbose := true)

: IO Unit)

Solver replied:

unsat

Logic and Mechanized Reasoning 23 / 23


	SMT-LIB
	Example: Magic Squares
	Application: Verification

