

Logic and Mechanized Reasoning

Using SMT Solvers

Marijn J.H. Heule

Carnegie
Mellon
University

SMT-LIB

Example: Magic Squares

Application: Verification

SMT-LIB

Example: Magic Squares

Application: Verification

SMT-LIB: Introduction

Consists of five blocks:

- ▶ theory (set-logic ...), e.g. QF_UF and QF_LIA
- ▶ variables, functions, and types (declare-const ...)
- ▶ a list of constraints (assert ...)
- ▶ solving the problem (check-sat)
- ▶ termination the solver (exit)

SMT-LIB: Introduction

Consists of five blocks:

- ▶ theory (set-logic ...), e.g. QF_UF and QF_LIA
- ▶ variables, functions, and types (declare-const ...)
- ▶ a list of constraints (assert ...)
- ▶ solving the problem (check-sat)
- ▶ termination the solver (exit)

Variable and functions:

- ▶ (declare-const name type)
- ▶ (declare-fun name (inputTypes) outputType)
- ▶ (define-fun name (inputTypes) outputType (body))

SMT-LIB: QF_UF example

Example

Does there exist a satisfying assignment for $p \wedge \neg p$?

```
(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat) ; should be UNSAT
(exit)
```

SMT-LIB: QF_LIA example

Example

Does there exist an integer x that is larger than an integer y ?

```
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (> x y))
(check-sat) ; should be SAT
(get-model)
(exit)
```

SMT-LIB

Example: Magic Squares

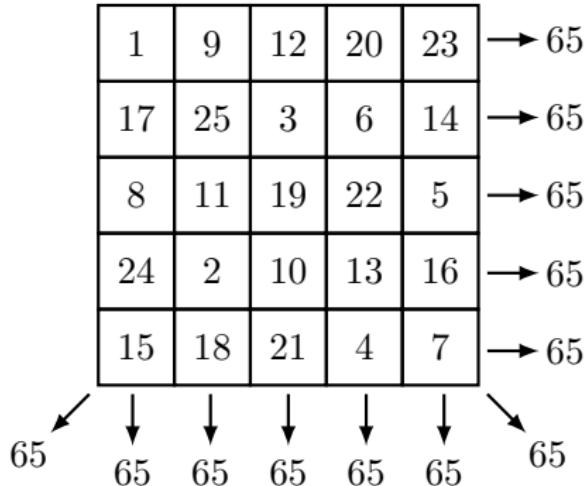
Application: Verification

Magic Squares: Introduction

A $n \times n$ square is called a magic square if each number from 1 to n^2 occurs uniquely and the sum of all rows, columns, and diagonals is the same: $(n^3 + n)/2$

1	9	12	20	23	→ 65
17	25	3	6	14	→ 65
8	11	19	22	5	→ 65
24	2	10	13	16	→ 65
15	18	21	4	7	→ 65

65 65 65 65 65 65 65



Magic Squares: Linear Arithmetic for 3×3 Magic Square

```
(set-logic QF_LIA)
(declare-const m_0_0 Int)
(declare-const m_0_1 Int)
...
(declare-const m_2_2 Int)
(assert (and (> m_0_0 0) (<= m_0_0 9)))
(assert (and (> m_0_1 0) (<= m_0_1 9)))
...
(assert (and (> m_2_2 0) (<= m_2_2 9)))
(assert (distinct m_0_0 m_0_1 m_0_2 m_1_0
                  m_1_1 m_1_2 m_2_0 m_2_1 m_2_2))
(assert (= 15 (+ m_0_0 m_0_1 m_0_2)))
(assert (= 15 (+ m_1_0 m_1_1 m_1_2)))
...
(assert (= 15 (+ m_2_0 m_1_1 m_0_2)))
(check-sat)
(get-model)
(exit)
```

Magic Squares: Bitvectors for 3×3 Magic Square

```
(set-logic QF_BV)
(declare-const m_0_0 (_ BitVec 16))
(declare-const m_0_1 (_ BitVec 16))
...
(declare-const m_2_2 (_ BitVec 16))
(assert (and (bvugt m_0_0 #x0000) (bvule m_0_0 #x0009)))
(assert (and (bvugt m_0_1 #x0000) (bvule m_0_1 #x0009)))
...
(assert (and (bvugt m_2_2 #x0000) (bvule m_2_2 #x0009)))
(assert (distinct m_0_0 m_0_1 m_0_2 m_1_0
                  m_1_1 m_1_2 m_2_0 m_2_1 m_2_2))
(assert (= #x000f (bvadd m_0_0 m_0_1 m_0_2)))
(assert (= #x000f (bvadd m_1_0 m_1_1 m_1_2)))
...
(assert (= #x000f (bvadd m_2_0 m_1_1 m_0_2)))
(check-sat)
(get-model)
(exit)
```

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning ($> m_{2,2} 0$) into a literal ($p \leftrightarrow m_{2,2} > 0$)

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning ($> m_{2,2} 0$) into a literal ($p \leftrightarrow m_{2,2} > 0$)

QF_LIA: the solver applies (exponentially) **many** SAT calls

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning ($> m_{2,2} 0$) into a literal ($p \leftrightarrow m_{2,2} > 0$)

QF_LIA: the solver applies (exponentially) many SAT calls

When using QF_BV, the solver applies **bitblasting**: every bit in each bitvector is turned into a propositional variable. Each constraint, such as ($> m_{2,2} 0$) is turned into many clauses.

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning $(> m_{2,2} 0)$ into a literal $(p \leftrightarrow m_{2,2} > 0)$

QF_LIA: the solver applies (exponentially) many SAT calls

When using QF_BV, the solver applies **bitblasting**: every bit in each bitvector is turned into a propositional variable. Each constraint, such as $(> m_{2,2} 0)$ is turned into many clauses.

QF_BV: the solver applies a **single** SAT call

Magic Squares: Theory Differences

The SMT-LIB formula for QF_BV and QF_LIA looks similar...

The QF_LIA abstracts the problem by turning $(> m_{2,2} 0)$ into a literal $(p \leftrightarrow m_{2,2} > 0)$

QF_LIA: the solver applies (exponentially) many SAT calls

When using QF_BV, the solver applies **bitblasting**: every bit in each bitvector is turned into a propositional variable. Each constraint, such as $(> m_{2,2} 0)$ is turned into many clauses.

QF_BV: the solver applies a single SAT call

Compare: $n \geq 5$ is hard for QF_LIA, $n \leq 10$ is easy for QF_BV

Magic Squares: Demo

SAT with assignment:

$m_{2,2} \mapsto 2$

$m_{2,1} \mapsto 9$

$m_{2,0} \mapsto 4$

$m_{1,2} \mapsto 7$

$m_{1,1} \mapsto 5$

$m_{1,0} \mapsto 3$

$m_{0,2} \mapsto 6$

$m_{0,1} \mapsto 1$

$m_{0,0} \mapsto 8$

Square:

8 1 6

3 5 7

4 9 2

SMT-LIB

Example: Magic Squares

Application: Verification

Verification: Equivalence Checking

SAT and SMT solvers are crucial for verification tasks

- ▶ Equivalence checking
- ▶ Bounded model checking

Equivalence checking:

- ▶ Are two hardware/software designs functionally equivalent?
- ▶ Does any input to both produce the same output?
- ▶ Typically one is unoptimized and the other is optimized

Verification: Example of the Power of 3

```
1 int power3(int in)
2 {
3     int i, out_a;
4     out_a = in;
5     for (i = 0; i < 2; i++)
6         out_a = out_a * in;
7     return out_a;
8 }
```

```
1 int power3_new(int in)
2 {
3     int out_b;
4
5     out_b = (in * in) * in;
6
7     return out_b;
8 }
```

$$\Gamma_a \equiv (out0_a = in0_a) \wedge (out1_a = out0_a \times in0_a) \wedge (out2_a = out1_a \times in0_a)$$

$$\Gamma_b \equiv out0_b = (in0_b \times in0_b) \times in0_b$$

To show these programs are equivalent, we must show the following formula is valid:

$$in0_a = in0_b \wedge \Gamma_a \wedge \Gamma_b \implies out2_a = out0_b$$

Verification: Integers

```
(set-logic QF_NIA)
(declare-const out0_a Int)
(declare-const out1_a Int)
(declare-const in0_a  Int)
(declare-const out2_a Int)
(declare-const out0_b Int)
(declare-const in0_b  Int)

(define-fun gamma_a () Bool
  (and (= out0_a in0_a)
        (and (= out1_a (* out0_a in0_a))
             (= out2_a (* out1_a in0_a)))))

(define-fun gamma_b () Bool
  (= out0_b (* (* in0_b in0_b) in0_b)))

(define-fun gamma_in () Bool
  (= in0_a in0_b))

(define-fun gamma_out () Bool
  (= out2_a out0_b))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))
(check-sat)
```

Verification: Bitvectors

```
(set-logic QF_BV)
(declare-const out0_a (_ BitVec 128))
(declare-const out1_a (_ BitVec 128))
(declare-const in0_a (_ BitVec 128))
(declare-const out2_a (_ BitVec 128))
(declare-const out0_b (_ BitVec 128))
(declare-const in0_b (_ BitVec 128))

(define-fun gamma_a () Bool
  (and (= out0_a in0_a)
       (and (= out1_a (bvmul out0_a in0_a))
            (= out2_a (bvmul out1_a in0_a)))))

(define-fun gamma_b () Bool
  (= out0_b (bvmul (bvmul in0_b in0_b) in0_b)))

(define-fun gamma_in () Bool
  (= in0_a in0_b))

(define-fun gamma_out () Bool
  (= out2_a out0_b))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))
(check-sat)
```

Verification: Uninterpreted Functions

```
(set-logic QF_UFBV)
(declare-const out0_a (_ BitVec 128))
(declare-const out1_a (_ BitVec 128))
(declare-const in0_a (_ BitVec 128))
(declare-const out2_a (_ BitVec 128))
(declare-const out0_b (_ BitVec 128))
(declare-const in0_b (_ BitVec 128))
(declare-fun f ((_ BitVec 128) (_ BitVec 128)) (_ BitVec 128))
(define-fun gamma_a () Bool
  (and (= out0_a in0_a)
       (and (= out1_a (f out0_a in0_a))
            (= out2_a (f out1_a in0_a)))))

(define-fun gamma_b () Bool
  (= out0_b (f (f in0_b in0_b) in0_b)))

(define-fun gamma_in () Bool
  (= in0_a in0_b))

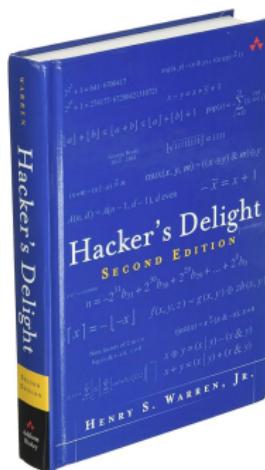
(define-fun gamma_out () Bool
  (= out2_a out0_b))

(assert (not (=> (and gamma_in gamma_a gamma_b) gamma_out)))
(check-sat)
```

Verification: Popcount

Popcount: count the number of 1's in a bitvector

```
int popCount32 (unsigned int x) {  
    x = x - ((x >> 1) & 0x55555555);  
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);  
    x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;  
    return x; }
```



Verification: General Setup

```
(set-logic QF_BV)
(declare-const x (_ BitVec 32))

(define-fun fast ((x (_ BitVec 32))) (_ BitVec 32)
  ...
  )

(define-fun slow ((x (_ BitVec 32))) (_ BitVec 32)
  ...
  )

(assert (not (= (fast x) (slow x))))
(check-sat) ; expect UNSAT
(exit)
```

Verification: Specification

```
(define-fun slow ((x (_ BitVec 32))) (_ BitVec 32)
  (bvadd
    (ite (= #b1 ((_ extract 0 0) x)) #x00000001 #x00000000)
    (ite (= #b1 ((_ extract 1 1) x)) #x00000001 #x00000000)
    (ite (= #b1 ((_ extract 2 2) x)) #x00000001 #x00000000)
    ...
    (ite (= #b1 ((_ extract 30 30) x)) #x00000001 #x00000000)
    (ite (= #b1 ((_ extract 31 31) x)) #x00000001 #x00000000)))
```

Verification: Code conversion

```
int popCount32 (unsigned int x) {  
    x = x - ((x >> 1) & 0x55555555);  
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);  
    x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;  
    return x; }  
  
(define-fun line1 ((x (_ BitVec 32))) (_ BitVec 32)  
  (bvsbu x (bvand (bvlshr x #x00000001) #x55555555)))  
  
(define-fun line2 ((x (_ BitVec 32))) (_ BitVec 32)  
  (bvadd (bvand x #x33333333)  
         (bvand (bvlshr x #x00000002) #x33333333)))  
  
(define-fun line3 ((x (_ BitVec 32))) (_ BitVec 32)  
  (bvlshr (bvmul (bvand (bvadd (bvlshr x #x00000004)  
                           x) #x0f0f0f0f) #x01010101) #x00000018))  
  
(define-fun fast ((x (_ BitVec 32))) (_ BitVec 32)  
  (line3 (line2 (line1 x))))
```

Verification: Demo

```
#eval (do
  let out ← callZ3 popcorn (verbose := true)
  : IO Unit)
```

Solver replied:
unsat