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Introduction: Recap FOL

Undecidable

▶ No single algorithm decides on all formulas

▶ E.g., no decision procedure for non-linear integer arithmetic

Refutationally complete

▶ Decision procedures for valid/unsatisfiable formulas

▶ E.g., pure FOL formulas with universal sentences

▶ The algorithm could run forever on satisfiable formulas

Decidable

▶ Decision procedures for all formulas in a FOL fragment

▶ E.g., Presburger arithmetic, uninterpreted functions
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Introduction: Differences FOL and Propositional Logic

Decidable

▶ Propositional logic is decidable

▶ Only some fragments of FOL are decidable

Compexity of resolution

▶ Variable elimination determines satisfiability in Prop

▶ Clauses can produce infinitely many resolvents in FOL

▶ E.g. ∀x. ¬P(x)∨ P(f (x))

Properties of resolution

▶ In Prop, resolving on multiple clashing pairs → tautology

▶ In FOL, literals may be merged

▶ E.g. ∀y. ¬S(a, y)∨¬S(y, y) and ∀z. S(z, z)∨ S(a, z)
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The Big Picture

We turn a FOL formula of universal sentences into a (typically
infinite) propositional formula and have the following:

▶ The propositional formula is satisfiable iff every finite
subset of the formula is satisfiable (Compactness Lemma).

▶ The satisfying assignment of the (possibly infinite)
propositional formula can be turned into a (possibly
infinite) model of the FOL formula (Herbrand’s Theorem).

▶ If a finite set of the propositional formula is unsatisfiable,
then the FOL formula is unsatisfiable (Lifting Lemma).
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Compactness Lemma (Propositional Logic)

Theorem (Compactness)

Let τ be any partial truth assignment, and suppose that every
finite subset of Γ is satisfied by a truth assignment that
extends τ. Then for every propositional variable pi, either
every finite subset of Γ is satisfied by a truth assignment that
extends τ[pi 7→ ⊤] or every finite subset of Γ is satisfied by a
truth assignment that extends τ[pi 7→ ⊥].

Proof.
Suppose otherwise. Then there is a finite subset Γ0 of Γ that
is not satisfied by any truth assignment that extends τ[pi 7→ ⊤]
and there is a finite subset Γ1 of Γ that is not satisfied by any
truth assignment that extends τ[pi 7→ ⊥]. Then there is no
truth assignment extending τ that satisfies Γ0 ∪ Γ1, because
any such truth assignment has to assign ⊤ or ⊥ to pi.
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Herbrand’s Theorem

Theorem
Let Γ be a set of universal first-order formulas in a language
that contains at least one constant. Suppose every finite set of
ground instances of formulas in Γ is satisfiable as a set of
propositional formulas. Then there exists a model of Γ.

Theorem (Herbrand’s Theorem)

Let A = ∀x1 . . . xn. A1 ∧ . . . ∧ Am be a clause normal form
formula with constant and function symbols from Σ. Let Σ ′ be
the set of ground terms that can be made from symbols in Σ.

A is unsatisfiable if and only if there is a finite set Γ where:

▶ Each element in Γ is a clause Ai[t1/x1, . . . tn/xn] where
1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′.

▶ If each distinct literal in Γ is interpreted as a unique prop
variable, then Γ is unsatisfiable in prop logic.
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Herbrand Model

Herbrand universe: set of all ground terms

Example

Consider Γ := ∀x, y. (f (x) ̸= c)∧ (f (x) ̸= f (y)∨ x = y).
The Herbrand universe of Γ is |M| := {c, f (c), f (f (c), . . . }.
The Herbrand universe can be infinite while Γ is finite.

Herbrand model: interpret each constant/function as itself

▶ cM is interpreted as c
▶ fM(t1, . . . , tn) is interpreted as f (t1, . . . , tn)
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Transforming FOL to Propositional Logic

Example

Let Γ := ∀x, y. ¬R(f (x), c)∧
(
¬R(f (x), f (y))∨ R(x, y)

)
.

The Herbrand universe of Γ is |M| := {c, f (c), f (f (c), . . . }.
Γ can be transformed into the (infinite) propositional formula:

¬pR(f (c),c) ∧
(
¬pR(f (c),f (c)) ∨ pR(c,c)

)
∧ x = c, y = c

¬pR(f (f (c)),c) ∧
(
¬pR(f (f (c)),f (y)) ∨ pR(f (c),c)

)
∧ x = f (c), y = c

¬pR(f (c),c) ∧
(
¬pR(f (c),f (f (c))) ∨ pR(c,f (c))

)
∧ x = c, y = f (c)

. . .

The equality relation needs special attention

▶ Replace it with a new relation, say E(x, y)
▶ Enforce symmetry, transitivity, and congruence
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Proof of Herbrand’s Theorem

Suppose every finite set of ground instances of the formulas in
Γ is satisfiable as a set of propositional formulas. Then, by the
compactness theorem for propositional logic, there is a truth
assignment τ that satisfies all the ground instances of the
formulas in Γ.

We look to τ to determine the truth of the atomic formulas in
the language of Γ. Let M be the Herbrand model of Γ.
For every R, we define RM to hold iff τ(R(t1, . . . , tn)) is true.
In other words, first-order evaluation in the model M is the
same as propositional evaluation under the truth assignment τ.

Since the universe of M consists of ground terms, a formula
∀x1, . . . , xn. A in Γ is true in M iff for every t1, . . . , tn, A is
true under the assignment {x1 7→ t1, . . . , xn 7→ tn}. By the
definition of M, this is the case iff τ(A(t1, . . . , tn)) is true.
This holds as τ satisfies every closed instance of a formula in Γ.
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Lifting Lemma

If a finite set of the propositional formula is unsatisfiable, then
the FOL formula is unsatisfiable.

Lemma (Lifting Lemma)

Let A = ∀x1, . . . , xn. A1 ∧ . . . ∧ Am be a clause normal form
formula with constant and function symbols from Σ. Let Σ ′ be
the set of closed terms that can be made from symbols in Σ.

Let Γ be a set where each element is a clause
Ai[t1/x1, . . . tn/xn] where 1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′.

If each distinct literal in Γ is interpreted as a unique
propositional variable, then any propositional resolution
refutation of Γ can be transformed into a first-order resolution
refutation of A.
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Using FOL Theorem Provers: Aunt Agatha

Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha,
the butler, and Charles live in Dreadbury Mansion, and are the only
people who live therein. A killer always hates his victim, and is never
richer than his victim. Charles hates no one that Aunt Agatha hates.
Agatha hates everyone except the butler. The butler hates everyone not
richer than Aunt Agatha. The butler hates everyone Aunt Agatha hates.
No one hates everyone. Agatha is not the butler.

Who killed Aunt Agatha?
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Using FOL Theorem Provers: Aunt Agatha in Lean

Examples/using first order theorem provers/aunt agatha.lean

Did the butler kill aunt Agatha?
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Using FOL Theorem Provers: Raymond Smullyan

In an article called “The Asylum of Doctor Tarr and Professor
Fether,” Raymond Smullyan tells of an investigation of 11
insane asylums by Inspector Craig of Scotland Yard.

In each of these asylums, every inhabitant x is either a doctor
(Doctor(x)) or a patient (¬Doctor(x)), and every inhabitant
is either sane (Sane(x)) or insane (¬Sane(x)).

The sane inhabitants are totally sane and the insane
inhabitants are totally insane, in the following sense:
for any proposition P,
a sane inhabitant believes P if and only if P is true,
and an insane inhabitant believes P if and only if P is false.

Logic and Mechanized Reasoning 17 / 20



Using FOL Theorem Provers: The 8th Asylum

1. Some of the inhabitants are teachers of other inhabitants.
Each inhabitant has at least one teacher.

∀x. ∃y. Teaches(y, x)

2. There is one inhabitant who trusts all the patients but
does not trust any of the doctors.
∃x. ∀y. ¬Doctor(y) ↔ Trusts(x, y)

3. No inhabitant x is willing to be a teacher of an inhabitant
y unless x believes that y trusts himself.
∀x, y. Teaches(x, y) → (Sane(x) ↔ Trusts(y, y))

4. For any inhabitant x there is an inhabitant y who trusts all
and only those inhabitants who have at least one teacher
who is trusted by x.
∀x. ∃y. ∀z. Trusts(y, z) ↔ ∃w. Teaches(w, z)∧Trusts(x, w)
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Using FOL Theorem Provers: The 8th Asylum in Lean

Examples/using first order theorem provers/asylum eight.lean
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Try at Home

Refute the 8th Asylum using resolution

▶ Skolemize the formula

▶ Turn it into CNF

▶ Negate the conclusion

Encode the Last Asylum in Lean

▶ The description is the Section 17.3 of the textbook

▶ Solve it using Vampire
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