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Lecture summary

Showing the validity of any arbitrary formula in first-order
logic is undecidable.  :(
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Lecture summary

Showing the validity of any arbitrary formula in first-order
logic is undecidable.  :(

But by restricting ourselves to clause normal form formulas
and to refutation proofs, we can recover a refutationally
complete proof procedure. )

This procedure uses the FOL version of resolution.
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Normal Forms

In propositional logic, we've seen various normal forms:
» Negation normal form

» Disjunctive normal form

» Conjunctive normal form

We have analogous normal forms in first-order logic, but we
need to impose constraints on the quantifiers.
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Normal Forms

First-Order Normal Forms:

» Prenex normal form: All quantifiers appear at the start
and range over the whole formula: {V/3 X}*.F

Logic and Mechanized Reasoning 6 /25



Normal Forms

First-Order Normal Forms:
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and range over the whole formula: {V/3 X}*.F
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Normal Forms

First-Order Normal Forms:

» Prenex normal form: All quantifiers appear at the start
and range over the whole formula: {V/3 X}*.F

» Skolem normal form: Prenex normal form with only
universal quantifiers: VX.F

» Clause normal form: Skolem normal form where the
formula is a conjunction of disjunctions of literals:

VX. Aiepn) Ci

In propositional logic, a literal is a variable or negated variable.
In first-order logic, a literal is a relation or negated relation.
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Normal Forms Application

For propositional logic, the resolution rule requires that
formulas first be transformed to conjunctive normal form.

For first-order logic, the resolution rule requires that formulas
first be transformed to clause normal form.

But good news! In classical logic, any FOL formula F can be
transformed to an equisatisfiable clause normal formula F’.

» So if our goal is to determine the validity or satisfiability of
arbitrary first-order formulas, converting F to clause
normal form does not restrict us
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First-Order Resolution
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First-Order Resolution Example 1
In propositional logic, clauses p and —p Vg resolve to 4.

Resolution was effective for SAT solving (propositional logic).
Let's generalize it to first-order logic.
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First-Order Resolution Example 1
In propositional logic, clauses p and —p Vg resolve to 4.

Resolution was effective for SAT solving (propositional logic).
Let's generalize it to first-order logic.

Suppose we have two first-order clauses:

> Vx.Vy.P(f(x),y)
> Yw.Vz.—P(w,g(z)) V Q(w,z)

What might it look like to resolve these clauses?
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First-Order Resolution Example
Clauses: (Vx.¥y.P(f(x),y)), (Vw.Vz.=P(w,g(z)) V Q(w,z))
First, we unify P(f(x),y) and P(w,g(z))
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First-Order Resolution Example
Clauses: (Vx.¥y.P(f(x),y)), (Vw.Vz.=P(w,g(z)) V Q(w,z))

First, we unify P(f(x),y) and P(w, g(z))
» The most general unifier (mgu) is
c={x—uy—g©),w—f(u),z— v}
» Applying o the either term yields P(f(u),g(v))
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First-Order Resolution Example
Clauses: (Vx.¥y.P(f(x),y)), (Vw.Vz.=P(w,g(z)) V Q(w,z))

First, we unify P(f(x),y) and P(w, g(z))
» The most general unifier (mgu) is
c={x—uy—g©),w—f(u),z— v}
» Applying o the either term yields P(f(u),g(v))

Second, we instantiate according to the mgu to obtain:

> P(f(u),8(v))
> —P(f(u),8(v)) vV Q(f (u),v)

Third, we resolve to obtain Q(f(u),v)
Finally, we generalize to obtain the result: Yu.V0.Q(f(u),v)
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First-Order Resolution Definition

Definition (First-Order Resolution)
Let Cq and Cy be two first-order clauses such that:
> C1 = Vx1Vxll\/ll\/\/lm
> Cp = Vylel’\/l{\/\/l,;
» [ is a positive literal and I’ is a negative literal
» There exists an mgu ¢ for the relations in [ and I’

» ¢ maps all variables in C1 and C; to terms containing only
the variables z; through z;
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First-Order Resolution Definition

Definition (First-Order Resolution)

Let C; and Cy be two first-order clauses such that:

> C1 = Vxl...in.l\/ll\/...\/lm

> Cp = Vylel’\/l{\/\/l,;

» [ is a positive literal and I’ is a negative literal

» There exists an mgu ¢ for the relations in [ and I’

» ¢ maps all variables in C1 and C; to terms containing only
the variables z; through z;

Then resolving C1 and C, on literals [ and [’ yields
Vzlv;zka(ll\/lm\/l{\/\/l,g)
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First-Order Resolution Definition

A minor addendum to the previous definition:

It is possible that resolving C; and C» on literals [ and [’ yields
a result in which there is some i € [1,m] such that o(l;) =1
(meaning after o is applied to Cq, [ appears multiple times)

If this happens, in addition to removing [ and I’ from the
result, I; should also be removed (likewise, any literals in Cp
that become I’ after applying o should also be removed)

Some presentations of first-order resolution separate this rule
from resolution itself and call it factoring, other presentations
include this elimination as part of the resolution rule itself

In section 14.1 of the textbook, there is an example (the
barber paradox) that showcases why this is necessary
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Resolving on Different Literals

In propositional logic, if it is ever possible to resolve a pair of
clauses in two ways, the result will always be a tautology:

> LetCi =pVgV...
> Llet G =pViGV...
» Resolving C; and Cy on p yields gV gV ...
» Resolving C; and C; on g yields pVp V...

» Either way, the result of the resolution is a tautology and
therefore useless
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Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies
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In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

> Let C; = Va.Vy.P(f(x),y) V Q(x,f(y))
» Let C; = Vw.Vz.—P(w,g(z)) V —Q(g(w), z)
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Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

> Let C; = Va.Vy.P(f(x),y) V Q(x,f(y))

» Let Cp = Vw.Vz.=P(w, g(z)) V —Q(g(w), z)

» If we resolve on the first literal, we get mgu
c={x—uy— gv),w— f(u),z— v} yielding the

result Yu.V0.Q(u,f(g(v))) V—=Q(g(f(u)),v)

Logic and Mechanized Reasoning 14 / 25



Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

> Let C; = Va.Vy.P(f(x),y) V Q(x,f(y))

» Let Cp = Vw.Vz.=P(w, g(z)) V —Q(g(w), z)

» If we resolve on the first literal, we get mgu
c={x—uy— gv),w— f(u),z— v} yielding the
result Yu.V0.Q(u,f(g(v))) V—=Q(g(f(u)),v)
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result Yu.Vo.P(f(g(u)),v) vV =P(u,g(f(v)))
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Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

> Let C; = Va.Vy.P(f(x),y) V Q(x,f(y))

» Let Cp = Vw.Vz.=P(w, g(z)) V —Q(g(w), z)

» If we resolve on the first literal, we get mgu
c={x—uy— gv),w— f(u),z— v} yielding the
result Yu.V0.Q(u,f(g(v))) V—=Q(g(f(u)),v)

» If we resolve on the second literal, we get mgu
c={x—g(u),y— v,w— uzw— f(v)}yielding the
result Yu.Vo.P(f(g(u)),v) vV =P(u,g(f(v)))

Neither of these results are tautologies
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Decision Procedures and Completeness
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Decision Procedures

Definition (Decision Procedure)

A decision procedure is an algorithm that takes in problems
from some class of yes/no questions and determines the
answer in finitely many steps
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Decision Procedures

Definition (Decision Procedure)

A decision procedure is an algorithm that takes in problems
from some class of yes/no questions and determines the
answer in finitely many steps

Since propositional logic is decidable, the following
(equivalent) questions all have decision procedures:

> Is P valid? (F P)

» Is P provable? (F P)

» |s —P unsatisfiable?

» |s —P refutable? (—PF 1)
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Decision Procedures

Definition (Decision Procedure)

A decision procedure is an algorithm that takes in problems
from some class of yes/no questions and determines the
answer in finitely many steps

Since propositional logic is decidable, the following
(equivalent) questions all have decision procedures:

> Is P valid? (F P)

» Is P provable? (F P)

» |s —P unsatisfiable?

» Is —P refutable? (=P F L) + You made this in HW 5
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First-Order Logic is Undecidable

Since first-order logic is, in general, undecidable, none of the
following (equivalent) questions have decision procedures:

> Is I7.A(T) valid? (E 3X.A(Y))
> Is 3%.A(T) provable? (- 3X.A(Y))
> Is VX' .—A(%) unsatisfiable?
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First-Order Logic is Undecidable

Since first-order logic is, in general, undecidable, none of the
following (equivalent) questions have decision procedures:

> Is I7.A(T) valid? (E 3X.A(Y))
> Is 3%.A(T) provable? (- 3X.A(Y))
> Is VX .—~A(X) unsatisfiable?

Definition (Refutation-Completeness)

A set of inference rules is refutation-complete if every
unsatisfiable formula can be refuted using just those
inferences. In other words, for every unsatisfiable formula A,
refutation-completeness requires that A - L
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Consequence of Refutation-Completeness

Resolution is sound, meaning A = L entails that A is
unsatisfiable. So if resolution is refutation-complete, then
“Is A refutable?” is equivalent to “Is A unsatisfiable?”
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Consequence of Refutation-Completeness

Resolution is sound, meaning A = L entails that A is
unsatisfiable. So if resolution is refutation-complete, then
“Is A refutable?” is equivalent to “Is A unsatisfiable?”

Note that this does NOT mean that there is a decision
procedure for determining whether A is refutable
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Search Nontermination

Example
» Consider the clause Vx.—P(x) V P(f(x)).
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Search Nontermination

Example

» Consider the clause Vx.=P(x) V P(f(x)). If we resolve
this clause with itself, we obtain Yy.—P(y) V' P(f(f(v))).
If we resolve this new clause with itself, we obtain

vz=P(2) VP(f(f(f(f(2)))))
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Search Nontermination

Example

» Consider the clause Vx.=P(x) V P(f(x)). If we resolve
this clause with itself, we obtain Yy.—P(y) V' P(f(f(v))).
If we resolve this new clause with itself, we obtain

Vz.=P(z) V P(f(f(f(f(2)))))
» You can prove by induction that there are infinitely many
clauses that you can generate via resolution in this manner

» But the clause Vx.—P(x) V P(f(x)) is satisfiable (just
consider a model where no elements satisfy P)

So first-order resolution is not a decision procedure. If a
formula is satisfiable, proof search can either terminate or go
on forever
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First-Order Resolution Completeness
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First-Order Resolution Completeness

Theorem

Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C + L

Logic and Mechanized Reasoning 21/25



First-Order Resolution Completeness

Theorem
Resolution is a refutation-complete calculus for first-order

clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C + L

Last week, we saw that any first-order formula can be
transformed into an equisatisfiable Skolem normal form
formula. And any Skolem normal form formula can be
transformed into an equivalent clause normal form formula
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First-Order Resolution Completeness

Theorem

Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C + L

Last week, we saw that any first-order formula can be
transformed into an equisatisfiable Skolem normal form
formula. And any Skolem normal form formula can be
transformed into an equivalent clause normal form formula

Corollary

Resolution + skolemization + clausification is a
refutation-complete calculus for first-order logic
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Herbrand’s Theorem

Before the actual proof of first-order resolution’s refutational
completeness, we need to establish two important helper facts.
The first is called Herbrand’s Theorem
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Herbrand’s Theorem

Before the actual proof of first-order resolution’s refutational
completeness, we need to establish two important helper facts.
The first is called Herbrand’s Theorem

Theorem (Herbrand's Theorem)

Let C =Vxq...Vx,.Cy/\...\Cy, be a clause normal form
formula with constant and function symbols from %.. Let ¥ be
the set of closed terms that can be made from symbols in X.

C is unsatisfiable if and only if there is a finite set I' where:

» FEach element in T is a clause Ci[ty/x1, ...ty /X,| where
1<i<mandt;...t, €X'

» [f each distinct literal in I' is interpreted as a unique
propositional variable, then I' is unsatisfiable in
propositional logic
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Lifting Lemma

The second helper fact we need is called the Lifting Lemma
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Lifting Lemma

The second helper fact we need is called the Lifting Lemma

Lemma (Lifting Lemma)

Let C=Vxq...Vx,.Cy/\...\Cy, be a clause normal form
formula with constant and function symbols from ¥. Let ¥." be
the set of closed terms that can be made from symbols in X.

Let I' be a set where each element is a clause
Cilt1/x1,.. . ty/xy) where1 <i<mandty...t, €L’

If each distinct literal in T is interpreted as a unique
propositional variable, then any propositional resolution
refutation of I' can be transformed into a first-order resolution
refutation of C
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First-Order Resolution Completeness

Theorem

Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C - L
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First-Order Resolution Completeness Proof

Proof.

Let C be an unsatisfiable clause normal form formula with
constant and function symbols from X.. Since C is in clause
normal form, C can be written Vxqy...Vx,.C;i A...ACy,
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Let X/ be the set of closed terms that can be made from
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First-Order Resolution Completeness Proof

Proof.

Let C be an unsatisfiable clause normal form formula with
constant and function symbols from X.. Since C is in clause
normal form, C can be written Vxqy...Vx,.C;i A...ACy,

Let X/ be the set of closed terms that can be made from
symbols in .. By Herbrand’'s Theorem, there is an
unsatisfiable conjunction of clauses C;[t/x1, ...t/ X, where
1<i<mandt...t, €X' Call this conjunction T

Since resolution is complete for propositional logic and T' is
unsatisfiable, there exists a propositional resolution proof that
I' = L. By the lifting lemma, this propositional proof can be
transformed into a first-order resolution proof that C + L

L]
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