
Logic and Mechanized Reasoning
Normal Forms

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 32

Motivation

Why a normal form?

Advantages:

▶ Easier to reason about

▶ Some techniques only work on normal forms

▶ Uniform input format for tools

▶ Canonical representations

Disadvantages:

▶ Some structure may be lost

▶ Harder to construct

Logic and Mechanized Reasoning 2 / 32

Complete Sets of Connectives

Negation Normal Form

Disjunctive Normal Form

Conjunctive Normal Form

Logic and Mechanized Reasoning 3 / 32

Complete Sets of Connectives

Negation Normal Form

Disjunctive Normal Form

Conjunctive Normal Form

Logic and Mechanized Reasoning 4 / 32

Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∧ B ≡ ¬(¬A ∨¬B)

⊥ ≡ ¬⊤
⊤ ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions

Logic and Mechanized Reasoning 5 / 32

Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B

A ∧ B ≡ ¬(¬A ∨¬B)
⊥ ≡ ¬⊤
⊤ ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions

Logic and Mechanized Reasoning 5 / 32

Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∧ B ≡ ¬(¬A ∨¬B)

⊥ ≡ ¬⊤
⊤ ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions

Logic and Mechanized Reasoning 5 / 32

Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∧ B ≡ ¬(¬A ∨¬B)

⊥ ≡ ¬⊤

⊤ ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions

Logic and Mechanized Reasoning 5 / 32

Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∧ B ≡ ¬(¬A ∨¬B)

⊥ ≡ ¬⊤
⊤ ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions

Logic and Mechanized Reasoning 5 / 32

Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∧ B ≡ ¬(¬A ∨¬B)

⊥ ≡ ¬⊤
⊤ ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions

Logic and Mechanized Reasoning 5 / 32

Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡

(A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∨ B ≡ ¬(¬A ∧¬B)

⊤ ≡ ¬⊥
⊥ ≡ p ∧¬p

Logic and Mechanized Reasoning 6 / 32

Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡

¬A ∨ B
A ∨ B ≡ ¬(¬A ∧¬B)

⊤ ≡ ¬⊥
⊥ ≡ p ∧¬p

Logic and Mechanized Reasoning 6 / 32

Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∨ B ≡

¬(¬A ∧¬B)
⊤ ≡ ¬⊥
⊥ ≡ p ∧¬p

Logic and Mechanized Reasoning 6 / 32

Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∨ B ≡ ¬(¬A ∧¬B)

⊤ ≡

¬⊥
⊥ ≡ p ∧¬p

Logic and Mechanized Reasoning 6 / 32

Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∨ B ≡ ¬(¬A ∧¬B)

⊤ ≡ ¬⊥
⊥ ≡

p ∧¬p

Logic and Mechanized Reasoning 6 / 32

Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∨ B ≡ ¬(¬A ∧¬B)

⊤ ≡ ¬⊥
⊥ ≡ p ∧¬p

Logic and Mechanized Reasoning 6 / 32

Complete Sets: What about BIIMP and NOT?

What about the set {↔,¬} ?

⊤ ≡

p ↔ p
⊥ ≡ p ↔ ¬p

It is impossible to express ∨:

A B [[A∨B]]τ [[A↔B]]τ [[¬A↔B]]τ [[A↔¬B]]τ [[¬A↔¬B]]τ
⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊤

Logic and Mechanized Reasoning 7 / 32

Complete Sets: What about BIIMP and NOT?

What about the set {↔,¬} ?

⊤ ≡ p ↔ p
⊥ ≡

p ↔ ¬p

It is impossible to express ∨:

A B [[A∨B]]τ [[A↔B]]τ [[¬A↔B]]τ [[A↔¬B]]τ [[¬A↔¬B]]τ
⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊤

Logic and Mechanized Reasoning 7 / 32

Complete Sets: What about BIIMP and NOT?

What about the set {↔,¬} ?

⊤ ≡ p ↔ p
⊥ ≡ p ↔ ¬p

It is impossible to express ∨:

A B [[A∨B]]τ [[A↔B]]τ [[¬A↔B]]τ [[A↔¬B]]τ [[¬A↔¬B]]τ
⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊤

Logic and Mechanized Reasoning 7 / 32

Complete Sets: What about BIIMP and NOT?

What about the set {↔,¬} ?

⊤ ≡ p ↔ p
⊥ ≡ p ↔ ¬p

It is impossible to express ∨:

A B [[A∨B]]τ [[A↔B]]τ [[¬A↔B]]τ [[A↔¬B]]τ [[¬A↔¬B]]τ
⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊤

Logic and Mechanized Reasoning 7 / 32

Complete Sets of Connectives

Negation Normal Form

Disjunctive Normal Form

Conjunctive Normal Form

Logic and Mechanized Reasoning 8 / 32

Negation Normal Form: Introduction

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

▶ Each variable pi is in negation normal form.

▶ The negation ¬pi of a propositional variable is in negation
normal form.

▶ ⊤ and ⊥ are in negation normal form.

▶ If A and B are in negation normal form, then so are A ∧ B
and A ∨ B.

Example (Which formulas are in NNF?)

▶ p ∨ (q ∧¬p)
▶ p → q
▶ ¬A ∧ (B ∨ A)

Logic and Mechanized Reasoning 9 / 32

Negation Normal Form: Introduction

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

▶ Each variable pi is in negation normal form.

▶ The negation ¬pi of a propositional variable is in negation
normal form.

▶ ⊤ and ⊥ are in negation normal form.

▶ If A and B are in negation normal form, then so are A ∧ B
and A ∨ B.

Example (Which formulas are in NNF?)

▶ p ∨ (q ∧¬p)
▶ p → q
▶ ¬A ∧ (B ∨ A)

Logic and Mechanized Reasoning 9 / 32

Negation Normal Form: Recall Harder Example

Recall: For any propositional variables p, q, and r, we have
¬((p ∨ q)∧ (q → r)) ≡ (¬p ∨ q)∧ (¬p ∨¬r)∧ (¬q ∨¬r).

Proof.

¬((p ∨ q)∧ (q → r)) ≡ ¬((p ∨ q)∧ (¬q ∨ r))
≡ ¬(p ∨ q)∨¬(¬q ∨ r)
≡ (¬p ∧¬q)∨ (q ∧¬r)
≡ (¬p ∨ (q ∧¬r))∧ (¬q ∨ (q ∧¬r))
≡ (¬p ∨ (q ∧¬r))∧ (¬q ∨ q)∧ (¬q ∨¬r))
≡ (¬p ∨ (q ∧¬r))∧⊤∧ (¬q ∨¬r)
≡ (¬p ∨ (q ∧¬r))∧ (¬q ∨¬r)
≡ (¬p ∨ q)∧ (¬p ∨¬r)∧ (¬q ∨¬r).

Which formulas are in NNF?

Logic and Mechanized Reasoning 10 / 32

Negation Normal Form: Lemma

Lemma
Every propositional formula is equivalent to one in negation
normal form.

Proof.
First use the identities A ↔ B ≡ (A → B)∧ (B → A) and
A → B ≡ ¬A ∨ B to get rid of ↔ and →. Then use De
Morgan’s laws together with ¬¬A ≡ A, ¬⊤ ≡ ⊥, and
¬⊤ ≡ ⊥ to push negations down to the atomic formulas.

What is the complexity?

Logic and Mechanized Reasoning 11 / 32

Negation Normal Form: Lemma

Lemma
Every propositional formula is equivalent to one in negation
normal form.

Proof.
First use the identities A ↔ B ≡ (A → B)∧ (B → A) and
A → B ≡ ¬A ∨ B to get rid of ↔ and →. Then use De
Morgan’s laws together with ¬¬A ≡ A, ¬⊤ ≡ ⊥, and
¬⊤ ≡ ⊥ to push negations down to the atomic formulas.

What is the complexity?

Logic and Mechanized Reasoning 11 / 32

Complete Sets of Connectives

Negation Normal Form

Disjunctive Normal Form

Conjunctive Normal Form

Logic and Mechanized Reasoning 12 / 32

Disjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Disjunctive Normal Form (DNF)
if it is written as a disjunction of conjunctions of literals.

∨
i<n

 ∧
j<mi

(¬)pi,j



A conjunction of literals is called a cube. ⊤ is the empty cube.

Example (Which formulas are in DNF?)

▶ p ∨ q
▶ p ∧ q
▶ (p ∧ q)∨¬(p ∧ q)

Logic and Mechanized Reasoning 13 / 32

Disjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Disjunctive Normal Form (DNF)
if it is written as a disjunction of conjunctions of literals.

∨
i<n

 ∧
j<mi

(¬)pi,j


A conjunction of literals is called a cube. ⊤ is the empty cube.

Example (Which formulas are in DNF?)

▶ p ∨ q
▶ p ∧ q
▶ (p ∧ q)∨¬(p ∧ q)

Logic and Mechanized Reasoning 13 / 32

Disjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Disjunctive Normal Form (DNF)
if it is written as a disjunction of conjunctions of literals.

∨
i<n

 ∧
j<mi

(¬)pi,j


A conjunction of literals is called a cube. ⊤ is the empty cube.

Example (Which formulas are in DNF?)

▶ p ∨ q
▶ p ∧ q
▶ (p ∧ q)∨¬(p ∧ q)

Logic and Mechanized Reasoning 13 / 32

Disjunctive Normal Form: Lemma

Lemma
The conjunction of two DNF formulas is equivalent to a DNF
formula.

Proof.
True. Recall that A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C).

By induction on n, we have that for every sequence of
formulas B0, . . . , Bn−1 we have A ∧

∨
i<n Bi ≡

∨
i<n(A ∧ Bi).

Then by induction on n ′ we have∨
i ′<n ′ Ai ′ ∧

∨
i<n Bi ≡

∨
i ′<n ′

∨
i<n(Ai ′ ∧ Bi).

Since each Ai ′ and each Bi is a conjunction of literals, this
yields the result.

Logic and Mechanized Reasoning 14 / 32

Disjunctive Normal Form: Lemma

Lemma
The conjunction of two DNF formulas is equivalent to a DNF
formula.

Proof.
True. Recall that A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C).

By induction on n, we have that for every sequence of
formulas B0, . . . , Bn−1 we have A ∧

∨
i<n Bi ≡

∨
i<n(A ∧ Bi).

Then by induction on n ′ we have∨
i ′<n ′ Ai ′ ∧

∨
i<n Bi ≡

∨
i ′<n ′

∨
i<n(Ai ′ ∧ Bi).

Since each Ai ′ and each Bi is a conjunction of literals, this
yields the result.

Logic and Mechanized Reasoning 14 / 32

Disjunctive Normal Form: Lemma

Lemma
The conjunction of two DNF formulas is equivalent to a DNF
formula.

Proof.
True. Recall that A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C).

By induction on n, we have that for every sequence of
formulas B0, . . . , Bn−1 we have A ∧

∨
i<n Bi ≡

∨
i<n(A ∧ Bi).

Then by induction on n ′ we have∨
i ′<n ′ Ai ′ ∧

∨
i<n Bi ≡

∨
i ′<n ′

∨
i<n(Ai ′ ∧ Bi).

Since each Ai ′ and each Bi is a conjunction of literals, this
yields the result.

Logic and Mechanized Reasoning 14 / 32

Disjunctive Normal Form: Lemma

Lemma
The conjunction of two DNF formulas is equivalent to a DNF
formula.

Proof.
True. Recall that A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C).

By induction on n, we have that for every sequence of
formulas B0, . . . , Bn−1 we have A ∧

∨
i<n Bi ≡

∨
i<n(A ∧ Bi).

Then by induction on n ′ we have∨
i ′<n ′ Ai ′ ∧

∨
i<n Bi ≡

∨
i ′<n ′

∨
i<n(Ai ′ ∧ Bi).

Since each Ai ′ and each Bi is a conjunction of literals, this
yields the result.

Logic and Mechanized Reasoning 14 / 32

Disjunctive Normal Form: Proposition 1

Proposition

Every propositional formula is equivalent to one in disjunctive
normal form.

True or false?

Proof.
True. Since we already know that every formula is equivalent
to one in negation normal form, we can use induction on that
set of formulas. The claim is clearly true of ⊤, ⊥, pi, and ¬pi.
By the previous lemma, whenever it is true of A and B, it is
also true of A ∧ B.

Logic and Mechanized Reasoning 15 / 32

Disjunctive Normal Form: Proposition 1

Proposition

Every propositional formula is equivalent to one in disjunctive
normal form.

True or false?

Proof.
True. Since we already know that every formula is equivalent
to one in negation normal form, we can use induction on that
set of formulas. The claim is clearly true of ⊤, ⊥, pi, and ¬pi.
By the previous lemma, whenever it is true of A and B, it is
also true of A ∧ B.

Logic and Mechanized Reasoning 15 / 32

Disjunctive Normal Form: Proposition 2

Proposition

For every DNF formula A one can determine satisfiability and
unsatisfiability in linear time.

True or false?

Proof.
True. A cube with a pair of complementary literals pi and ¬pi
is equal to ⊥. Computing whether a cube is equal to ⊥ can
be done in linear time. A formula is satisfiable if A contains at
least one cube that is not equal to ⊥ and unsatisfiable
otherwise.

Logic and Mechanized Reasoning 16 / 32

Disjunctive Normal Form: Proposition 2

Proposition

For every DNF formula A one can determine satisfiability and
unsatisfiability in linear time.

True or false?

Proof.
True. A cube with a pair of complementary literals pi and ¬pi
is equal to ⊥. Computing whether a cube is equal to ⊥ can
be done in linear time. A formula is satisfiable if A contains at
least one cube that is not equal to ⊥ and unsatisfiable
otherwise.

Logic and Mechanized Reasoning 16 / 32

Disjunctive Normal Form: Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

How to convert this into DNF?

Logic and Mechanized Reasoning 17 / 32

Disjunctive Normal Form: Truth Table to DNF

Γ = (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

τ(p) τ(q) τ(r) falsifies [[Γ]]τ
⊥ ⊥ ⊥ (q ∨ r) ⊥
⊥ ⊥ ⊤ — ⊤
⊥ ⊤ ⊥ (p ∨¬q) ⊥
⊥ ⊤ ⊤ (p ∨¬q) ⊥
⊤ ⊥ ⊥ (q ∨ r) ⊥
⊤ ⊥ ⊤ (¬r ∨¬p) ⊥
⊤ ⊤ ⊥ — ⊤
⊤ ⊤ ⊤ (¬r ∨¬p) ⊥

The DNF consists of all assignments that satisfy the formula:

(¬p ∧¬q ∧ r)∨ (p ∧ q ∧¬r)

Logic and Mechanized Reasoning 18 / 32

Disjunctive Normal Form: Truth Table to DNF

Γ = (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

τ(p) τ(q) τ(r) falsifies [[Γ]]τ
⊥ ⊥ ⊥ (q ∨ r) ⊥
⊥ ⊥ ⊤ — ⊤
⊥ ⊤ ⊥ (p ∨¬q) ⊥
⊥ ⊤ ⊤ (p ∨¬q) ⊥
⊤ ⊥ ⊥ (q ∨ r) ⊥
⊤ ⊥ ⊤ (¬r ∨¬p) ⊥
⊤ ⊤ ⊥ — ⊤
⊤ ⊤ ⊤ (¬r ∨¬p) ⊥

The DNF consists of all assignments that satisfy the formula:

(¬p ∧¬q ∧ r)∨ (p ∧ q ∧¬r)

Logic and Mechanized Reasoning 18 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡

(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡

(
(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(
(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(
(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)

)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨

(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡(
(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))

)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡(

(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)
)
∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).

Logic and Mechanized Reasoning 19 / 32

Disjunctive Normal Form: Complexity

What is the worst case cost of applying the distributive laws?

In some cases, converting a formula to DNF can have an
exponential explosion on the size of the formula.

If we convert (p1 ∨ q1)∧ (p2 ∨ q2)∧ . . . ∧ (pn ∨ qn)
using the distributive laws to DNF:

(p1 ∧ p2 ∧ . . . ∧ pn) ∨ (q1 ∧ p2 ∧ . . . ∧ pn) ∨ . . .∨
(q1 ∧ q2 ∧ . . . ∧ qn)

Logic and Mechanized Reasoning 20 / 32

Disjunctive Normal Form: Complexity

What is the worst case cost of applying the distributive laws?

In some cases, converting a formula to DNF can have an
exponential explosion on the size of the formula.

If we convert (p1 ∨ q1)∧ (p2 ∨ q2)∧ . . . ∧ (pn ∨ qn)
using the distributive laws to DNF:

(p1 ∧ p2 ∧ . . . ∧ pn) ∨ (q1 ∧ p2 ∧ . . . ∧ pn) ∨ . . .∨
(q1 ∧ q2 ∧ . . . ∧ qn)

Logic and Mechanized Reasoning 20 / 32

Complete Sets of Connectives

Negation Normal Form

Disjunctive Normal Form

Conjunctive Normal Form

Logic and Mechanized Reasoning 21 / 32

Conjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Conjunctive Normal Form (CNF)
if it is written as a conjunction of disjunctions of literals.

∧
i<n

 ∨
j<mi

(¬)pi,j



A clause is a disjunction of literals. ⊥ denotes the empty clause.

Example (Which formulas are in CNF?)

▶ p ∨ q
▶ p ∧ q
▶ (p ∨ q)∧¬(p ∨ q)

Logic and Mechanized Reasoning 22 / 32

Conjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Conjunctive Normal Form (CNF)
if it is written as a conjunction of disjunctions of literals.

∧
i<n

 ∨
j<mi

(¬)pi,j


A clause is a disjunction of literals. ⊥ denotes the empty clause.

Example (Which formulas are in CNF?)

▶ p ∨ q
▶ p ∧ q
▶ (p ∨ q)∧¬(p ∨ q)

Logic and Mechanized Reasoning 22 / 32

Conjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Conjunctive Normal Form (CNF)
if it is written as a conjunction of disjunctions of literals.

∧
i<n

 ∨
j<mi

(¬)pi,j


A clause is a disjunction of literals. ⊥ denotes the empty clause.

Example (Which formulas are in CNF?)

▶ p ∨ q
▶ p ∧ q
▶ (p ∨ q)∧¬(p ∨ q)

Logic and Mechanized Reasoning 22 / 32

Conjunctive Normal Form: Proposition

Proposition

For every CNF formula A one can determine whether it is valid
in linear time.

True or false?

Proof.
True. A clause with a pair of complementary literals pi and
¬pi is equal to ⊤. Computing whether a clause is equal to ⊤
can be done in linear time. A formula is valid if and only if all
clauses are equal to ⊤.

Logic and Mechanized Reasoning 23 / 32

Conjunctive Normal Form: Proposition

Proposition

For every CNF formula A one can determine whether it is valid
in linear time.

True or false?

Proof.
True. A clause with a pair of complementary literals pi and
¬pi is equal to ⊤. Computing whether a clause is equal to ⊤
can be done in linear time. A formula is valid if and only if all
clauses are equal to ⊤.

Logic and Mechanized Reasoning 23 / 32

Conjunctive Normal Form: Input Form of Reasoning Tools

Two formulas Γ and ∆ are equisatisfiable if and only if they
are both satisfiable or if they are both unsatisfiable.

Example

The formulas Γ = p ∧ q and ∆ = ¬p ∧¬q are equisatisfiable
because they are both satisfiable, even though there doesn’t
exist an assignment that satisfies both.

Most reasoning tools for propositional logic require CNF input

▶ Transforming a formula to CNF can also be exponential...

▶ But, it can be avoided by focusing on equisatisfiability.

▶ The performance of solvers depends on the transformation.

▶ Typically the smaller the CNF, the easier to solve it.

Let’s look at transforming common constraints into CNF

Logic and Mechanized Reasoning 24 / 32

Conjunctive Normal Form: Input Form of Reasoning Tools

Two formulas Γ and ∆ are equisatisfiable if and only if they
are both satisfiable or if they are both unsatisfiable.

Example

The formulas Γ = p ∧ q and ∆ = ¬p ∧¬q are equisatisfiable
because they are both satisfiable, even though there doesn’t
exist an assignment that satisfies both.

Most reasoning tools for propositional logic require CNF input

▶ Transforming a formula to CNF can also be exponential...

▶ But, it can be avoided by focusing on equisatisfiability.

▶ The performance of solvers depends on the transformation.

▶ Typically the smaller the CNF, the easier to solve it.

Let’s look at transforming common constraints into CNF

Logic and Mechanized Reasoning 24 / 32

Conjunctive Normal Form: Input Form of Reasoning Tools

Two formulas Γ and ∆ are equisatisfiable if and only if they
are both satisfiable or if they are both unsatisfiable.

Example

The formulas Γ = p ∧ q and ∆ = ¬p ∧¬q are equisatisfiable
because they are both satisfiable, even though there doesn’t
exist an assignment that satisfies both.

Most reasoning tools for propositional logic require CNF input

▶ Transforming a formula to CNF can also be exponential...

▶ But, it can be avoided by focusing on equisatisfiability.

▶ The performance of solvers depends on the transformation.

▶ Typically the smaller the CNF, the easier to solve it.

Let’s look at transforming common constraints into CNF

Logic and Mechanized Reasoning 24 / 32

Conjunctive Normal Form: AtLeastOne

Given a set of propositions p1, . . . , pn, how to express

p1 + · · ·+ pn ≥ 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

Hint: This is easy...

(p1 ∨ p2 ∨ · · ·∨ pn)

Logic and Mechanized Reasoning 25 / 32

Conjunctive Normal Form: AtLeastOne

Given a set of propositions p1, . . . , pn, how to express

p1 + · · ·+ pn ≥ 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

Hint: This is easy...

(p1 ∨ p2 ∨ · · ·∨ pn)

Logic and Mechanized Reasoning 25 / 32

Conjunctive Normal Form: Parity Constraints

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

p1 ⊕ · · · ⊕ pn = 1 is true if and only if an odd number of pi is
assigned to true. Consider the case with two literals:

τ(p1) τ(p2) [[p1 ⊕ p2 = 1]]τ
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥

(p1 ∨ p2)∧ (¬p1 ∨¬p2)

Logic and Mechanized Reasoning 26 / 32

Conjunctive Normal Form: Parity Constraints

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

p1 ⊕ · · · ⊕ pn = 1 is true if and only if an odd number of pi is
assigned to true. Consider the case with two literals:

τ(p1) τ(p2) [[p1 ⊕ p2 = 1]]τ
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥

(p1 ∨ p2)∧ (¬p1 ∨¬p2)

Logic and Mechanized Reasoning 26 / 32

Conjunctive Normal Form: Parity Constraints

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

p1 ⊕ · · · ⊕ pn = 1 is true if and only if an odd number of pi is
assigned to true. Consider the case with two literals:

τ(p1) τ(p2) [[p1 ⊕ p2 = 1]]τ
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥

(p1 ∨ p2)∧ (¬p1 ∨¬p2)

Logic and Mechanized Reasoning 26 / 32

Conjunctive Normal Form: Exponential Transformation

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

Logic and Mechanized Reasoning 27 / 32

Conjunctive Normal Form: Exponential Transformation

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

p1 ⊕ p2 ⊕ p3 = 1 ↔ (p1 ∨ p2 ∨ p3)∧ (¬p1 ∨¬p2 ∨ p3)∧

(¬p1 ∨ p2 ∨¬p3)∧ (p1 ∨¬p2 ∨¬p3)

Logic and Mechanized Reasoning 27 / 32

Conjunctive Normal Form: Exponential Transformation

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

p1 ⊕ p2 ⊕ p3 = 1 ↔ (p1 ∨ p2 ∨ p3)∧ (¬p1 ∨¬p2 ∨ p3)∧

(¬p1 ∨ p2 ∨¬p3)∧ (p1 ∨¬p2 ∨¬p3)

Question: How many assignments satisfy this formula?

Logic and Mechanized Reasoning 27 / 32

Conjunctive Normal Form: Exponential Transformation

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

p1 ⊕ p2 ⊕ p3 = 1 ↔ (p1 ∨ p2 ∨ p3)∧ (¬p1 ∨¬p2 ∨ p3)∧

(¬p1 ∨ p2 ∨¬p3)∧ (p1 ∨¬p2 ∨¬p3)

Question: How many assignments satisfy this formula? 4

Logic and Mechanized Reasoning 27 / 32

Conjunctive Normal Form: Exponential Transformation

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

Can we encode large parity constraints with less clauses?

Logic and Mechanized Reasoning 27 / 32

Conjunctive Normal Form: Exponential Transformation

Given a set of Boolean variables p1, . . . , pn, how to express

p1 ⊕ · · · ⊕ pn = 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires 2n−1 clauses of length n:∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

Can we encode large parity constraints with less clauses?

Compact: (p1 ⊕ p2 ⊕ p3 ⊕ ¬q = 1) ∧ (q ⊕ p4 ⊕ · · · ⊕ pn = 1)

Note: (p1 ⊕ p2 ⊕ p3 ⊕ ¬q = 1) ≡ q ↔ (p1 ⊕ p2 ⊕ p3 = 1)

Tradeoff: increases the number of variables but decreases the
number of clauses!

Logic and Mechanized Reasoning 27 / 32

Conjunctive Normal Form: AtMostOne Pairwise Encoding

Given a set of Boolean variables p1, . . . , pn, how to express

p1 + · · ·+ pn ≤ 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires n(n − 1)/2 binary clauses:

∧
1≤i<j≤n

(¬pi ∨¬pj)

Is it possible to use fewer clauses?

Logic and Mechanized Reasoning 28 / 32

Conjunctive Normal Form: AtMostOne Pairwise Encoding

Given a set of Boolean variables p1, . . . , pn, how to express

p1 + · · ·+ pn ≤ 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires n(n − 1)/2 binary clauses:

∧
1≤i<j≤n

(¬pi ∨¬pj)

Is it possible to use fewer clauses?

Logic and Mechanized Reasoning 28 / 32

Conjunctive Normal Form: AtMostOne Pairwise Encoding

Given a set of Boolean variables p1, . . . , pn, how to express

p1 + · · ·+ pn ≤ 1

in CNF (using 0 for ⊥ and 1 for ⊤)?

The direct encoding requires n(n − 1)/2 binary clauses:

∧
1≤i<j≤n

(¬pi ∨¬pj)

Is it possible to use fewer clauses?

Logic and Mechanized Reasoning 28 / 32

Conjunctive Normal Form: AtMostOne Linear Encoding

Given a set of propositions p1, . . . , pn, how to express

p1 + · · ·+ pn ≤ 1

in CNF using a linear number of binary clauses?

Split the constraint using additional variables: Apply the direct
encoding if n ≤ 4 otherwise replace p1 + · · ·+ pn ≤ 1 by

(p1 + p2 + p3 + ¬q ≤ 1)∧ (q + p4 + · · ·+ pn ≤ 1)

resulting in 3n − 6 clauses and (n − 3)/2 new variables.

Note: p1 + p2 + p3 + ¬q ≤ 1 ≡
p1 + p2 + p3 ≤ 1 ∧ (¬p1 ∨ q)∧ (¬p2 ∨ q)∧ (¬p3 ∨ q) ≡
p1 + p2 + p3 ≤ 1 ∧ (p1 ∨ p2 ∨ p3) → q

Logic and Mechanized Reasoning 29 / 32

Conjunctive Normal Form: AtMostOne Linear Encoding

Given a set of propositions p1, . . . , pn, how to express

p1 + · · ·+ pn ≤ 1

in CNF using a linear number of binary clauses?

Split the constraint using additional variables: Apply the direct
encoding if n ≤ 4 otherwise replace p1 + · · ·+ pn ≤ 1 by

(p1 + p2 + p3 + ¬q ≤ 1)∧ (q + p4 + · · ·+ pn ≤ 1)

resulting in 3n − 6 clauses and (n − 3)/2 new variables.

Note: p1 + p2 + p3 + ¬q ≤ 1 ≡
p1 + p2 + p3 ≤ 1 ∧ (¬p1 ∨ q)∧ (¬p2 ∨ q)∧ (¬p3 ∨ q) ≡
p1 + p2 + p3 ≤ 1 ∧ (p1 ∨ p2 ∨ p3) → q

Logic and Mechanized Reasoning 29 / 32

Conjunctive Normal Form: Order Matters

Split the constraint using additional variables: Apply the direct
encoding if n ≤ k otherwise replace p1 + · · ·+ pn ≤ 1 by

Linear : (p1 + · · ·+ pk +¬q ≤ 1)∧ (q+ pk+1 + · · ·+ pn ≤ 1)

Pooled : (p1 + · · ·+ pk +¬q ≤ 1)∧ (pk+1 + · · ·+ pn + q ≤ 1)

Is there a difference?

Linear : (p1 + p2 + ¬q1 ≤ 1)∧ (q1 + p3 + ¬q2 ≤ 1) ∧
(q2 + p4 + ¬q3 ≤ 1)∧ (q3 + p5 + p6 ≤ 1)

Pooled : (p1 + p2 + ¬q1 ≤ 1)∧ (p3 + p4 + ¬q2 ≤ 1) ∧
(p5 + p6 + ¬q3 ≤ 1)∧ (q1 + q2 + q3 ≤ 1)

Logic and Mechanized Reasoning 30 / 32

Conjunctive Normal Form: Order Matters

Split the constraint using additional variables: Apply the direct
encoding if n ≤ k otherwise replace p1 + · · ·+ pn ≤ 1 by

Linear : (p1 + · · ·+ pk +¬q ≤ 1)∧ (q+ pk+1 + · · ·+ pn ≤ 1)

Pooled : (p1 + · · ·+ pk +¬q ≤ 1)∧ (pk+1 + · · ·+ pn + q ≤ 1)

Is there a difference?

Linear : (p1 + p2 + ¬q1 ≤ 1)∧ (q1 + p3 + ¬q2 ≤ 1) ∧
(q2 + p4 + ¬q3 ≤ 1)∧ (q3 + p5 + p6 ≤ 1)

Pooled : (p1 + p2 + ¬q1 ≤ 1)∧ (p3 + p4 + ¬q2 ≤ 1) ∧
(p5 + p6 + ¬q3 ≤ 1)∧ (q1 + q2 + q3 ≤ 1)

Logic and Mechanized Reasoning 30 / 32

Conjunctive Normal Form: Impact on Matrix Multiplication

0 200 400 600 800 1,000
0

200

400

600

800

1,000

local search runtime

so
lv
ed

in
st
an
ce
s

Pooled, 6-cut Pooled, 8-cut
Pooled, 7-cut Pooled, 5-cut
Linear, 5-cut Linear, 8-cut
Pooled, 4-cut Linear, 7-cut
Linear, 6-cut Linear, 3-cut
Pooled, 3-cut Linear, 4-cut

Logic and Mechanized Reasoning 31 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Logic and Mechanized Reasoning 32 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Question: Is A equivalent to B?

Note: A ↔ B if ¬A ∧ B and A ∧¬B are unsatisfiable.

Logic and Mechanized Reasoning 32 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Is ¬A ∧ B unsatisfiable?

Note: ¬A ≡ p1 ∧ p2

Logic and Mechanized Reasoning 32 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Is ¬A ∧ B unsatisfiable? yes!

Note: ¬A ≡ p1 ∧ p2

Logic and Mechanized Reasoning 32 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Is A ∧¬B unsatisfiable?

Note: ¬B ≡ ¬((¬p1 ∨ q)∧ (¬q ∨¬p2))
≡ (p1 ∧¬q)∨ (q ∧ p2)
≡ (p1 ∨ q)∧ (p1 ∨ p2)∧ (¬q ∨ p2)

Logic and Mechanized Reasoning 32 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Is A ∧¬B unsatisfiable? no!

Note: ¬B ≡ ¬((¬p1 ∨ q)∧ (¬q ∨¬p2))
≡ (p1 ∧¬q)∨ (q ∧ p2)
≡ (p1 ∨ q)∧ (p1 ∨ p2)∧ (¬q ∨ p2)

Logic and Mechanized Reasoning 32 / 32

Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of p1 + p2 ≤ 1 equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

A and B are equisatisfiable:

▶ A is satisfiable iff B is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if
all we want to do is determine satisfiability.

Logic and Mechanized Reasoning 32 / 32

	Complete Sets of Connectives
	Negation Normal Form
	Disjunctive Normal Form
	Conjunctive Normal Form

