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Second Midterm Exam

The second midterm is on Tuesday, March 25, during class

▶ last name starts with A-H are in room GHC 4307

▶ last name starts with K-Z are in Doherty 2210

The exam will cover:

▶ DP and DPLL, following the slides from the 2/11 lecture

▶ Sections 8.2, 8.3, and 8.4 in the textbook

▶ Chapters 9-12 in the textbook

▶ Construct unifiers of terms by hand, but not the algorithm
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Linear Expressions and Linear Constraints

A linear expression is of the form a1x1 + a2x2 + · · ·+ anxn + b
▶ ai is a rational number

▶ b is a rational number

▶ xi is a variable (ranging over the real numbers)

A linear constraint is of the form s < t or s = t
▶ s and t are linear expressions

▶ s ≤ t can be expressed as (s < t)∨ (s = t)
▶ s ̸= t can be expressed as (s < t)∨ (t < s)

We use only s < t and s = t to simplify the presentation
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Rewriting Linear Constraints

Any linear constraint can be turned into either t = 0 of t < 0
▶ Move everything to the left-hand side

Example

Consider the constraint: 3x + 2y < 3y + 4z.
Which can be rewritten to: 3x − y − 4z < 0.

A linear constraint with x can become x = t, x < t, or t < x
▶ Move everything (apart from x) to the right-hand side

▶ Divide the right-hand side by the left-hand side constant

▶ Do the reverse if the constant of x is negative

Example

Consider again the constraint: 3x + 2y < 3y + 4z.
Which can be rewritten to: x < 1

3y + 4
3z.
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Satisfiability of Linear Constraints is Decidable

Theorem
The question as to whether a finite set of linear constraints is
satisfiable is decidable.

Proof.
Proof by induction on the number of variables

▶ Base case: only constraints b0 = b1 and b0 < b1
▶ Inductive case: eliminate a variable x
▶ Substitute an equality containing x
▶ Eliminate the inequalities containing x
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Inductive Case: Eliminate a Variable by Substitution

If there is an equality containing variable x
▶ Rewrite the constraint to the form x = t
▶ Substitute all occurrences of x by t
▶ The resulting new problem is equisatisfiable

▶ Given a solution to the new problem, assign x the value of t

This reduces the number of variables by one and the number
of constraints by one (possibly more by removing trivial ones)
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Inductive Case: Eliminate Inequalities

Partition the inequalities in Γ:
▶ those that don’t contain x at all

▶ those that can be expressed in the form si < x
▶ those that can be expressed in the form x < tj

Γ ′: Replace the last two parts with all inequalities si < tj

▶ Any assignment that satisfies Γ, satisfied Γ ′

A solution to Γ ′ can be turned into a solution of Γ
▶ Determine the largest si and the smallest tj
▶ Assign x to be a value somewhere in between

▶ If part si or tj is missing make x sufficiently small or large
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Complexity

What is the complexity of the procedure?

▶ Consider a formula with n variables and m inequalities

Costs of eliminating a single variable:

▶ A variable may occur in m
2 inequalities of the form si < x

▶ A variable may occur in m
2 inequalities of the form x < tj

▶ Eliminating such a variable increases the size from m to m2

4

Total costs: O(m2n
)
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Why Doesn’t This Work for the Integers?

There may be an integer between si and tj

Consider the following inequalities:

y < 6 − x
2x − 4 < y

2 < x

Eliminating y results in the following inequality:

2x − 4 < 6 − x ≡ x <
10
3

So x = 3 is a solution, but there is no solution for y:
▶ y < 6 − 3 ≡ y < 3
▶ 2 · 3 − 4 < y ≡ 2 < y
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Fourier and Motzkin

Jean-Baptiste Joseph Fourier (1768 - 1830)

▶ French mathematician

▶ Many scientific contributions, including
Fourier Series, Fourier Transformation,
and FM Elimination

Theodore Motzkin (1908 - 1970)

▶ Israeli-American mathematician

▶ Influenced linear programming,
optimization, combinatorics, and
algebraic geometry

▶ Rediscovered FM Elimination
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Fourier-Motzkin Example (1)

Consider the following inequalities:

x + y < 7
y + z < 6
x − z < 4

z < x − 2
1 < y
0 < z

Eliminate z: Rewriting the inequalities to s < z or z < t:
z < 6 − y

x − 4 < z
z < x − 2
0 < z

Compute all pairs s < t:
x − 4 < x − 2
x − 4 < 6 − y

0 < x − 2
0 < 6 − y

≡ −4 < −2
≡ x + y < 10
≡ 2 < x
≡ y < 6
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Fourier-Motzkin Example (2)

Example after eliminating z and simplification:

x + y < 7
1 < y

2 < x
y < 6

Eliminate y: Rewriting the inequalities to s < y or y < t:
y < 7 − x
y < 6
1 < y

Compute all pairs s < t:
1 < 7 − x
1 < 6

≡ x < 6
≡ 1 < 6
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Fourier-Motzkin Example (3)

Example after eliminating z and y and simplification:

x < 6
2 < x

Which is satisfiable.

Pick a value for x within the range, say 4. Determine y:
y < 7 − 4
y < 6
1 < y

Now, we can pick a value for y to determine z, etc.
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Heuristics

Although the worst-case complexity is double exponential,
Fourier-Motzkin Elimination can be quite efficient in practice

Heuristics can limit the number of inequalities in practice

▶ Remove in each step the least occurring variable

▶ Only make elimination steps that keep the constants at 1

Implemented in various automated reasoning tools

▶ Some SAT solvers using FME preprocessing

▶ Also used in some SMT solvers
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Fourier-Motzkin in Lean
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Clean Constraints

First, consider a problem in linear arithmetic

▶ Variables (in the reals) are labeled x1, x2, . . . , xn
▶ Constraints are labeled c1, c2, . . . , cm
▶ ∃x1, x2, . . . , xn.c1 ∧ c2 ∧ . . . cm

And consider the structure (R, 0, 1,+,<).

▶ Express 3x by x + x + x
▶ Express x − (1/2)y + (4/3)z < 0 by 6x + 8z < 3y

We apply Fourier-Motzkin if all constraints are s < t or s = t
▶ How to deal with constraints of a different form?
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Arbitrary Constraints

First, turn the formula in negation normal form

▶ replace ¬(s < t) by (t < s)∨ (s = t)
▶ (in practice, it is better to include ≤ in the language)

▶ replace s ̸= t by (s < t)∨ (t < s)

Second, turn the NNF in disjunctive normal form

▶ Solve each cube using Fourier-Motzkin elimination.

▶ Satisfiable if one of the cubes is satisfiable
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(Q, 0, 1,+,<,≤) is Decidable

Note that in all reasoning so far, we only required that we can
always find a number in between two other numbers

▶ This does not only hold for R, but also for Q

The same procedure decides questions in (Q, 0, 1,+,<,≤)
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Presburger Arithmetic

What happens if we replace the real numbers with integers?

(Z, 0, 1,+,<), or Presburger arithmetic, is also decidable

▶ First proven by Presburger in 1926

▶ Also known as linear integer arithmetic

▶ Integers are discrete: no number between x and x + 1

The decision procedure is more complicated
▶ SMT solvers have an efficient algorithm

▶ for the quantifier-free fragment
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(R, 0, 1,+,×,<) is Decidable

What about adding multiplication to the language?

▶ Still decidable

▶ Extending linear arithmetic with p = 0 and p < 0 for
arbitrary polynomials p

▶ Known as Real closed fields

▶ Decidability proved by Alfred Tarski before World War II,
but only published in 1948
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(Z, 0, 1,+,×) is Undecidable

Is (x + y = z)∧ (x ̸= 0)∧ (y ̸= 0) satisfiable?

▶ Trivial: x = 1, y = 2, z = 3

Is (x2 + y2 = z2)∧ (x ̸= 0)∧ (y ̸= 0) satisfiable?
▶ Easy (Pythagorean triple): x = 3, y = 4, z = 5

Is (x4 + y4 = z4)∧ (x ̸= 0)∧ (y ̸= 0) satisfiable?
▶ Non-trivial, unsatisfiable
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