

Logic and Mechanized Reasoning

Decision Procedures for Linear Arithmetic

Marijn J.H. Heule

**Carnegie
Mellon
University**

Second Midterm Exam

The second midterm is on Tuesday, March 25, during class

- ▶ last name starts with A-H are in room GHC 4307
- ▶ last name starts with K-Z are in Doherty 2210

The exam will cover:

- ▶ DP and DPLL, following the slides from the 2/11 lecture
- ▶ Sections 8.2, 8.3, and 8.4 in the textbook
- ▶ Chapters 9-12 in the textbook
- ▶ Construct unifiers of terms by hand, but **not** the algorithm

Linear Real Arithmetic

Fourier-Motzkin

A Full Decision Procedure

Other Theories

Linear Real Arithmetic

Fourier-Motzkin

A Full Decision Procedure

Other Theories

Linear Expressions and Linear Constraints

A **linear expression** is of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n + b$

- ▶ a_i is a rational number
- ▶ b is a rational number
- ▶ x_i is a variable (ranging over the real numbers)

Linear Expressions and Linear Constraints

A **linear expression** is of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n + b$

- ▶ a_i is a rational number
- ▶ b is a rational number
- ▶ x_i is a variable (ranging over the real numbers)

A **linear constraint** is of the form $s < t$ or $s = t$

- ▶ s and t are linear expressions
- ▶ $s \leq t$ can be expressed as $(s < t) \vee (s = t)$
- ▶ $s \neq t$ can be expressed as $(s < t) \vee (t < s)$

Linear Expressions and Linear Constraints

A **linear expression** is of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n + b$

- ▶ a_i is a rational number
- ▶ b is a rational number
- ▶ x_i is a variable (ranging over the real numbers)

A **linear constraint** is of the form $s < t$ or $s = t$

- ▶ s and t are linear expressions
- ▶ $s \leq t$ can be expressed as $(s < t) \vee (s = t)$
- ▶ $s \neq t$ can be expressed as $(s < t) \vee (t < s)$

We use only $s < t$ and $s = t$ to simplify the presentation

Rewriting Linear Constraints

Any linear constraint can be turned into either $t = 0$ or $t < 0$

- ▶ Move everything to the left-hand side

Example

Consider the constraint: $3x + 2y < 3y + 4z$.

Which can be rewritten to: $3x - y - 4z < 0$.

A linear constraint with x can become $x = t$, $x < t$, or $t < x$

- ▶ Move everything (apart from x) to the right-hand side
- ▶ Divide the right-hand side by the left-hand side constant
- ▶ Do the reverse if the constant of x is negative

Example

Consider again the constraint: $3x + 2y < 3y + 4z$.

Which can be rewritten to: $x < \frac{1}{3}y + \frac{4}{3}z$.

Satisfiability of Linear Constraints is Decidable

Theorem

The question as to whether a finite set of linear constraints is satisfiable is decidable.

Proof.

Proof by induction on the number of variables

- ▶ Base case: only constraints $b_0 = b_1$ and $b_0 < b_1$
- ▶ Inductive case: eliminate a variable x
- ▶ Substitute an equality containing x
- ▶ Eliminate the inequalities containing x

Inductive Case: Eliminate a Variable by Substitution

If there is an equality containing variable x

- ▶ Rewrite the constraint to the form $x = t$
- ▶ Substitute all occurrences of x by t
- ▶ The resulting new problem is equisatisfiable
- ▶ Given a solution to the new problem, assign x the value of t

This reduces the number of variables by one and the number of constraints by one (possibly more by removing trivial ones)

Inductive Case: Eliminate Inequalities

Partition the inequalities in Γ :

- ▶ those that don't contain x at all
- ▶ those that can be expressed in the form $s_i < x$
- ▶ those that can be expressed in the form $x < t_j$

Inductive Case: Eliminate Inequalities

Partition the inequalities in Γ :

- ▶ those that don't contain x at all
- ▶ those that can be expressed in the form $s_i < x$
- ▶ those that can be expressed in the form $x < t_j$

Γ' : Replace the last two parts with all inequalities $s_i < t_j$

- ▶ Any assignment that satisfies Γ , satisfied Γ'

Inductive Case: Eliminate Inequalities

Partition the inequalities in Γ :

- ▶ those that don't contain x at all
- ▶ those that can be expressed in the form $s_i < x$
- ▶ those that can be expressed in the form $x < t_j$

Γ' : Replace the last two parts with all inequalities $s_i < t_j$

- ▶ Any assignment that satisfies Γ , satisfied Γ'

A solution to Γ' can be turned into a solution of Γ

- ▶ Determine the largest s_i and the smallest t_j
- ▶ Assign x to be a value somewhere in between
- ▶ If part s_i or t_j is missing make x sufficiently small or large

Complexity

What is the complexity of the procedure?

- ▶ Consider a formula with n variables and m inequalities

Complexity

What is the complexity of the procedure?

- ▶ Consider a formula with n variables and m inequalities

Costs of eliminating a single variable:

- ▶ A variable may occur in $\frac{m}{2}$ inequalities of the form $s_i < x$
- ▶ A variable may occur in $\frac{m}{2}$ inequalities of the form $x < t_j$
- ▶ Eliminating such a variable increases the size from m to $\frac{m^2}{4}$

Complexity

What is the complexity of the procedure?

- ▶ Consider a formula with n variables and m inequalities

Costs of eliminating a single variable:

- ▶ A variable may occur in $\frac{m}{2}$ inequalities of the form $s_i < x$
- ▶ A variable may occur in $\frac{m}{2}$ inequalities of the form $x < t_j$
- ▶ Eliminating such a variable increases the size from m to $\frac{m^2}{4}$

Total costs: $\mathcal{O}(m^{2^n})$

Why Doesn't This Work for the Integers?

Why Doesn't This Work for the Integers?

There may be an integer between s_i and t_j

Why Doesn't This Work for the Integers?

There may be an integer between s_i and t_j

Consider the following inequalities:

$$y < 6 - x$$

$$2x - 4 < y$$

$$2 < x$$

Why Doesn't This Work for the Integers?

There may be an integer between s_i and t_j

Consider the following inequalities:

$$y < 6 - x$$

$$2x - 4 < y$$

$$2 < x$$

Eliminating y results in the following inequality:

$$2x - 4 < 6 - x \equiv x < \frac{10}{3}$$

Why Doesn't This Work for the Integers?

There may be an integer between s_i and t_j

Consider the following inequalities:

$$\begin{aligned}y &< 6 - x \\2x - 4 &< y \\2 &< x\end{aligned}$$

Eliminating y results in the following inequality:

$$2x - 4 < 6 - x \equiv x < \frac{10}{3}$$

So $x = 3$ is a solution, but there is no solution for y :

- ▶ $y < 6 - 3 \equiv y < 3$
- ▶ $2 \cdot 3 - 4 < y \equiv 2 < y$

Linear Real Arithmetic

Fourier-Motzkin

A Full Decision Procedure

Other Theories

Fourier and Motzkin

Jean-Baptiste Joseph Fourier (1768 - 1830)

- ▶ French mathematician
- ▶ Many scientific contributions, including Fourier Series, Fourier Transformation, and FM Elimination

Theodore Motzkin (1908 - 1970)

- ▶ Israeli-American mathematician
- ▶ Influenced linear programming, optimization, combinatorics, and algebraic geometry
- ▶ Rediscovered FM Elimination

Fourier-Motzkin Example (1)

Consider the following inequalities:

$$x + y < 7$$

$$z < x - 2$$

$$y + z < 6$$

$$1 < y$$

$$x - z < 4$$

$$0 < z$$

Fourier-Motzkin Example (1)

Consider the following inequalities:

$$x + y < 7$$

$$z < x - 2$$

$$y + z < 6$$

$$1 < y$$

$$x - z < 4$$

$$0 < z$$

Eliminate z : Rewriting the inequalities to $s < z$ or $z < t$:

$$z < 6 - y$$

$$z < x - 2$$

$$x - 4 < z$$

$$0 < z$$

Fourier-Motzkin Example (1)

Consider the following inequalities:

$$x + y < 7$$

$$z < x - 2$$

$$y + z < 6$$

$$1 < y$$

$$x - z < 4$$

$$0 < z$$

Eliminate z : Rewriting the inequalities to $s < z$ or $z < t$:

$$z < 6 - y$$

$$z < x - 2$$

$$x - 4 < z$$

$$0 < z$$

Compute all pairs $s < t$:

$$x - 4 < x - 2 \equiv -4 < -2$$

$$x - 4 < 6 - y \equiv x + y < 10$$

$$0 < x - 2 \equiv 2 < x$$

$$0 < 6 - y \equiv y < 6$$

Fourier-Motzkin Example (2)

Example after eliminating z and simplification:

$$x + y < 7$$

$$1 < y$$

$$2 < x$$

$$y < 6$$

Eliminate y : Rewriting the inequalities to $s < y$ or $y < t$:

$$y < 7 - x$$

$$y < 6$$

$$1 < y$$

Compute all pairs $s < t$:

$$1 < 7 - x \quad \equiv \quad x < 6$$

$$1 < 6 \quad \equiv \quad 1 < 6$$

Fourier-Motzkin Example (3)

Example after eliminating z and y and simplification:

$$x < 6$$

$$2 < x$$

Which is satisfiable.

Pick a value for x within the range, say 4. Determine y :

$$y < 7 - 4$$

$$y < 6$$

$$1 < y$$

Now, we can pick a value for y to determine z , etc.

Heuristics

Although the worst-case complexity is double exponential, Fourier-Motzkin Elimination can be quite efficient in practice

Heuristics can limit the number of inequalities in practice

- ▶ Remove in each step the least occurring variable
- ▶ Only make elimination steps that keep the constants at 1

Implemented in various automated reasoning tools

- ▶ Some SAT solvers using FME preprocessing
- ▶ Also used in some SMT solvers

Fourier-Motzkin in Lean

```
-- first, eliminate all the equations
partial def elimEqConstraints : List LinearExp → List LinearExp → Option (List LinearExp)
| []      , gts => some gts
| eq :: eqs, gts => Id.run do
  let (x, a) := eq.getTerm
  let u       := eq.erase x
  let newEqs := substituteEqConstraints a x u eqs
  match substituteGtConstraints a x u gts with
  | some newGts => elimEqConstraints newEqs newGts
  | none         => none

-- then eliminate variables from the `e > 0` constraints
partial def elimGtConstraints : List LinearExp → Bool
| []      => true
| gt :: gts => Id.run do
  let x := gt.getTerm.1
  match elimVarGtConstraints x (gt :: gts) with
  | some gts => elimGtConstraints gts
  | none      => false

def FourierMotzkin (eqs gts : List LinearExp) : Bool :=
match elimEqConstraints eqs gts with
| some gts => elimGtConstraints gts
| none      => false
```

Linear Real Arithmetic

Fourier-Motzkin

A Full Decision Procedure

Other Theories

Clean Constraints

First, consider a problem in linear arithmetic

- ▶ Variables (in the reals) are labeled x_1, x_2, \dots, x_n
- ▶ Constraints are labeled c_1, c_2, \dots, c_m
- ▶ $\exists x_1, x_2, \dots, x_n. c_1 \wedge c_2 \wedge \dots \wedge c_m$

And consider the structure $(\mathbb{R}, 0, 1, +, <)$.

- ▶ Express $3x$ by $x + x + x$
- ▶ Express $x - (1/2)y + (4/3)z < 0$ by $6x + 8z < 3y$

We apply Fourier-Motzkin if all constraints are $s < t$ or $s = t$

- ▶ How to deal with constraints of a different form?

Arbitrary Constraints

First, turn the formula in **negation normal form**

- ▶ replace $\neg(s < t)$ by $(t < s) \vee (s = t)$
- ▶ (in practice, it is better to include \leq in the language)
- ▶ replace $s \neq t$ by $(s < t) \vee (t < s)$

Second, turn the NNF in **disjunctive normal form**

- ▶ Solve each cube using Fourier-Motzkin elimination.
- ▶ Satisfiable if one of the cubes is satisfiable

$(\mathbb{Q}, 0, 1, +, <, \leq)$ is Decidable

Note that in all reasoning so far, we only required that we can always find a number in between two other numbers

- ▶ This does not only hold for \mathbb{R} , but also for \mathbb{Q}

The same procedure decides questions in $(\mathbb{Q}, 0, 1, +, <, \leq)$

Linear Real Arithmetic

Fourier-Motzkin

A Full Decision Procedure

Other Theories

Presburger Arithmetic

What happens if we replace the real numbers with integers?

Presburger Arithmetic

What happens if we replace the real numbers with integers?

$(\mathbb{Z}, 0, 1, +, <)$, or Presburger arithmetic, is also decidable

- ▶ First proven by Presburger in 1926
- ▶ Also known as [linear integer arithmetic](#)
- ▶ Integers are discrete: no number between x and $x + 1$

Presburger Arithmetic

What happens if we replace the real numbers with integers?

$(\mathbb{Z}, 0, 1, +, <)$, or Presburger arithmetic, is also decidable

- ▶ First proven by Presburger in 1926
- ▶ Also known as [linear integer arithmetic](#)
- ▶ Integers are discrete: no number between x and $x + 1$

The decision procedure is more complicated

- ▶ SMT solvers have an efficient algorithm
 - ▶ for the quantifier-free fragment

$(\mathbb{R}, 0, 1, +, \times, <)$ is Decidable

What about adding multiplication to the language?

- ▶ Still decidable
- ▶ Extending linear arithmetic with $p = 0$ and $p < 0$ for arbitrary polynomials p
- ▶ Known as **Real closed fields**
- ▶ Decidability proved by Alfred Tarski before World War II, but only published in 1948

$(\mathbb{Z}, 0, 1, +, \times)$ is Undecidable

Is $(x + y = z) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

$(\mathbb{Z}, 0, 1, +, \times)$ is Undecidable

Is $(x + y = z) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Trivial: $x = 1, y = 2, z = 3$

$(\mathbb{Z}, 0, 1, +, \times)$ is Undecidable

Is $(x + y = z) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Trivial: $x = 1, y = 2, z = 3$

Is $(x^2 + y^2 = z^2) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

$(\mathbb{Z}, 0, 1, +, \times)$ is Undecidable

Is $(x + y = z) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Trivial: $x = 1, y = 2, z = 3$

Is $(x^2 + y^2 = z^2) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Easy (Pythagorean triple): $x = 3, y = 4, z = 5$

$(\mathbb{Z}, 0, 1, +, \times)$ is Undecidable

Is $(x + y = z) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Trivial: $x = 1, y = 2, z = 3$

Is $(x^2 + y^2 = z^2) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Easy (Pythagorean triple): $x = 3, y = 4, z = 5$

Is $(x^4 + y^4 = z^4) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

$(\mathbb{Z}, 0, 1, +, \times)$ is Undecidable

Is $(x + y = z) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Trivial: $x = 1, y = 2, z = 3$

Is $(x^2 + y^2 = z^2) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Easy (Pythagorean triple): $x = 3, y = 4, z = 5$

Is $(x^4 + y^4 = z^4) \wedge (x \neq 0) \wedge (y \neq 0)$ satisfiable?

► Non-trivial, unsatisfiable