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Tseitin: Introduction

Recall: converting a propositional formula A into CNF can
result in an exponential blowup. How to avoid that?
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Tseitin: Introduction

Recall: converting a propositional formula A into CNF can
result in an exponential blowup. How to avoid that?

Idea: focus on converting A into an equisatisfiable CNF
formula A’ (instead of logical equivalence)

How: add definitions and replace parts of the formula
(can be seen as the reverse of substitution)
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Tseitin: Small Example

Consider the formula T =pV (g A1)
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Tseitin: Small Example

Consider the formula T' =pV (g A1)
We can add the definition d « (g A1)

Replacing (g /A r) by d results in CNF p\/ d
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Tseitin: Small Example

Consider the formula T' =pV (g A1)

We can add the definition d « (g A1)

Replacing (g /A r) by d results in CNF p\/ d

The clauses representing the definition are:
(=dNV g) N\ (=dNVr) AN (dV =gV —r)

An equisatisfiable formula of T in CNF is:
(pVA)N(=dN g) N\ (—dNVr) AN (dV —qV —r)

Satisfying the resulting formula satisfies I' on original variables
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Tseitin: A Linear-Size Transformation

Why is the Tseitin transformation interesting?
» Each connective can be replaced by a new definition
» At most a linear number of definitions
» Definitions can be easily converted into clauses
» Easily obtain a satisfying assignment for original formula
» Resulting in an efficient transformation into CNF
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Tseitin: Implementation and Optimizations

Implementation:
» Convert the formula first to NNF
» Generate the definitions from left to right
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Tseitin: Implementation and Optimizations

Implementation:
» Convert the formula first to NNF
» Generate the definitions from left to right

Optimizations:
» Reuse definitions when possible
» Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. pV (g/A\—r)V —s
» Mostly one direction of definition is required
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Tseitin: Definitions into Clauses

It is easy to turn a definition d <> DEF(py, ..., py) into clauses

Example

def Fd Fﬁd
AND(p1,...,pn) @V —=p1V---NV=p,) (—dVp1),...,(—dV py)
OR(p1,...,pn) AV =p1),...,(dV —py) (AN p1 V-V py)
ITE(c,t,f) (dV—=cV—t),(dVcV—f) (—dV—cVt),(—dVcVF)
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Tseitin: Larger Example without Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(pPAGA=)V (rA(=pV —))) A(=sV (pAt))

Which results in the following definitions:
> dy = p/\g

Logic and Mechanized Reasoning

9/ 27



Tseitin: Larger Example without Optimization
Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(PAGNA=T)V (rA(mpV =))) A(=sV (pAL))

Which results in the following definitions:
> dy = p/\g
» di — do/\—r

Logic and Mechanized Reasoning

9/ 27



Tseitin: Larger Example without Optimization
Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(PAGNA=T)V (rA(mpV =))) A(=sV (pAL))

Which results in the following definitions:
> dy = p/\g
» di — do/\—r
» dy = —pV—q

Logic and Mechanized Reasoning

9/ 27



Tseitin: Larger Example without Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(pPAGA=)V (rA(=pV —))) A(=sV (pAt))

Which results in the following definitions:
> dy = p/\g
» di — do/\—r
» dy = —pV—q
> d3 —r/Ndp

Logic and Mechanized Reasoning

9/ 27



Tseitin: Larger Example without Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(pPAGA=)V (rA(=pV —))) A(=sV (pAt))

Which results in the following definitions:
> dy = p/\g
» di — do/\—r
» dy = —pV—q
> d3 —r/Ndp
» dy > dy\Vd;
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Tseitin: Larger Example without Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(pPAGA=)V (rA(=pV —))) A(=sV (pAt))

Which results in the following definitions:
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Tseitin: Larger Example without Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(pPAGA=)V (rA(=pV —))) A(=sV (pAt))

Which results in the following definitions:

> dy = p/\g

» di — do/\—r

» dy = —pV—q

> d3 —r/Ndp

» dy > dy\Vd;

> ds o p/At

» de — —s\Vds
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Tseitin: Larger Example without Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF:

(pPAGA=)V (rA(=pV —))) A(=sV (pAt))

Which results in the following definitions:
> dy = p/\g
» di — do/\—r
» dy = —pV—q
> d3 —r/Ndp
» dy > dy\Vd;
> ds o p/At
» de — —s\Vds
> dy — dy/N\dg
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Tseitin: Larger Example with Optimization

Consider the formula I' = =(pA\g < 1) A (s = (p/A\t))
Convert into NNF and interpret as CNF:

(pPAGA=) NV (rA(=pV —q))) A(=sV (p A1)

Which results in the following definitions:
> dy = p/\g
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Tseitin: Larger Example with Optimization

Consider the formula T = =(pAg & 1) A (s = (pAt))
Convert into NNF and interpret as CNF:
(pPAGNA=T)V (rA(mpV =) A(=sV (pAL))

Which results in the following definitions:
> dy = p/\g
» di —do/\—r
» dy = —pV—q
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Tseitin: Larger Example with Optimization

Consider the formula T = =(pAg & 1) A (s = (pAt))
Convert into NNF and interpret as CNF:

(pPAGA=) NV (rA(=pV —q))) A(=sV (p A1)

Which results in the following definitions:
> dy = p/\g
» di —do/\—r
» dy = —pV—q
> d3 —r/N\dy
> dy—p/At
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Tseitin: Larger Example with Optimization

Consider the formula T = =(pAg & 1) A (s = (pAt))
Convert into NNF and interpret as CNF:

(pPAGA=) NV (rA(=pV —q))) A(=sV (p A1)

Which results in the following definitions:
> dy = p/\g
» di —do/\—r
» dy = —pV—q
> d3 —r/N\dy
> dy—p/At

Final result: (d1\Vd3) /\ (—s\V/ dy) plus definition clauses
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Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example
Recall the formula T =pV (g A1)
The Tseitin transformation resulted in the CNF:

(pVA)N(=dN g) N\ (—dVr) AN (dV —qV —r)

Which clause is redundant (not required for equisatisfiability)?
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Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example
Recall the formula T =pV (g A1)
The Tseitin transformation resulted in the CNF:

(pVA)N(=dN g) N\ (—dVr) AN (dV —qV —r)

Which clause is redundant (not required for equisatisfiability)?

Removing (dV =gV —r) reduces d < g/\rtod — g/\r

When starting with NNF, we only need d — DEF
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Tseitin: Bringing it all Together
Consider the formula I' = =(pAg & 1) A (s = (p/At))
Convert into NNF and interpret as CNF:
(pAGNA=T)V (r A (mpV =) N (s V (pAt))
The Tseitin transformation results in the following clauses:
(dg\/dl) AN (d4\/_‘S) AN (_‘do \/p) YA\ (_'d()\/q) AN (_'p\/ﬁq\/do) AN
(=d1 Vdy) A\ (—dy NV =r) N\ (—do V1N dy) N\ (=da V—=pV —gq) N\

(pVd2) N(gV do) N (=dsV 1) N (—d3V da) N
(—1\/ —dy V d3) A (~dg V p) A (—dg V) A (—p N~V dy)

Plaisted-Greenbaum removed the colored ones (d; « DEF).
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Unit Propagation and Resolution
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Unit Propagation: Introduction

Unit propagation (UP) is the most important SAT solving
simplification technique:

» A clause is unit if it has only one literal

» The only way to satisfy it is assigning the literal to T
» Removing falsified literals can produce unit clauses

» Satisfying unit clauses until fixpoint can be expensive
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Unit Propagation: Partial Assignments

Evaluation of clauses and formulas can be generalized to
partial assignments:

» Only some variables are assigned to T, L

» For a clause C, [C]l+ removes literals falsified by T from C
» [C]: = T if T satisfies a literal in C

» For a formula T, [I']¢ replaces all clauses C € T by [C] ¢
» Clauses satisfied by T are removed from [I'];

Partial assignments are very important in SAT solving

Logic and Mechanized Reasoning 15 /27



Unit Propagation: Extending the Assignment
Unit propagation makes unit clauses true until fixpoint

Given an assignment T and a formula I', unit propagation
extends T by assigning all unit clauses in [I']¢ to T.
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Unit Propagation: Extending the Assignment

Unit propagation makes unit clauses true until fixpoint

Given an assignment T and a formula I', unit propagation
extends T by assigning all unit clauses in [I']¢ to T.

Two possible fixpoints (termination)
1. [T]+ contains a falsified clause (L)
2. [T']+ contains no more unit clauses

Unit propagation can consume 90% of solver runtime
» Data-structures are optimized for unit propagation

» Unit propagation is hard to parallelize
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Unit Propagation: Example

l—‘uni‘c = (_'pl \/—'PS \/P4) N\ (_'Pl \/_'PZ \/P3) N
(—p1Vp2) N(p1Vp3Vps) A (—p1 VsV —ps) A
(11 V=ps) A (paV p5V pe) N\ (p5 NV —pe)
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Unit Propagation: Example

Tunit == (7p1 V=p3 V) A(Tp1V —p2 Vps) A
(1 V) A(p1VpsVps) A (—p1 VsV —ps) A
(11 V=ps) A (paV p5V pe) /N (ps V —ps)

T={p =T}
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Unit Propagation: Example

Tunit == ("1 V=p3 V) A(Tp1V —p2 Vp3) A
(—p1Vp2) N(p1Vp3Vps) A (p1 Vpa NV —ps) A
(P1V —p6) N (paV ps NV ps) N (ps V —pe)

T:{plzT/ PZZT}
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Unit Propagation: Example

it := (_'pl \/—'P3 \/P4) AN (_'pl \/_'PZ \/p3) N
(=1 V) A (p1Vp3Vps) N (—p1 VsV —ps) A
(11 V=ps) A (paV p5V pe) /N (ps V —ps)

T={p=T,p=T, ps=T}
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Unit Propagation: Example

Tunit := (Tp1 V=p3 Vo) A(=p1V —p2 Vp3) A
(V) A(p1VpsVps) N (—p1 VpsV —ps) A
(p1V =p6) N (paV ps NV ps) N (ps V —pe)

T={pr=T,p=T,p=T,pp=T}
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Unit Propagation: Proposition

Proposition
Unit propagation does not change the number of satisfying
assignments

True or false?
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Unit Propagation: Proposition

Proposition
Unit propagation does not change the number of satisfying
assignments

True or false?

Proof.

True. Let formula I' have a unit clause p. All satisfying
assignments of I' must assign p to T. Hence there cannot be
a satisfying assignment with p assigned to _L. O]
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Unit Propagation: Resolution

The resolution rule allows for a formula containing the clauses
CVpand —=pV D to be extended by the clause CV D

CVp —pVD
CvD
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Unit Propagation: Resolution

The resolution rule allows for a formula containing the clauses
CVpand —=pV D to be extended by the clause CV D

CVp —pVD
CvD

Resolution proofs:
» A resolution proof is a sequence Cq, ..., C,, of clauses.

» Every clause is either contained in the formula or derived
from two earlier clauses via the resolution rule.

» C,, is the empty clause (containing no literals): L.

» There exists a resolution proof for every unsatisfiable
formula.
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Unit Propagation: Resolution Proofs

Example
Ii=(pVgVr)AEr) APV —g) N (=sVq)A(s)

Resolution proof: (—pV —qV'r), (—r), (—=pV —q), (pV —q),
(—q), (7sVq), (7). (s), L

—pV—qg\Vr —r
—pVq pv—q
—sV g —-q
=3 S
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Unit Propagation: Relation to Resolution

Let I' be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
I := (pVgV-r)AN(pV—gVr)N@GVrV-s) A
(=g =rVs)AN(pVrVs) N\ (=pV-rV-s)
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Unit Propagation: Relation to Resolution

Let I' be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
I:= (pVgV-r)AN(pV—qgVr)AN@GVrV-s) A
(—gV=rVs)N(pVrVs)N\(—pV-rV-s)

clause (pVq)

units  —p/A—q
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Unit Propagation: Relation to Resolution

Let I' be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
I:=(pVgV-r)AN(pV—gVr)N@GVrV-s) A
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Unit Propagation: Relation to Resolution

Let I' be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
I:=(pVgV-r)AN(pV—gVr)N@GVrV-s) A
(mgV =rVs)AN(pVrVs)N\(—pV-rV-s)
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Unit Propagation: Relation to Resolution

Let I' be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
I:=(pVgV-r)AN(pV—gVr)N@GVrV-s) A
(mgV =rVs)AN(pVrVs)N\(—pV-rV-s)

clause (pVgq) (pVgV-r) (gVrV-s) (pVrVs)
units  —p/A—q —-r —s L

(pVrVs) (gVrV —s)
(PVqVr) (pVqV-r)
(pVa)
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Pure Literals and Autarkies
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Autarkies: Pure Literal Rule

A literal £ is pure in a CNF formula T if the literal —=¢ does not
occur in T
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Autarkies: Pure Literal Rule

A literal £ is pure in a CNF formula T if the literal —=¢ does not
occur in T

The pure literal rule simplifies a formula by making pure
literals true.
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Autarkies: Pure Literal Rule

A literal £ is pure in a CNF formula T if the literal —=¢ does not
occur in T

The pure literal rule simplifies a formula by making pure
literals true.

Example

Consider the formula T = (pV —q) A (gV —r) A (=g V1),
The literal p is pure in I'.

Let T(p) = T. The pure literal rule will reduce T to [T].
In other words, it will remove the first clause.
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Autarkies: Proposition

Proposition
Assigning a pure literal to T does not change the number of

satisfying assignments

True or false?

Logic and Mechanized Reasoning 24 / 27



Autarkies: Proposition

Proposition
Assigning a pure literal to T does not change the number of
satisfying assignments

True or false?

Proof.

False. A counterexample:
I'=(pV—g)N\(qV—r)/\(—qVr) has three satisfying
assignments, while [T'] with T(p) = T has only two. O
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Autarkies: Definition

An autarky is a partial assignment that satisfies all clauses
that are “touched” by the assignment:

» a pure literal is an autarky
P a satisfying assignment is an autarky

P “interesting” autarkies are between pure literals and
satisfying assignments

» removing clauses that are satisfied by an autarky results in
an equisatisfiable formula

» observe that for an autarky T it holds that [I']; C T
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Autarkies: Example

Cunit == (Tp1 vV =p3 V) A(—p1V —p2 Vps) A
(=1 Vp2) NP1V p3Vpe) A(—p1Vpa NV —ps) A
(11 VvV =ps) A\ (paV p5V ps) N\ (p5V —ps)

Logic and Mechanized Reasoning 26 / 27



Autarkies: Example

Lunit == (Tp1 V=p3 V) A(Tp1V —p2 Vps) A
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Autarkies: Example

Cunit == (Tp1 V=p3Vpg) A (Tp1V —p2 Vps) A
(V) A(p1VpsVps) N (—p1 VsV —ps) A
(p1V =ps) N (pa NV psV pe) A (ps V —pe)

T={pr=T,p=T}
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Autarkies: Example

Lunit == (Tp1 vV p3 V) A(Tp1V —p2 Vps) A
(=P Vp2) NP1V p3Vps) A(—p1VpaV —ps) A
(p1V —pe) N\ (pa NV ps NV ps) /\ (ps NV —ps)

T={p=T,p=1T,p3=T}
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Autarkies: Example

Tunit := (7p1Vp3 Vpa) A(—p1 vV —p2 Vps) A
(P V) A(p1Vp3Vps) N (—p1 VsV —ps) A
(p1V —pe) N (paV ps NV ps) /N (ps NV —ps)

T={p=T,p2=T,p3=T,ps=T}
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Autarkies: Example

Cunit == (Tp1 vV p3 V) A(Tp1V —p2 Vps) A
(=P V) A(p1VpsVps) N (—p1 VsV —ps) A
(p1V =ps) N (paV psV pe) A (ps NV —pe)

T={p=T,p2=T,p3=T,ps=T}

The extended 7 is an autarky for I'; ;i
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Autarkies: Theorem

Theorem (Monien and Speckenmeyer, 1985)

Let T be an autarky for formula T. Then T and [T] are
equisatistiable.

Proof.

If T is satisfiable, then since [I']+ C T', we know that [I[']; is
satisfiable as well.

Conversely, suppose [I']; is satisfiable and let 7y be an
assignment that satisfies [[']:. We can assume that 7y only
assigns values to the variables of [I']+, which are distinct from
the variables of T. Then the assignment T, which is the union
of T and 17 satisfies I'. n
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