
Logic and Mechanized Reasoning
Basic SAT Techniques

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 27



Tseitin Transformation

Unit Propagation and Resolution

Pure Literals and Autarkies

Logic and Mechanized Reasoning 2 / 27



Tseitin Transformation

Unit Propagation and Resolution

Pure Literals and Autarkies

Logic and Mechanized Reasoning 3 / 27



Tseitin: Introduction

Recall: converting a propositional formula A into CNF can
result in an exponential blowup. How to avoid that?

Idea: focus on converting A into an equisatisfiable CNF
formula A ′ (instead of logical equivalence)

How: add definitions and replace parts of the formula
(can be seen as the reverse of substitution)

Logic and Mechanized Reasoning 4 / 27



Tseitin: Introduction

Recall: converting a propositional formula A into CNF can
result in an exponential blowup. How to avoid that?

Idea: focus on converting A into an equisatisfiable CNF
formula A ′ (instead of logical equivalence)

How: add definitions and replace parts of the formula
(can be seen as the reverse of substitution)

Logic and Mechanized Reasoning 4 / 27



Tseitin: Introduction

Recall: converting a propositional formula A into CNF can
result in an exponential blowup. How to avoid that?

Idea: focus on converting A into an equisatisfiable CNF
formula A ′ (instead of logical equivalence)

How: add definitions and replace parts of the formula
(can be seen as the reverse of substitution)

Logic and Mechanized Reasoning 4 / 27



Tseitin: Small Example

Consider the formula Γ = p ∨ (q ∧ r)

We can add the definition d↔ (q ∧ r)

Replacing (q ∧ r) by d results in CNF p ∨ d

The clauses representing the definition are:

(¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

An equisatisfiable formula of Γ in CNF is:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Satisfying the resulting formula satisfies Γ on original variables

Logic and Mechanized Reasoning 5 / 27



Tseitin: Small Example

Consider the formula Γ = p ∨ (q ∧ r)

We can add the definition d↔ (q ∧ r)

Replacing (q ∧ r) by d results in CNF p ∨ d

The clauses representing the definition are:

(¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

An equisatisfiable formula of Γ in CNF is:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Satisfying the resulting formula satisfies Γ on original variables

Logic and Mechanized Reasoning 5 / 27



Tseitin: Small Example

Consider the formula Γ = p ∨ (q ∧ r)

We can add the definition d↔ (q ∧ r)

Replacing (q ∧ r) by d results in CNF p ∨ d

The clauses representing the definition are:

(¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

An equisatisfiable formula of Γ in CNF is:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Satisfying the resulting formula satisfies Γ on original variables

Logic and Mechanized Reasoning 5 / 27



Tseitin: Small Example

Consider the formula Γ = p ∨ (q ∧ r)

We can add the definition d↔ (q ∧ r)

Replacing (q ∧ r) by d results in CNF p ∨ d

The clauses representing the definition are:

(¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

An equisatisfiable formula of Γ in CNF is:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Satisfying the resulting formula satisfies Γ on original variables

Logic and Mechanized Reasoning 5 / 27



Tseitin: A Linear-Size Transformation

Why is the Tseitin transformation interesting?

▶ Each connective can be replaced by a new definition

▶ At most a linear number of definitions

▶ Definitions can be easily converted into clauses

▶ Easily obtain a satisfying assignment for original formula

▶ Resulting in an efficient transformation into CNF

Logic and Mechanized Reasoning 6 / 27



Tseitin: Implementation and Optimizations

Implementation:

▶ Convert the formula first to NNF

▶ Generate the definitions from left to right

Optimizations:

▶ Reuse definitions when possible

▶ Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. p ∨ (q ∧¬r)∨¬s

▶ Mostly one direction of definition is required

Logic and Mechanized Reasoning 7 / 27



Tseitin: Implementation and Optimizations

Implementation:

▶ Convert the formula first to NNF

▶ Generate the definitions from left to right

Optimizations:

▶ Reuse definitions when possible

▶ Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. p ∨ (q ∧¬r)∨¬s

▶ Mostly one direction of definition is required

Logic and Mechanized Reasoning 7 / 27



Tseitin: Definitions into Clauses

It is easy to turn a definition d↔ DEF(p1, . . . , pn) into clauses

Example

def Γd Γ¬d
AND(p1, . . . , pn) (d ∨¬p1 ∨ · · ·∨¬pn) (¬d ∨ p1), . . . , (¬d ∨ pn)
OR(p1, . . . , pn) (d ∨¬p1), . . . , (d ∨¬pn) (¬d ∨ p1 ∨ · · ·∨ pn)

ITE(c, t, f ) (d ∨¬c ∨¬t), (d ∨ c ∨¬f ) (¬d ∨¬c ∨ t), (¬d ∨ c ∨ f )

Logic and Mechanized Reasoning 8 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q

▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r

▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q

▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2

▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3

▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t

▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5

▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ d1 ∨ d3
▶ d5 ↔ p ∧ t
▶ d6 ↔ ¬s ∨ d5
▶ d7 ↔ d4 ∧ d6

Logic and Mechanized Reasoning 9 / 27



Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q

▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses

Logic and Mechanized Reasoning 10 / 27



Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r

▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses

Logic and Mechanized Reasoning 10 / 27



Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q

▶ d3 ↔ r ∧ d2
▶ d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses

Logic and Mechanized Reasoning 10 / 27



Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2

▶ d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses

Logic and Mechanized Reasoning 10 / 27



Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses

Logic and Mechanized Reasoning 10 / 27



Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

▶ d0 ↔ p ∧ q
▶ d1 ↔ d0 ∧¬r
▶ d2 ↔ ¬p ∨¬q
▶ d3 ↔ r ∧ d2
▶ d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses

Logic and Mechanized Reasoning 10 / 27



Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example

Recall the formula Γ = p ∨ (q ∧ r)
The Tseitin transformation resulted in the CNF:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Which clause is redundant (not required for equisatisfiability)?

Removing (d ∨¬q ∨¬r) reduces d↔ q ∧ r to d→ q ∧ r

When starting with NNF, we only need d→ DEF

Logic and Mechanized Reasoning 11 / 27



Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example

Recall the formula Γ = p ∨ (q ∧ r)
The Tseitin transformation resulted in the CNF:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Which clause is redundant (not required for equisatisfiability)?

Removing (d ∨¬q ∨¬r) reduces d↔ q ∧ r to d→ q ∧ r

When starting with NNF, we only need d→ DEF

Logic and Mechanized Reasoning 11 / 27



Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example

Recall the formula Γ = p ∨ (q ∧ r)
The Tseitin transformation resulted in the CNF:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Which clause is redundant (not required for equisatisfiability)?

Removing (d ∨¬q ∨¬r) reduces d↔ q ∧ r to d→ q ∧ r

When starting with NNF, we only need d→ DEF

Logic and Mechanized Reasoning 11 / 27



Tseitin: Bringing it all Together

Consider the formula Γ = ¬(p ∧ q↔ r)∧ (s→ (p ∧ t))

Convert into NNF and interpret as CNF:

((p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))∧ (¬s ∨ (p ∧ t))

The Tseitin transformation results in the following clauses:

(d3 ∨d1)∧ (d4 ∨¬s)∧ (¬d0 ∨p)∧ (¬d0 ∨ q)∧ (¬p∨¬q∨d0)∧

(¬d1 ∨d0)∧ (¬d1 ∨¬r)∧ (¬d0 ∨ r∨d1)∧ (¬d2 ∨¬p∨¬q)∧

(p ∨ d2)∧ (q ∨ d2)∧ (¬d3 ∨ r)∧ (¬d3 ∨ d2) ∧

(¬r ∨¬d2 ∨ d3)∧ (¬d4 ∨ p)∧ (¬d4 ∨ t)∧ (¬p ∨¬t ∨ d4)

Plaisted-Greenbaum removed the colored ones (di ← DEF).

Logic and Mechanized Reasoning 12 / 27



Tseitin Transformation

Unit Propagation and Resolution

Pure Literals and Autarkies

Logic and Mechanized Reasoning 13 / 27



Unit Propagation: Introduction

Unit propagation (UP) is the most important SAT solving
simplification technique:

▶ A clause is unit if it has only one literal

▶ The only way to satisfy it is assigning the literal to ⊤
▶ Removing falsified literals can produce unit clauses

▶ Satisfying unit clauses until fixpoint can be expensive

Logic and Mechanized Reasoning 14 / 27



Unit Propagation: Partial Assignments

Evaluation of clauses and formulas can be generalized to
partial assignments:

▶ Only some variables are assigned to ⊤, ⊥
▶ For a clause C, [[C]]τ removes literals falsified by τ from C

▶ [[C]]τ = ⊤ if τ satisfies a literal in C
▶ For a formula Γ, [[Γ]]τ replaces all clauses C ∈ Γ by [[C]]τ

▶ Clauses satisfied by τ are removed from [[Γ]]τ

Partial assignments are very important in SAT solving

Logic and Mechanized Reasoning 15 / 27



Unit Propagation: Extending the Assignment

Unit propagation makes unit clauses true until fixpoint

Given an assignment τ and a formula Γ, unit propagation
extends τ by assigning all unit clauses in [[Γ]]τ to ⊤.

Two possible fixpoints (termination)

1. [[Γ]]τ contains a falsified clause (⊥)

2. [[Γ]]τ contains no more unit clauses

Unit propagation can consume 90% of solver runtime

▶ Data-structures are optimized for unit propagation

▶ Unit propagation is hard to parallelize

Logic and Mechanized Reasoning 16 / 27



Unit Propagation: Extending the Assignment

Unit propagation makes unit clauses true until fixpoint

Given an assignment τ and a formula Γ, unit propagation
extends τ by assigning all unit clauses in [[Γ]]τ to ⊤.

Two possible fixpoints (termination)

1. [[Γ]]τ contains a falsified clause (⊥)

2. [[Γ]]τ contains no more unit clauses

Unit propagation can consume 90% of solver runtime

▶ Data-structures are optimized for unit propagation

▶ Unit propagation is hard to parallelize

Logic and Mechanized Reasoning 16 / 27



Unit Propagation: Extending the Assignment

Unit propagation makes unit clauses true until fixpoint

Given an assignment τ and a formula Γ, unit propagation
extends τ by assigning all unit clauses in [[Γ]]τ to ⊤.

Two possible fixpoints (termination)

1. [[Γ]]τ contains a falsified clause (⊥)

2. [[Γ]]τ contains no more unit clauses

Unit propagation can consume 90% of solver runtime

▶ Data-structures are optimized for unit propagation

▶ Unit propagation is hard to parallelize

Logic and Mechanized Reasoning 16 / 27



Unit Propagation: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤

Logic and Mechanized Reasoning 17 / 27



Unit Propagation: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤}

Logic and Mechanized Reasoning 17 / 27



Unit Propagation: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤}

Logic and Mechanized Reasoning 17 / 27



Unit Propagation: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤, p3 = ⊤}

Logic and Mechanized Reasoning 17 / 27



Unit Propagation: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

Logic and Mechanized Reasoning 17 / 27



Unit Propagation: Proposition

Proposition

Unit propagation does not change the number of satisfying
assignments

True or false?

Proof.
True. Let formula Γ have a unit clause p. All satisfying
assignments of Γ must assign p to ⊤. Hence there cannot be
a satisfying assignment with p assigned to ⊥.

Logic and Mechanized Reasoning 18 / 27



Unit Propagation: Proposition

Proposition

Unit propagation does not change the number of satisfying
assignments

True or false?

Proof.
True. Let formula Γ have a unit clause p. All satisfying
assignments of Γ must assign p to ⊤. Hence there cannot be
a satisfying assignment with p assigned to ⊥.

Logic and Mechanized Reasoning 18 / 27



Unit Propagation: Resolution

The resolution rule allows for a formula containing the clauses
C ∨ p and ¬p ∨ D to be extended by the clause C ∨ D

C ∨ p ¬p ∨ D
C ∨ D

Resolution proofs:

▶ A resolution proof is a sequence C1, . . . , Cm of clauses.

▶ Every clause is either contained in the formula or derived
from two earlier clauses via the resolution rule.

▶ Cm is the empty clause (containing no literals): ⊥.

▶ There exists a resolution proof for every unsatisfiable
formula.

Logic and Mechanized Reasoning 19 / 27



Unit Propagation: Resolution

The resolution rule allows for a formula containing the clauses
C ∨ p and ¬p ∨ D to be extended by the clause C ∨ D

C ∨ p ¬p ∨ D
C ∨ D

Resolution proofs:

▶ A resolution proof is a sequence C1, . . . , Cm of clauses.

▶ Every clause is either contained in the formula or derived
from two earlier clauses via the resolution rule.

▶ Cm is the empty clause (containing no literals): ⊥.

▶ There exists a resolution proof for every unsatisfiable
formula.

Logic and Mechanized Reasoning 19 / 27



Unit Propagation: Resolution Proofs

Example

Γ := (¬p ∨¬q ∨ r)∧ (¬r)∧ (p ∨¬q)∧ (¬s ∨ q)∧ (s)

Resolution proof: (¬p ∨¬q ∨ r), (¬r), (¬p ∨¬q), (p ∨¬q),
(¬q), (¬s ∨ q), (¬s), (s), ⊥

¬s ∨ q

¬p ∨¬q ∨ r ¬r
¬p ∨¬q p ∨¬q

¬q
¬s s

⊥

Logic and Mechanized Reasoning 20 / 27



Unit Propagation: Relation to Resolution

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ := (p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧ (q ∨ r ∨¬s) ∧

(¬q ∨¬r ∨ s)∧ (p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)

clause (p ∨ q)
units ¬p ∧¬q

(p ∨ r ∨ s) (q ∨ r ∨¬s)
(p ∨ q ∨ r) (p ∨ q ∨¬r)

(p ∨ q)

Logic and Mechanized Reasoning 21 / 27



Unit Propagation: Relation to Resolution

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ := (p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧ (q ∨ r ∨¬s) ∧

(¬q ∨¬r ∨ s)∧ (p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)

clause (p ∨ q)
units ¬p ∧¬q

(p ∨ r ∨ s) (q ∨ r ∨¬s)
(p ∨ q ∨ r) (p ∨ q ∨¬r)

(p ∨ q)

Logic and Mechanized Reasoning 21 / 27



Unit Propagation: Relation to Resolution

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ := (p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧ (q ∨ r ∨¬s) ∧

(¬q ∨¬r ∨ s)∧ (p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)

clause (p ∨ q) (p ∨ q ∨¬r)
units ¬p ∧¬q ¬r

(p ∨ r ∨ s) (q ∨ r ∨¬s)
(p ∨ q ∨ r) (p ∨ q ∨¬r)

(p ∨ q)

Logic and Mechanized Reasoning 21 / 27



Unit Propagation: Relation to Resolution

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ := (p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧ (q ∨ r ∨¬s) ∧

(¬q ∨¬r ∨ s)∧ (p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)

clause (p ∨ q) (p ∨ q ∨¬r) (q ∨ r ∨¬s)
units ¬p ∧¬q ¬r ¬s

(p ∨ r ∨ s) (q ∨ r ∨¬s)
(p ∨ q ∨ r) (p ∨ q ∨¬r)

(p ∨ q)

Logic and Mechanized Reasoning 21 / 27



Unit Propagation: Relation to Resolution

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ := (p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧ (q ∨ r ∨¬s) ∧

(¬q ∨¬r ∨ s)∧ (p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)

clause (p ∨ q) (p ∨ q ∨¬r) (q ∨ r ∨¬s) (p ∨ r ∨ s)
units ¬p ∧¬q ¬r ¬s ⊥

(p ∨ r ∨ s) (q ∨ r ∨¬s)
(p ∨ q ∨ r) (p ∨ q ∨¬r)

(p ∨ q)

Logic and Mechanized Reasoning 21 / 27



Unit Propagation: Relation to Resolution

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ := (p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧ (q ∨ r ∨¬s) ∧

(¬q ∨¬r ∨ s)∧ (p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)

clause (p ∨ q) (p ∨ q ∨¬r) (q ∨ r ∨¬s) (p ∨ r ∨ s)
units ¬p ∧¬q ¬r ¬s ⊥

(p ∨ r ∨ s) (q ∨ r ∨¬s)
(p ∨ q ∨ r) (p ∨ q ∨¬r)

(p ∨ q)

Logic and Mechanized Reasoning 21 / 27



Tseitin Transformation

Unit Propagation and Resolution

Pure Literals and Autarkies

Logic and Mechanized Reasoning 22 / 27



Autarkies: Pure Literal Rule

A literal ℓ is pure in a CNF formula Γ if the literal ¬ℓ does not
occur in Γ.

The pure literal rule simplifies a formula by making pure
literals true.

Example

Consider the formula Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r).
The literal p is pure in Γ.
Let τ(p) = ⊤. The pure literal rule will reduce Γ to [[Γ]]τ.
In other words, it will remove the first clause.

Logic and Mechanized Reasoning 23 / 27



Autarkies: Pure Literal Rule

A literal ℓ is pure in a CNF formula Γ if the literal ¬ℓ does not
occur in Γ.

The pure literal rule simplifies a formula by making pure
literals true.

Example

Consider the formula Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r).
The literal p is pure in Γ.
Let τ(p) = ⊤. The pure literal rule will reduce Γ to [[Γ]]τ.
In other words, it will remove the first clause.

Logic and Mechanized Reasoning 23 / 27



Autarkies: Pure Literal Rule

A literal ℓ is pure in a CNF formula Γ if the literal ¬ℓ does not
occur in Γ.

The pure literal rule simplifies a formula by making pure
literals true.

Example

Consider the formula Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r).
The literal p is pure in Γ.
Let τ(p) = ⊤. The pure literal rule will reduce Γ to [[Γ]]τ.
In other words, it will remove the first clause.

Logic and Mechanized Reasoning 23 / 27



Autarkies: Proposition

Proposition

Assigning a pure literal to ⊤ does not change the number of
satisfying assignments

True or false?

Proof.
False. A counterexample:
Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r) has three satisfying
assignments, while [[Γ]]τ with τ(p) = ⊤ has only two.

Logic and Mechanized Reasoning 24 / 27



Autarkies: Proposition

Proposition

Assigning a pure literal to ⊤ does not change the number of
satisfying assignments

True or false?

Proof.
False. A counterexample:
Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r) has three satisfying
assignments, while [[Γ]]τ with τ(p) = ⊤ has only two.

Logic and Mechanized Reasoning 24 / 27



Autarkies: Definition

An autarky is a partial assignment that satisfies all clauses
that are “touched” by the assignment:

▶ a pure literal is an autarky

▶ a satisfying assignment is an autarky

▶ “interesting” autarkies are between pure literals and
satisfying assignments

▶ removing clauses that are satisfied by an autarky results in
an equisatisfiable formula

▶ observe that for an autarky τ it holds that JΓKτ ⊆ Γ

Logic and Mechanized Reasoning 25 / 27



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤

The extended τ is an autarky for Γunit

Logic and Mechanized Reasoning 26 / 27



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤}

The extended τ is an autarky for Γunit

Logic and Mechanized Reasoning 26 / 27



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤}

The extended τ is an autarky for Γunit

Logic and Mechanized Reasoning 26 / 27



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤, p3 = ⊤}

The extended τ is an autarky for Γunit

Logic and Mechanized Reasoning 26 / 27



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

The extended τ is an autarky for Γunit

Logic and Mechanized Reasoning 26 / 27



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

The extended τ is an autarky for Γunit

Logic and Mechanized Reasoning 26 / 27



Autarkies: Theorem

Theorem (Monien and Speckenmeyer, 1985)

Let τ be an autarky for formula Γ. Then Γ and [[Γ]]τ are
equisatisfiable.

Proof.
If Γ is satisfiable, then since JΓKτ ⊆ Γ, we know that JΓKτ is
satisfiable as well.
Conversely, suppose JΓKτ is satisfiable and let τ1 be an
assignment that satisfies JΓKτ. We can assume that τ1 only
assigns values to the variables of JΓKτ, which are distinct from
the variables of τ. Then the assignment τ2 which is the union
of τ and τ1 satisfies Γ.

Logic and Mechanized Reasoning 27 / 27


	Tseitin Transformation
	Unit Propagation and Resolution
	Pure Literals and Autarkies

