

Logic and Mechanized Reasoning

DP & DPLL

Marijn J.H. Heule

Carnegie
Mellon
University

Let's First Revisit Resolution

LAMR/Examples/using_sat_solvers/resolution.lean

```
def example0 : Proof := #[  
  .hyp clause!{-p -q r}, -- 0  
  .hyp clause!{-r}, -- 1  
  .hyp clause!{p -q}, -- 2  
  .hyp clause!{-s q}, -- 3  
  .hyp clause!{s}, -- 4  
  .res "r" 0 1, -- 5 -p -q  
  .res "s" 4 3, -- 6 q  
  .res "q" 6 2, -- 7 p  
  .res "p" 7 5, -- 8 -q  
  .res "q" 6 8 -- 9 ⊥  
]
```

DP Resolution

DPLL

Martin Davis (March 8, 1928 – January 1, 2023)

Martin Davis & Hilary Putnam (1960)

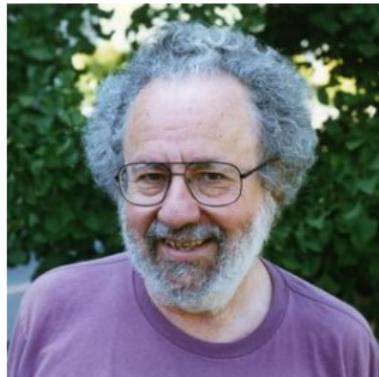
A Computing Procedure for Quantification Theory.

Journal of the ACM 7(3): 201-215

Martin Davis, George Logemann, & Donald W. Loveland (1962)

A machine program for theorem-proving.

Communications of the ACM 5(7): 394-397



DP Resolution

DPLL

Definition (Resolution Rule)

$$\frac{C \vee x \quad \neg x \vee D}{C \vee D}$$

Resolution on clause sets Γ_x and $\Gamma_{\neg x}$ (denoted by $\Gamma_x \bowtie_x \Gamma_{\neg x}$) generates all non-tautological resolvents of $C \in \Gamma_x$ and $D \in \Gamma_{\neg x}$.

Definition (Resolution Rule)

$$\frac{C \vee x \quad \neg x \vee D}{C \vee D}$$

Resolution on clause sets Γ_x and $\Gamma_{\neg x}$ (denoted by $\Gamma_x \bowtie_x \Gamma_{\neg x}$) generates all non-tautological resolvents of $C \in \Gamma_x$ and $D \in \Gamma_{\neg x}$.

Definition (Variable elimination (VE))

Given a CNF formula Γ , *variable elimination* (or DP resolution) removes a variable x by replacing Γ_x and $\Gamma_{\neg x}$ by $\Gamma_x \bowtie_x \Gamma_{\neg x}$

Definition (Resolution Rule)

$$\frac{C \vee x \quad \neg x \vee D}{C \vee D}$$

Resolution on clause sets Γ_x and $\Gamma_{\neg x}$ (denoted by $\Gamma_x \bowtie_x \Gamma_{\neg x}$) generates all non-tautological resolvents of $C \in \Gamma_x$ and $D \in \Gamma_{\neg x}$.

Definition (Variable elimination (VE))

Given a CNF formula Γ , *variable elimination* (or DP resolution) removes a variable x by replacing Γ_x and $\Gamma_{\neg x}$ by $\Gamma_x \bowtie_x \Gamma_{\neg x}$

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results in either the empty formula (satisfiable) or empty clause (unsatisfiable)

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula Γ , *variable elimination* (or DP resolution) removes a variable x by replacing Γ_x and $\Gamma_{\neg x}$ by $\Gamma_x \bowtie_x \Gamma_{\neg x}$

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula Γ , *variable elimination* (or DP resolution) removes a variable x by replacing Γ_x and $\Gamma_{\neg x}$ by $\Gamma_x \bowtie_x \Gamma_{\neg x}$

Example of clause distribution

	Γ_x		
	$(x \vee c)$	$(x \vee \neg d)$	$(x \vee \neg a \vee \neg b)$
$\Gamma_{\neg x}$	$(\neg x \vee a)$	$(a \vee c)$	$(a \vee \neg a \vee \neg b)$
	$(\neg x \vee b)$	$(b \vee c)$	$(b \vee \neg a \vee \neg b)$
	$(\neg x \vee \neg e \vee f)$	$(c \vee \neg e \vee f)$	$(\neg d \vee \neg e \vee f)$
			$(\neg a \vee \neg b \vee \neg e \vee f)$

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula Γ , *variable elimination* (or DP resolution) removes a variable x by replacing Γ_x and $\Gamma_{\neg x}$ by $\Gamma_x \bowtie_x \Gamma_{\neg x}$

Example of clause distribution

		Γ_x		
		$(x \vee c)$	$(x \vee \neg d)$	$(x \vee \neg a \vee \neg b)$
$\Gamma_{\neg x}$	$\left\{ \begin{array}{l} (\neg x \vee a) \\ (\neg x \vee b) \\ (\neg x \vee \neg e \vee f) \end{array} \right\}$	$(a \vee c)$	$(a \vee \neg d)$	$(a \vee \neg a \vee \neg b)$
		$(b \vee c)$	$(b \vee \neg d)$	$(b \vee \neg a \vee \neg b)$
		$(c \vee \neg e \vee f)$	$(\neg d \vee \neg e \vee f)$	$(\neg a \vee \neg b \vee \neg e \vee f)$

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula Γ , *variable elimination* (or DP resolution) removes a variable x by replacing Γ_x and $\Gamma_{\neg x}$ by $\Gamma_x \bowtie_x \Gamma_{\neg x}$

Example of clause distribution

		Γ_x		
		$(x \vee c)$	$(x \vee \neg d)$	$(x \vee \neg a \vee \neg b)$
$\Gamma_{\neg x}$	$\left\{ \begin{array}{l} (\neg x \vee a) \\ (\neg x \vee b) \\ (\neg x \vee \neg e \vee f) \end{array} \right\}$	$(a \vee c)$	$(a \vee \neg d)$	$(a \vee \neg a \vee \neg b)$
		$(b \vee c)$	$(b \vee \neg d)$	$(b \vee \neg a \vee \neg b)$
		$(c \vee \neg e \vee f)$	$(\neg d \vee \neg e \vee f)$	$(\neg a \vee \neg b \vee \neg e \vee f)$

In the example: $|\Gamma_x \bowtie \Gamma_{\neg x}| > |\Gamma_x| + |\Gamma_{\neg x}|$

Exponential growth of clauses in general

DP Resolution and Pure Literals

Proposition

Given a CNF formula Γ with pure literal p , the effect of applying the pure literal rule on p is the same as the effect of applying DP resolution on p .

True or false?

DP Resolution and Pure Literals

Proposition

Given a CNF formula Γ with pure literal p , the effect of applying the pure literal rule on p is the same as the effect of applying DP resolution on p .

True or false?

Proof.

True. The pure literal rule assign p to true, which has the effect that all clauses containing p are removed. Applying DP resolution on p also removes all clauses containing literal p , because $\Gamma_p \bowtie \Gamma_{\neg p}$ is empty. □

VE by substitution [EenBiere07]

General idea

Detect definitions $x \leftrightarrow \text{DEF}(p_1, \dots, p_n)$ in the formula and use them to reduce the number of added clauses

VE by substitution [EenBiere07]

General idea

Detect definitions $x \leftrightarrow \text{DEF}(p_1, \dots, p_n)$ in the formula and use them to reduce the number of added clauses

Possible gates

definition	D_x	$D_{\neg x}$
$\text{AND}(p_1, \dots, p_n)$	$(x \vee \neg p_1 \vee \dots \vee \neg p_n)$	$(\neg x \vee p_1), \dots, (\neg x \vee p_n)$
$\text{OR}(p_1, \dots, p_n)$	$(x \vee \neg p_1), \dots, (x \vee \neg p_n)$	$(\neg x \vee p_1 \vee \dots \vee p_n)$
$\text{ITE}(c, t, f)$	$(x \vee \neg c \vee \neg t), (x \vee c \vee \neg f)$	$(\neg x \vee \neg c \vee t), (\neg x \vee c \vee f)$

VE by substitution [EenBiere07]

General idea

Detect definitions $x \leftrightarrow \text{DEF}(p_1, \dots, p_n)$ in the formula and use them to reduce the number of added clauses

Possible gates

definition	D_x	$D_{\neg x}$
$\text{AND}(p_1, \dots, p_n)$	$(x \vee \neg p_1 \vee \dots \vee \neg p_n)$	$(\neg x \vee p_1), \dots, (\neg x \vee p_n)$
$\text{OR}(p_1, \dots, p_n)$	$(x \vee \neg p_1), \dots, (x \vee \neg p_n)$	$(\neg x \vee p_1 \vee \dots \vee p_n)$
$\text{ITE}(c, t, f)$	$(x \vee \neg c \vee \neg t), (x \vee c \vee \neg f)$	$(\neg x \vee \neg c \vee t), (\neg x \vee c \vee f)$

Variable elimination by substitution [EenBiere07]

Let $R_x = \Gamma_x \setminus D_x$; $R_{\neg x} = \Gamma_{\neg x} \setminus D_{\neg x}$.

Replace $\Gamma_x \wedge \Gamma_{\neg x}$ by $D_x \bowtie_x R_{\neg x} \wedge D_{\neg x} \bowtie_x R_x$.

Always less than $\Gamma_x \bowtie_x \Gamma_{\neg x}$! (if x is a definition)

VE by substitution [EenBiere'07]

Example of gate extraction: $x = \text{AND}(a, b)$

$$\begin{aligned}\Gamma_x &= (x \vee c) \wedge (x \vee \neg d) \wedge (x \vee \neg a \vee \neg b) \\ \Gamma_{\neg x} &= (\neg x \vee a) \wedge (\neg x \vee b) \wedge (\neg x \vee \neg e \vee f)\end{aligned}$$

VE by substitution [EenBiere'07]

Example of gate extraction: $x = \text{AND}(a, b)$

$$\Gamma_x = (x \vee c) \wedge (x \vee \neg d) \wedge (x \vee \neg a \vee \neg b)$$
$$\Gamma_{\neg x} = (\neg x \vee a) \wedge (\neg x \vee b) \wedge (\neg x \vee \neg e \vee f)$$

Example of substitution

	R_x			D_x		
	$(x \vee c)$		$(x \vee \neg d)$	$(x \vee \neg a \vee \neg b)$		
$D_{\neg x}$	$(\neg x \vee a)$		$(a \vee c)$	$(a \vee \neg d)$		
	$(\neg x \vee b)$		$(b \vee c)$	$(b \vee \neg d)$		
$R_{\neg x}$	$(\neg x \vee \neg e \vee f)$			$(\neg a \vee \neg b \vee \neg e \vee f)$		

VE by substitution [EenBiere'07]

Example of gate extraction: $x = \text{AND}(a, b)$

$$\begin{aligned}\Gamma_x &= (x \vee c) \wedge (x \vee \neg d) \wedge (x \vee \neg a \vee \neg b) \\ \Gamma_{\neg x} &= (\neg x \vee a) \wedge (\neg x \vee b) \wedge (\neg x \vee \neg e \vee f)\end{aligned}$$

Example of substitution

	R_x			D_x		
	$(x \vee c)$	$(x \vee \neg d)$	$(x \vee \neg a \vee \neg b)$			
$D_{\neg x}$	$(\neg x \vee a)$	$(a \vee c)$	$(a \vee \neg d)$	$(b \vee c)$	$(b \vee \neg d)$	
$R_{\neg x}$	$\{(\neg x \vee \neg e \vee f)\}$					$(\neg a \vee \neg b \vee \neg e \vee f)$

using substitution: $|\Gamma_x \bowtie \Gamma_{\neg x}| < |\Gamma_x| + |\Gamma_{\neg x}|$

DP Resolution

DPLL

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ , flip the truth values of variables until satisfying Γ .

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ , flip the truth values of variables until satisfying Γ .

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

DPLL: Introduction

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:

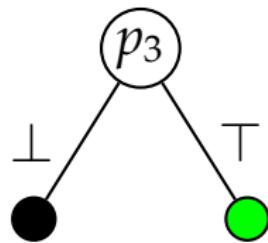
- ▶ Simplifies the formula (using unit propagation)
- ▶ Splits the formula into two subformulas
 - ▶ Variable selection heuristics (which variable to split on)
 - ▶ Direction heuristics (which subformula to explore first)

DPLL: Example

$$\Gamma_{\text{DPLL}} := (p_1 \vee p_2 \vee \neg p_3) \wedge (\neg p_1 \vee p_2 \vee p_3) \wedge \\ (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (p_1 \vee p_3) \wedge (\neg p_1 \vee \neg p_3)$$

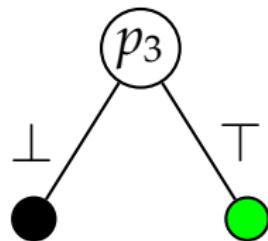
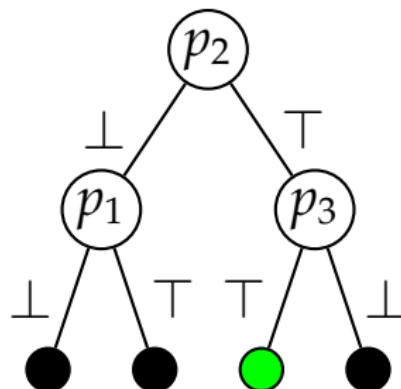
DPLL: Example

$$\Gamma_{\text{DPLL}} := (p_1 \vee p_2 \vee \neg p_3) \wedge (\neg p_1 \vee p_2 \vee p_3) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (p_1 \vee p_3) \wedge (\neg p_1 \vee \neg p_3)$$



DPLL: Example

$$\Gamma_{\text{DPLL}} := (p_1 \vee p_2 \vee \neg p_3) \wedge (\neg p_1 \vee p_2 \vee p_3) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (p_1 \vee p_3) \wedge (\neg p_1 \vee \neg p_3)$$



DPLL: Slightly Harder Example

Construct a DPLL tree for:

$$\begin{aligned} & (p \vee q \vee \neg r) \wedge (\neg p \vee \neg q \vee r) \wedge \\ & (q \vee r \vee \neg s) \wedge (\neg q \vee \neg r \vee s) \wedge \\ & (p \vee r \vee s) \wedge (\neg p \vee \neg r \vee \neg s) \wedge \\ & (\neg p \vee q \vee s) \end{aligned}$$

What is a good heuristic?

DPLL: Slightly Harder Example

Construct a DPLL tree for:

$$\begin{aligned} & (p \vee q \vee \neg r) \wedge (\neg p \vee \neg q \vee r) \wedge \\ & (q \vee r \vee \neg s) \wedge (\neg q \vee \neg r \vee s) \wedge \\ & (p \vee r \vee s) \wedge (\neg p \vee \neg r \vee \neg s) \wedge \\ & (\neg p \vee q \vee s) \end{aligned}$$

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS:
Maximum Occurrence in clauses of Minimum Size

DPLL: Pseudocode

```
DPLL (τ, Γ)
1:  $\tau' := \text{Simplify} (\tau, \Gamma)$ 
2: if  $\llbracket \Gamma \rrbracket_{\tau'} = \top$  then return satisfiable
3: if  $\llbracket \Gamma \rrbracket_{\tau'} = \perp$  then return unsatisfiable
4:  $\ell_{\text{decision}} := \text{Decide} (\tau', \Gamma)$ 
5: if  $(\text{DPLL}(\tau' \cup \ell_{\text{decision}} := \top, \Gamma) = \text{satisfiable})$  then
6:   return satisfiable
7: return DPLL ( $\tau' \cup \ell_{\text{decision}} := \perp, \Gamma$ )
```

DPLL: Demo in Lean

LAMR/Examples/using_sat_solvers/dpll.lean

```
partial def dpllSatAux (τ : PropAssignment) (Γ : CnfForm) :  
| Option (PropAssignment × CnfForm) :=  
if Γ.isEmpty then none  
else match pickSplit? Γ with  
-- No variables left to split on, we found a solution.  
| none => some (τ, Γ)  
-- Split on `x`.  
-- `<|>` is the "or else" operator, which tries one action and if that fails  
-- tries the other.  
| some x => goWithNew x τ Γ <|> goWithNew (-x) τ Γ  
  
where  
/-- Assigns `x` to true and continues out DPLL. --/  
goWithNew (x : Lit) (τ : PropAssignment) (Γ : CnfForm) :  
| Option (PropAssignment × CnfForm) :=  
let (τ', Γ') := propagateWithNew x τ Γ  
dpllSatAux τ' Γ'  
  
/-- Solve `Γ` using DPLL. Return a satisfying assignment if found, otherwise `none`.<--/  
def dpllSat (Γ : CnfForm) : Option PropAssignment :=  
let ⟨τ, Γ⟩ := propagateUnits [] Γ  
(dpllSatAux τ Γ).map fun (τ, _) => τ
```

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by **look-aheads** on variables

DPLL: Look-aheads

DPLL with selection of (effective) decision variables by **look-aheads** on variables

Look-ahead:

- ▶ Assign a variable to a truth value

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by **look-aheads** on variables

Look-ahead:

- ▶ Assign a variable to a truth value
- ▶ Simplify the formula

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by **look-aheads** on variables

Look-ahead:

- ▶ Assign a variable to a truth value
- ▶ Simplify the formula
- ▶ Measure the reduction

DPLL: Look-aheads

DPLL with selection of (effective) decision variables by **look-aheads** on variables

Look-ahead:

- ▶ Assign a variable to a truth value
- ▶ Simplify the formula
- ▶ Measure the reduction
- ▶ Learn if possible

DPLL: Look-aheads

DPLL with selection of (effective) decision variables by **look-aheads** on variables

Look-ahead:

- ▶ Assign a variable to a truth value
- ▶ Simplify the formula
- ▶ Measure the reduction
- ▶ Learn if possible
- ▶ Backtrack

DPLL: Look-ahead Reduction Heuristics

- ▶ Number of satisfied clauses

DPLL: Look-ahead Reduction Heuristics

- ▶ Number of satisfied clauses
- ▶ Number of implied variables

DPLL: Look-ahead Reduction Heuristics

- ▶ Number of satisfied clauses
- ▶ Number of implied variables
- ▶ New (reduced, not satisfied) clauses
 - ▶ Smaller clauses more important
 - ▶ Weights based on occurrences

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top\}$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top\}$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top\}$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \perp\}$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \perp, p_6 = \perp\}$$

DPLL: Learning Necessary Assignments

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \perp, p_6 = \perp, p_3 = \top\}$$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top\}$$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \textcolor{blue}{\top}\}$$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top\}$$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

Γ_{LEARN} satisfiability equivalent to $(p_5 \vee \neg p_6)$

DPLL: Look-ahead Autarky Detection

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_1 = \top, p_2 = \top, p_3 = \top, p_4 = \top\}$$

Γ_{LEARN} satisfiability equivalent to $(p_5 \vee \neg p_6)$

Could reduce computational cost on UNSAT

DPLL: Look-ahead 1-Autarky Learning

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

DPLL: Look-ahead 1-Autarky Learning

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_2 = \perp\}$$

DPLL: Look-ahead 1-Autarky Learning

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_2 = \perp, p_1 = \perp\}$$

DPLL: Look-ahead 1-Autarky Learning

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_2 = \perp, p_1 = \perp, p_6 = \perp\}$$

DPLL: Look-ahead 1-Autarky Learning

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_2 = \perp, p_1 = \perp, p_6 = \perp, p_3 = \top\}$$

DPLL: Look-ahead 1-Autarky Learning

$$\Gamma_{\text{LEARN}} := (\neg p_1 \vee \neg p_3 \vee p_4) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_2) \wedge (p_1 \vee p_3 \vee p_6) \wedge (\neg p_1 \vee p_4 \vee \neg p_5) \wedge (p_1 \vee \neg p_6) \wedge (p_4 \vee p_5 \vee p_6) \wedge (p_5 \vee \neg p_6)$$

$$\tau = \{p_2 = \perp, p_1 = \perp, p_6 = \perp, p_3 = \top\}$$

(local) 1-autarky resolvents to add to Γ_{LEARN} :
 $(\neg p_2 \vee \neg p_4)$ and $(\neg p_2 \vee \neg p_5)$

DPLL: Complexity

Can $n+1$ pigeons be in n holes (at-most-one pigeon per hole)?

$$PHP_n := \bigwedge_{1 \leq p \leq n+1} (x_{1,p} \vee \cdots \vee x_{n,p}) \wedge \bigwedge_{1 \leq h \leq n, 1 \leq p < q \leq n+1} (\bar{x}_{h,p} \vee \bar{x}_{h,q})$$

Resolution proofs of PHP_n are **exponential** [Haken 1985]

Cook constructed **polynomial-sized** ER proofs of PHP_n [1976]

- ▶ Requires auxiliary variables

DPLL: Complexity

Can $n+1$ pigeons be in n holes (at-most-one pigeon per hole)?

$$PHP_n := \bigwedge_{1 \leq p \leq n+1} (x_{1,p} \vee \cdots \vee x_{n,p}) \wedge \bigwedge_{1 \leq h \leq n, 1 \leq p < q \leq n+1} (\bar{x}_{h,p} \vee \bar{x}_{h,q})$$

Resolution proofs of PHP_n are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHP_n [1976]

- ▶ Requires auxiliary variables

Polynomial-sized conditional autarky proofs of PHP_n

- ▶ Without auxiliary variables