Logic and Mechanized Reasoning
DP & DPLL

Marijn J.H. Heule
Carnegie

Mellon
University

Logic and Mechanized Reasoning 1/23

Let's First Revisit Resolution

LAMR/Examples/using sat_solvers/resolution.lean

def example@ : Proof := #I[
.hyp clause!{-p -q r}, —-—
.hyp clause!{-r}, -
.hyp clause!{p —-q}, -
.hyp clause!{-s q}, -
.hyp clause!{s}, -
.res "r'" o0 1, -
.res "s" 4 3, -
.res "q" 6 2, -
.res "p" 7 5, -
.res "q" 6 8 -

O 0o NN B WNR S

oo auwn

Logic and Mechanized Reasoning 2/23

DP Resolution

DPLL

Logic and Mechanized Reasoning 3/23

Martin Davis (March 8, 1928 — January 1, 2023)

Martin Davis & Hilary Putnam (1960)
A Computing Procedure for Quantification Theory.
Journal of hte ACM 7(3): 201-215

Martin Davis, George Logemann, & Donald W. Loveland (1962)

A machine program for theorem-proving.
Communications of the ACM 5(7): 394-397

Logic and Mechanized Reasoning 4/23

DP Resolution

Logic and Mechanized Reasoning 5/23

DP Resolution / Variable Elimination [DavisPutnam'60]

Definition (Resolution Rule)

CVx —xV D
CVD

Resolution on clause sets I'y and I'-; (denoted by I'y <y I'—y)
generates all non-tautological resolvents of C € I'y and D € T'—,.

Logic and Mechanized Reasoning 6 /23

DP Resolution / Variable Elimination [DavisPutnam'60]

Definition (Resolution Rule)

CVx —xV D
CVD

Resolution on clause sets I'y and I'-; (denoted by I'y <y I'—y)
generates all non-tautological resolvents of C € I'y and D € T'—,.

Definition (Variable elimination (VE))

Given a CNF formula T', variable elimination (or DP resolution)
removes a variable x by replacing I'y and 'y by I'y >, I'—x

Logic and Mechanized Reasoning 6 /23

DP Resolution / Variable Elimination [DavisPutnam'60]

Definition (Resolution Rule)

CVx —xV D
CVD

Resolution on clause sets I'y and I'-; (denoted by I'y <y I'—y)
generates all non-tautological resolvents of C € I'y and D € T'—,.

Definition (Variable elimination (VE))

Given a CNF formula T', variable elimination (or DP resolution)
removes a variable x by replacing I'y and 'y by I'y >, I'—x

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

Logic and Mechanized Reasoning 6 /23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula T', variable elimination (or DP resolution)
removes a variable x by replacing I'y and 'y by I'y >, I'—x

Logic and Mechanized Reasoning 7/23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula T', variable elimination (or DP resolution)
removes a variable x by replacing I'y and 'y by I'y >, I'—x

Example of clause distribution
Iy

x V) (xV —d) (x\V—a\ —b)
(

(
(—xVa) (aVe) aV —d) (aV —aV —b)
- (—x\V'b) (bVe) (bV —d) (b —a\/ —b)

(~xV—=eVf)|l(cV=eVf)(=dV—eVf) (—aV—-bV—eVf)

Logic and Mechanized Reasoning 7/23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula T', variable elimination (or DP resolution)
removes a variable x by replacing I'y and 'y by I'y >, I'—x

Example of clause distribution
Iy

x V) (xV —d) (x\V—a\ —b)
(

(
(—xVa) (aVe) aV —d) {av —a/ —=b)
- (—xV'b) (bVe) (bV —d) (b —a by

(mxV—=eVf)|(cV—=eVf)(=dV—eVf) (—aV—-bV—eVf)

Logic and Mechanized Reasoning 7/23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula T', variable elimination (or DP resolution)
removes a variable x by replacing I'y and 'y by I'y >, I'—x

Example of clause distribution
Iy

(xV) (xV —d) (x\V—a\ —b)

(—xVa) (aVe) (aV—d) {av —a/ —=b)
- (—xV'b) (bVe) (bV —d) (b —a by
(mxV—=eVf)|(cV—=eVf)(=dV—eVf) (—aV—-bV—eVf)

In the example: |I'y o<t T'—y| > Ty + [T—y]
Exponential growth of clauses in general

Logic and Mechanized Reasoning 7/23

DP Resolution and Pure Literals

Proposition

Given a CNF formula T with pure literal p, the effect of
applying the pure literal rule on p is the same as the effect of
applying DP resolution on p.

True or false?

Logic and Mechanized Reasoning 8 /23

DP Resolution and Pure Literals

Proposition

Given a CNF formula T with pure literal p, the effect of
applying the pure literal rule on p is the same as the effect of
applying DP resolution on p.

True or false?

Proof.

True. The pure literal rule assign p to true, which has the
effect that all clauses containing p are removed. Applying DP
resolution on p also removes all clauses containing literal p,
because I', > ' is empty. n

Logic and Mechanized Reasoning 8 /23

VE by substitution [EenBiere07]

General idea
Detect definitions x <> DEF(p1, ..., py) in the formula and
use them to reduce the number of added clauses

Logic and Mechanized Reasoning 9/23

VE by substitution [EenBiere07]

General idea
Detect definitions x <> DEF(p1, ..., py) in the formula and
use them to reduce the number of added clauses

Possible gates
definition D, D—,
AND(Pl/---/pn) (x\/_‘Pl\/"'\/_‘Pn) (_'X\/pl),...,(_'x\/pn)

OR(p1,...,pn) (XN =p1),...,(xV=py) (=xVpV---Vpy)
ITE(c,t,f) (xV=cVt), (xVeV=f) (—xV=eVE), (—xVeVf)

Logic and Mechanized Reasoning 9/23

VE by substitution [EenBiere07]

General idea
Detect definitions x <> DEF(p1, ..., py) in the formula and
use them to reduce the number of added clauses

Possible gates

definition D, D,
AND(Plr---/Pn) (x\/_'Pl\/"'\/_‘Pn) (_‘X\/pl),...,(—'x\/pn)
OR(p1,...,pn) (XN =p1),...,(xV=py) (=xVpV---Vpy)

ITE(c,t,f) (xV—=cV—t), (xVeV—f) (—xV—cVit), (—xVeVF)

Variable elimination by substitution [EenBiere07]
Let Ry = 'y \ Dy; R—x =T\ D—.

Replace T'y AT—y by Dy <y R—x A D—y <y Ry
Always less than I'y b, Iy ! (if x is a definition)

Logic and Mechanized Reasoning 9/23

VE by substitution [EenBiere'07]
Example of gate extraction: x = AND(a,b)

Iy=xVoAxV-d)N(xV—a\V-b)
I =(—xVa)A\(—xVb)N\(—xV—eVf)

Logic and Mechanized Reasoning 10 / 23

VE by substitution [EenBiere'07]
Example of gate extraction: x = AND(a,b)
Iy=xVoAxV-d)N(xV—a\V-b)
I =(—xVa)A\(—xVb)N\(—xV—eVf)

Example of substitution

Ry Dy
(xVe) (x\/ﬁd)\ (xV—a\ —b))
—xVa aVe) (aV—d
Dﬂ"{ Eﬁxvz?g Evag Ebvﬁdg
Ry { (—xV—eVf) (—aV—bV —eVf)

Logic and Mechanized Reasoning 10 / 23

VE by substitution [EenBiere'07]
Example of gate extraction: x = AND(a,b)
Iy=xVoAxV-d)N(xV—a\V-b)
I =(—xVa)A\(—xVb)N\(—xV—eVf)

Example of substitution

Ry Dy
(xVe) (x\/ﬂd)\ (xV—a\ —b))
—xVa aVe) (aV—d
D*"{ Eﬁxvz)g Evag Ebvﬁdg
Ry { (—xV—eVf) (—aV—=bV—eVf)

using substitution: |y > Iy < [Ty 4 [Ty

Logic and Mechanized Reasoning 10 / 23

DPLL

Logic and Mechanized Reasoning 11 /23

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Logic and Mechanized Reasoning 12 /23

SAT Solver Paradigms Overview
DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).
Strength: Effective on small, hard formulas.
Weakness: Expensive.

Local search: Given a full assignment for a formula T,
flip the truth values of variables until satisfying T".

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Logic and Mechanized Reasoning 12 /23

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead). ‘\Tr
Strength: Effective on small, hard formulas.

—o0

Weakness: Expensive.

Local search: Given a full assignment for a formula T,

-
flip the truth values of variables until satisfying T".
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.
Weakness: Hard to parallelize.

Logic and Mechanized Reasoning 12 /23

DPLL: Introduction

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:
» Simplifies the formula (using unit propagation)
» Splits the formula into two subformulas

» Variable selection heuristics (which variable to split on)
» Direction heuristics (which subformula to explore first)

Logic and Mechanized Reasoning 13 /23

DPLL: Example

Ippre := (p1 V2V =p3) A(—p1 Vpa Vips) A
(—p1 VP2V p3) A (p1Vps) A (—p1V —ps)

Logic and Mechanized Reasoning 14 /23

DPLL: Example

Ippre := (p1 V2V =p3) A(—p1 Vpa Vips) A
(—p1 VP2V p3) A (p1Vps) A (—p1V —ps)

D

1 T

Logic and Mechanized Reasoning 14 /23

DPLL: Example

Ippre := (p1 V2V =p3) A(—p1 Vpa Vips) A
(—p1 VP2V p3) A (p1Vps) A (—p1V —ps)

Logic and Mechanized Reasoning 14 /23

DPLL: Slightly Harder Example

Construct a DPLL tree for:

(pVaV=r)A\(=pV—gVr)A
(gVrV=s) A\ (—qV-rVs)A
(pVrVs)NA(=pV—-rV-s)A
(pVaqVs)

What is a good heuristic?

Logic and Mechanized Reasoning 15 /23

DPLL: Slightly Harder Example

Construct a DPLL tree for:

(pNV gV —r)N(—pV—gVr)N\
(gVrV=s) A\ (—qV-rVs)A
(pVrVs)NA(=pV—-rV-s)A
(pVaqVs)

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS:
Maximum Occurrence in clauses of Minimum Size

Logic and Mechanized Reasoning 15 /23

DPLL: Pseudocode

DPLL (z.T)

1:

2:

3:

= Simplify (7, T)

if [[F]]T/ = T then return satisfiable

if [['];» = L then return unsatisfiable

Lgecision := Decide (t/, T)

if (DPLL(7" U /lgecision := T,T) = satisfiable) then
return satisfiable

return DPLL (7’ U £gecision := L, T)

Logic and Mechanized Reasoning 16 / 23

DPLL: Demo in Lean
LAMR/Examples/using sat_solvers/dpll.lean

partial def dpllSatAux (Tt : PropAssignment) (I : CnfForm)
Option (PropAssignment x CnfForm) :=
if I.hasEmpty then none
else match pickSplit? I with
—— No variables left to split on, we found a solution.
| none => some (t, I')
—— Split on “x.
-— "<|>" is the "or else" operator, which tries one action and if that fails
—— tries the other.
| some x => goWithNew x T I <|> goWithNew (-x) T I

where
/—— Assigns ‘x° to true and continues out DPLL. -/
goWithNew (x : Lit) (t : PropAssignment) (I : CnfForm) :
Option (PropAssignment x CnfForm) :=
let (t', ') := propagateWithNew x T I
dpllSatAux t' I’

/—— Solve ‘I using DPLL. Return a satisfying assignment if found, otherwise ‘none".

def dpllSat (I : CnfForm) : Option PropAssignment :=
let (1,) := propagateUnits [] I
(dpllSatAux t IN).map fun (T, _) => 1

Logic and Mechanized Reasoning

-/

17 /23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Logic and Mechanized Reasoning 18 /23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

» Assign a variable to a truth value

Logic and Mechanized Reasoning 18 /23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:
» Assign a variable to a truth value

» Simplify the formula

Logic and Mechanized Reasoning 18 /23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

» Assign a variable to a truth value
» Simplify the formula

» Measure the reduction

Logic and Mechanized Reasoning 18 /23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

» Assign a variable to a truth value
» Simplify the formula

» Measure the reduction

» Learn if possible

Logic and Mechanized Reasoning 18 /23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

» Assign a variable to a truth value
» Simplify the formula

» Measure the reduction

» Learn if possible

» Backtrack

Logic and Mechanized Reasoning 18 /23

DPLL: Look-ahead Reduction Heuristics

» Number of satisfied clauses

Logic and Mechanized Reasoning 19 /23

DPLL: Look-ahead Reduction Heuristics

» Number of satisfied clauses

» Number of implied variables

Logic and Mechanized Reasoning 19 /23

DPLL: Look-ahead Reduction Heuristics

» Number of satisfied clauses
» Number of implied variables

» New (reduced, not satisfied) clauses

» Smaller clauses more important

» Weights based on occurrences

Logic and Mechanized Reasoning

19 /23

DPLL: Learning Necessary Assignments

TiEarN := (7p1V 7p3 Vpa) A (—p1 V —pa Vips) A
(P Vp2) A(p1VpsVps) A(—p1VpsV—ps) A
(p1V —ps) N (paV p5 V ps) N\ (ps V —ps)

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

[earn = ("1 Vops Vpa) A (i Vopa Vps) A
(1 Vp2) A(p1 VsV ps) A(—p1VpsaV—ps) A
(P1V —ps) A (pa NV p5V ps) N\ (ps V —ps)

T={p=T}

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

Tearn = ("1 Vops Vpa) A (7o Vopa Vps) A
(1 Vp2) A(p1 VsV ps) A(—p1VpsaV—ps) A
(P1V —ps) A (pa NV p5V ps) N\ (ps V —ps)

T={p=T,pp=T}

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

TLEARN == (71 V —p3 Vpa) A(mprV —pa Vps) A
(1 Vp2) A (p1 Vs Vps) A(—p1VpsaV—ps) A
(P1V —ps) A (pa NV p5V ps) N\ (ps V —ps)

T = {pl — TIPZ — T/PB — T}

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

TLEARN == (Tp1V —p3 V) A(mprV —pa Vps) A
(1 Vp2) A (p1 Vs Vpe) A(—p1VpsaV—ps) A
(P1V =ps) A (P2 V p5V ps) N\ (ps V —ps)

T={p=T,p2=T,p3=T,pa=T}

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

TLEARN == (Tp1V —p3 V) A(mprV —pa Vps) A
(1 Vp2) A (p1 Vs Vpe) A(—p1VpsaV—ps) A
(P1V =ps) A (P2 V p5V ps) N\ (ps V —ps)

T={p=T,po=T,p3=T,pa=T)}

Tearn == (Tp1 V op3 Vpa) A (—p1 Vopa Vps) A
(P Vp2) A(p1 VsV ps) A(—p1VpsV—ps) A
(p1V —ps) N (paV p5V ps) N\ (ps V —ps)

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

TLEARN == (Tp1V —p3 V) A(mprV —pa Vps) A
(1 Vp2) A (p1 Vs Vpe) A(—p1VpsaV—ps) A
(P1V =ps) A (P2 V p5V ps) N\ (ps V —ps)
T={p=T,po=T,p3=T,pa=T)}

Tiearn = (71 Vops Vpa) A (T Vopa Vps) A
(1 Vp2) A(p1 VsV ps) A(—p1VpsaV—ps) A
(P1V =ps) N (paV p5V ps) N\ (ps V —ps)

T={p =1}

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

TLEARN == (Tp1V —p3 V) A(mprV —pa Vps) A
(1 Vp2) A (p1 Vs Vpe) A(—p1VpsaV—ps) A
(P1V =ps) A (P2 V p5V ps) N\ (ps V —ps)

T={p=T,po=T,p3=T,pa=T)}

Tiearn = (71 Vops Vpa) A (T Vopa Vps) A
(1 Vp2) A(p1 VsV pe) A(—p1VpsaV—ps) A
(P1V =ps) A (pa NV p5V ps) N\ (ps vV —ps)

T={p=1Lps=1}

Logic and Mechanized Reasoning 20 /23

DPLL: Learning Necessary Assignments

TLEARN == (Tp1V —p3 V) A(mprV —pa Vps) A
(1 Vp2) A (p1 Vs Vpe) A(—p1VpsaV—ps) A
(P1V =ps) A (P2 V p5V ps) N\ (ps V —ps)

T={p=T,po=T,p3=T,pa=T)}

Tiearn == (Tp1 V ops Vpa) A (T Vopa Vps) A
(1 Vp2) A(p1 VsV pe) A(—p1VpaV—ps) A
(P1V =ps) A (pa NV p5V ps) N\ (ps vV —ps)

T={p=1Lps=L,ps=T}

Logic and Mechanized Reasoning 20 /23

DPLL: Look-ahead Autarky Detection

Tigarn := (71 V =p3 Vpa) A (—=p1 vV —=p2 V p3) A\
(=1 V) A1 VsV ps) A\ (—p1VpaV —ps) A
(71 V =ps) A (pa NV p5V ps) N\ (ps vV —ps)

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead Autarky Detection

Tigarn := (71 V=p3 Vpa) A (—p1 V=p2 V p3) A\
(1 V) A1 VsV ps) A\ (—p1 vV paV —ps) A
(71 =ps) A\ (pa NV p5 V ps) N\ (ps vV —ps)

T={p=T}

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead Autarky Detection

Tigarn := (71 V=p3 Vpa) A (—p1 vV —p2 Vps) A
(1 V) A1 VsV ps) A (—p1 vV pa NV —ps) A
(71 =ps) A\ (pa NV p5 V ps) N\ (ps vV —ps)

T={pm="T,pp=T}

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead Autarky Detection

TFigarn := (71 V =p3Vpa) A (—p1 vV —=p2 Vp3) A
(1 V) A1 VsV ps) A (—p1VpaV —ps) A
(71 =ps) A\ (pa NV p5 V ps) N\ (ps vV —ps)

T = {pl — TIPZ - T/P3 — T}

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead Autarky Detection

Tigarn := (71 V =p3 Vpa) A (—p1 vV —=p2 Vp3) A
(1 V) A1 VsV ps) A (—p1V paV —ps) A
(71 V. =ps) A\ (P2 NV p5V ps) N\ (ps vV —ps)

T={pm=T,pp=T,p3=T,pa=T}

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead Autarky Detection

Tigarn := (71 V =p3 Vpa) A (—p1 vV —=p2 Vp3) A
(1 V) A1 VsV ps) A (—p1V paV —ps) A
(71 V. =ps) A\ (P2 NV p5V ps) N\ (ps vV —ps)

T = {pl = T,pZ — T/P3 — T/P4 - T}

I'LearN satisfiability equivalent to (ps \V —ps)

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead Autarky Detection

Tigarn := (71 V =p3 Vpa) A (—p1 vV —=p2 Vp3) A
(1 V) A1 VsV ps) A (—p1V paV —ps) A
(71 V. =ps) A\ (P2 NV p5V ps) N\ (ps vV —ps)

T={pm=T,pp=T,p3=T,pa=T}

I'LearN satisfiability equivalent to (ps \V —ps)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 /23

DPLL: Look-ahead 1-Autarky Learning

Tiearn := (71 V =p3 Vpa) N (=p1 vV —=p2 V p3) A
(mp1Vp2) AN (p1VpsVps) N (—prVpsV —ps) A
(p1V —pe) N (paV p5V ps) N (p5 NV —ps)

Logic and Mechanized Reasoning 22 /23

DPLL: Look-ahead 1-Autarky Learning

Tigarn := (71 V =p3 Vpa) N (=p1 vV —p2 V p3) A
(=p1Vp2) NP1V sV ps) N (—p1V paV —ps) A
(p1V —pe) N (paV p5V ps) N (p5 NV —ps)

T=1{p= 1}

Logic and Mechanized Reasoning 22 /23

DPLL: Look-ahead 1-Autarky Learning

Tigarn := (71 V =p3 Vpa) A (—p1 V. —=p2 V p3) A
(=P Vp2) A (P1V sV pe) N (—p1VpaV—ps) A
(71 V =ps) A\ (pa NV p5V ps) N\ (ps V —ps)

T={p=1Lp =1}

Logic and Mechanized Reasoning 22 /23

DPLL: Look-ahead 1-Autarky Learning

Tigarn := (71 V =p3 Vpa) A (—p1 V. —=p2 V p3) A
(=P Vp2) A (P1VpsVpe) N (—p1VpaV —ps) A
(71 V. =ps) A\ (paV p5V ps) N\ (ps vV —ps)

T={p=Lp =1Lps=1}

Logic and Mechanized Reasoning 22 /23

DPLL: Look-ahead 1-Autarky Learning

Tigarn := (71 V =p3 Vpa) A (—p1 V. —=p2 Vps) A
(Fp1Vp2) A(p1VpsVpe) A (Tp1VpaV —ps) A
(p1V —pe) N (paV psV ps) A (p5V —ps)

T:{Pzz J—/pl IP6 1, ps = T}

Logic and Mechanized Reasoning 22 /23

DPLL: Look-ahead 1-Autarky Learning

Tigarn := (71 V =p3 Vpa) A (—p1 V. —=p2 Vps) A
(Fp1Vp2) A(p1VpsVpe) A (Tp1VpaV —ps) A
(p1V —pe) N (paV p5 NV ps) N (p5V —ps)

T={p=Lp=Lps=Lps=T}

(local) 1-autarky resolvents to add to I'tgarN:

(—p2 VvV —ps) and (—p2 VvV —ps)

Logic and Mechanized Reasoning 22 /23

DPLL: Complexity

Can n+1 pigeons be in 1 holes (at-most-one pigeon per hole)?

PHPn = /\ (xllp\/' . '\/xn,p)/\ /\ /\ (%h,p\/xh,q)
1<p<n+l 1<h<n1<p<g<n+l

Resolution proofs of PHP,, are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHP, [1976]
» Requires auxiliary variables

Logic and Mechanized Reasoning 23 /23

DPLL: Complexity

Can n+1 pigeons be in 1 holes (at-most-one pigeon per hole)?

PHPn = /\ (xllp\/' . '\/xn,p)/\ /\ /\ (%h,p\/xh,q)
1<p<n+l 1<h<n1<p<g<n+l

Resolution proofs of PHP,, are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHP, [1976]

» Requires auxiliary variables

Polynomial-sized conditional autarky proofs of PHP,
» Without auxiliary variables

Logic and Mechanized Reasoning 23 /23

	DP Resolution
	DPLL

