
Logic and Mechanized Reasoning
DP & DPLL

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 23

Let’s First Revisit Resolution

LAMR/Examples/using sat solvers/resolution.lean

Logic and Mechanized Reasoning 2 / 23

DP Resolution

DPLL

Logic and Mechanized Reasoning 3 / 23

Martin Davis (March 8, 1928 – January 1, 2023)

Martin Davis & Hilary Putnam (1960)
A Computing Procedure for Quantification Theory.
Journal of hte ACM 7(3): 201-215

Martin Davis, George Logemann, & Donald W. Loveland (1962)
A machine program for theorem-proving.
Communications of the ACM 5(7): 394-397

Logic and Mechanized Reasoning 4 / 23

DP Resolution

DPLL

Logic and Mechanized Reasoning 5 / 23

DP Resolution / Variable Elimination [DavisPutnam’60]

Definition (Resolution Rule)

C ∨ x ¬x ∨ D
C ∨ D

Resolution on clause sets Γx and Γ¬x (denoted by Γx ▷◁x Γ¬x)
generates all non-tautological resolvents of C ∈ Γx and D ∈ Γ¬x.

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

Logic and Mechanized Reasoning 6 / 23

DP Resolution / Variable Elimination [DavisPutnam’60]

Definition (Resolution Rule)

C ∨ x ¬x ∨ D
C ∨ D

Resolution on clause sets Γx and Γ¬x (denoted by Γx ▷◁x Γ¬x)
generates all non-tautological resolvents of C ∈ Γx and D ∈ Γ¬x.

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

Logic and Mechanized Reasoning 6 / 23

DP Resolution / Variable Elimination [DavisPutnam’60]

Definition (Resolution Rule)

C ∨ x ¬x ∨ D
C ∨ D

Resolution on clause sets Γx and Γ¬x (denoted by Γx ▷◁x Γ¬x)
generates all non-tautological resolvents of C ∈ Γx and D ∈ Γ¬x.

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint
results in either the empty formula (satisfiable) or empty
clause (unsatisfiable)

Logic and Mechanized Reasoning 6 / 23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Example of clause distribution
Γx︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

Γ¬x


(¬x ∨ a) (a ∨ c) (a ∨¬d) (a ∨¬a ∨¬b)
(¬x ∨ b) (b ∨ c) (b ∨¬d) (b ∨¬a ∨¬b)

(¬x ∨¬e ∨ f) (c ∨¬e ∨ f) (¬d ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

In the example: |Γx ▷◁ Γ¬x| > |Γx|+ |Γ¬x|

Exponential growth of clauses in general

Logic and Mechanized Reasoning 7 / 23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Example of clause distribution
Γx︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

Γ¬x


(¬x ∨ a) (a ∨ c) (a ∨¬d) (a ∨¬a ∨¬b)
(¬x ∨ b) (b ∨ c) (b ∨¬d) (b ∨¬a ∨¬b)

(¬x ∨¬e ∨ f) (c ∨¬e ∨ f) (¬d ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

In the example: |Γx ▷◁ Γ¬x| > |Γx|+ |Γ¬x|

Exponential growth of clauses in general

Logic and Mechanized Reasoning 7 / 23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Example of clause distribution
Γx︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

Γ¬x


(¬x ∨ a) (a ∨ c) (a ∨¬d) (a ∨¬a ∨¬b)
(¬x ∨ b) (b ∨ c) (b ∨¬d) (b ∨¬a ∨¬b)

(¬x ∨¬e ∨ f) (c ∨¬e ∨ f) (¬d ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

In the example: |Γx ▷◁ Γ¬x| > |Γx|+ |Γ¬x|

Exponential growth of clauses in general

Logic and Mechanized Reasoning 7 / 23

Example VE by clause distribution [DavisPutnam’60]

Definition (Variable elimination (VE))

Given a CNF formula Γ, variable elimination (or DP resolution)
removes a variable x by replacing Γx and Γ¬x by Γx ▷◁x Γ¬x

Example of clause distribution
Γx︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

Γ¬x


(¬x ∨ a) (a ∨ c) (a ∨¬d) (a ∨¬a ∨¬b)
(¬x ∨ b) (b ∨ c) (b ∨¬d) (b ∨¬a ∨¬b)

(¬x ∨¬e ∨ f) (c ∨¬e ∨ f) (¬d ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

In the example: |Γx ▷◁ Γ¬x| > |Γx|+ |Γ¬x|

Exponential growth of clauses in general

Logic and Mechanized Reasoning 7 / 23

DP Resolution and Pure Literals

Proposition

Given a CNF formula Γ with pure literal p, the effect of
applying the pure literal rule on p is the same as the effect of
applying DP resolution on p.

True or false?

Proof.
True. The pure literal rule assign p to true, which has the
effect that all clauses containing p are removed. Applying DP
resolution on p also removes all clauses containing literal p,
because Γp ▷◁ Γ¬p is empty.

Logic and Mechanized Reasoning 8 / 23

DP Resolution and Pure Literals

Proposition

Given a CNF formula Γ with pure literal p, the effect of
applying the pure literal rule on p is the same as the effect of
applying DP resolution on p.

True or false?

Proof.
True. The pure literal rule assign p to true, which has the
effect that all clauses containing p are removed. Applying DP
resolution on p also removes all clauses containing literal p,
because Γp ▷◁ Γ¬p is empty.

Logic and Mechanized Reasoning 8 / 23

VE by substitution [EenBiere07]

General idea
Detect definitions x ↔ DEF(p1, . . . , pn) in the formula and
use them to reduce the number of added clauses

Possible gates

definition Dx D¬x
AND(p1, . . . , pn) (x ∨¬p1 ∨ · · ·∨¬pn) (¬x ∨ p1), . . . , (¬x ∨ pn)
OR(p1, . . . , pn) (x ∨¬p1), . . . , (x ∨¬pn) (¬x ∨ p1 ∨ · · ·∨ pn)

ITE(c, t, f) (x∨¬c∨¬t), (x∨c∨¬f) (¬x∨¬c∨t), (¬x∨c∨f)

Variable elimination by substitution [EenBiere07]

Let Rx = Γx \ Dx; R¬x = Γ¬x \ D¬x.

Replace Γx ∧ Γ¬x by Dx ▷◁x R¬x ∧ D¬x ▷◁x Rx.

Always less than Γx ▷◁x Γ¬x ! (if x is a definition)

Logic and Mechanized Reasoning 9 / 23

VE by substitution [EenBiere07]

General idea
Detect definitions x ↔ DEF(p1, . . . , pn) in the formula and
use them to reduce the number of added clauses

Possible gates

definition Dx D¬x
AND(p1, . . . , pn) (x ∨¬p1 ∨ · · ·∨¬pn) (¬x ∨ p1), . . . , (¬x ∨ pn)
OR(p1, . . . , pn) (x ∨¬p1), . . . , (x ∨¬pn) (¬x ∨ p1 ∨ · · ·∨ pn)

ITE(c, t, f) (x∨¬c∨¬t), (x∨c∨¬f) (¬x∨¬c∨t), (¬x∨c∨f)

Variable elimination by substitution [EenBiere07]

Let Rx = Γx \ Dx; R¬x = Γ¬x \ D¬x.

Replace Γx ∧ Γ¬x by Dx ▷◁x R¬x ∧ D¬x ▷◁x Rx.

Always less than Γx ▷◁x Γ¬x ! (if x is a definition)

Logic and Mechanized Reasoning 9 / 23

VE by substitution [EenBiere07]

General idea
Detect definitions x ↔ DEF(p1, . . . , pn) in the formula and
use them to reduce the number of added clauses

Possible gates

definition Dx D¬x
AND(p1, . . . , pn) (x ∨¬p1 ∨ · · ·∨¬pn) (¬x ∨ p1), . . . , (¬x ∨ pn)
OR(p1, . . . , pn) (x ∨¬p1), . . . , (x ∨¬pn) (¬x ∨ p1 ∨ · · ·∨ pn)

ITE(c, t, f) (x∨¬c∨¬t), (x∨c∨¬f) (¬x∨¬c∨t), (¬x∨c∨f)

Variable elimination by substitution [EenBiere07]

Let Rx = Γx \ Dx; R¬x = Γ¬x \ D¬x.

Replace Γx ∧ Γ¬x by Dx ▷◁x R¬x ∧ D¬x ▷◁x Rx.

Always less than Γx ▷◁x Γ¬x ! (if x is a definition)

Logic and Mechanized Reasoning 9 / 23

VE by substitution [EenBiere’07]

Example of gate extraction: x = AND(a, b)
Γx = (x ∨ c)∧ (x ∨¬d)∧ (x ∨¬a ∨¬b)

Γ¬x = (¬x ∨ a)∧ (¬x ∨ b)∧ (¬x ∨¬e ∨ f)

Example of substitution
Rx Dx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

D¬x

{
(¬x ∨ a) (a ∨ c) (a ∨¬d)
(¬x ∨ b) (b ∨ c) (b ∨¬d)

R¬x
{
(¬x ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

using substitution: |Γx ▷◁ Γ¬x| < |Γx|+ |Γ¬x|

Logic and Mechanized Reasoning 10 / 23

VE by substitution [EenBiere’07]

Example of gate extraction: x = AND(a, b)
Γx = (x ∨ c)∧ (x ∨¬d)∧ (x ∨¬a ∨¬b)

Γ¬x = (¬x ∨ a)∧ (¬x ∨ b)∧ (¬x ∨¬e ∨ f)

Example of substitution
Rx Dx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

D¬x

{
(¬x ∨ a) (a ∨ c) (a ∨¬d)
(¬x ∨ b) (b ∨ c) (b ∨¬d)

R¬x
{
(¬x ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

using substitution: |Γx ▷◁ Γ¬x| < |Γx|+ |Γ¬x|

Logic and Mechanized Reasoning 10 / 23

VE by substitution [EenBiere’07]

Example of gate extraction: x = AND(a, b)
Γx = (x ∨ c)∧ (x ∨¬d)∧ (x ∨¬a ∨¬b)

Γ¬x = (¬x ∨ a)∧ (¬x ∨ b)∧ (¬x ∨¬e ∨ f)

Example of substitution
Rx Dx︷ ︸︸ ︷ ︷ ︸︸ ︷

(x ∨ c) (x ∨¬d) (x ∨¬a ∨¬b)

D¬x

{
(¬x ∨ a) (a ∨ c) (a ∨¬d)
(¬x ∨ b) (b ∨ c) (b ∨¬d)

R¬x
{
(¬x ∨¬e ∨ f) (¬a ∨¬b ∨¬e ∨ f)

using substitution: |Γx ▷◁ Γ¬x| < |Γx|+ |Γ¬x|

Logic and Mechanized Reasoning 10 / 23

DP Resolution

DPLL

Logic and Mechanized Reasoning 11 / 23

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ,
flip the truth values of variables until satisfying Γ.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Logic and Mechanized Reasoning 12 / 23

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ,
flip the truth values of variables until satisfying Γ.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Logic and Mechanized Reasoning 12 / 23

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ,
flip the truth values of variables until satisfying Γ.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Logic and Mechanized Reasoning 12 / 23

DPLL: Introduction

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:
▶ Simplifies the formula (using unit propagation)
▶ Splits the formula into two subformulas

▶ Variable selection heuristics (which variable to split on)
▶ Direction heuristics (which subformula to explore first)

Logic and Mechanized Reasoning 13 / 23

DPLL: Example

ΓDPLL := (p1 ∨ p2 ∨¬p3)∧ (¬p1 ∨ p2 ∨ p3)∧
(¬p1 ∨¬p2 ∨ p3)∧ (p1 ∨ p3)∧ (¬p1 ∨¬p3)

p3

⊥ ⊤

p2

p1 p3

⊥ ⊤

⊥ ⊤ ⊤ ⊥

Logic and Mechanized Reasoning 14 / 23

DPLL: Example

ΓDPLL := (p1 ∨ p2 ∨¬p3)∧ (¬p1 ∨ p2 ∨ p3)∧
(¬p1 ∨¬p2 ∨ p3)∧ (p1 ∨ p3)∧ (¬p1 ∨¬p3)

p3

⊥ ⊤

p2

p1 p3

⊥ ⊤

⊥ ⊤ ⊤ ⊥

Logic and Mechanized Reasoning 14 / 23

DPLL: Example

ΓDPLL := (p1 ∨ p2 ∨¬p3)∧ (¬p1 ∨ p2 ∨ p3)∧
(¬p1 ∨¬p2 ∨ p3)∧ (p1 ∨ p3)∧ (¬p1 ∨¬p3)

p3

⊥ ⊤

p2

p1 p3

⊥ ⊤

⊥ ⊤ ⊤ ⊥

Logic and Mechanized Reasoning 14 / 23

DPLL: Slightly Harder Example

Construct a DPLL tree for:

(p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧
(q ∨ r ∨¬s)∧ (¬q ∨¬r ∨ s)∧
(p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)∧
(¬p ∨ q ∨ s)

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS:
Maximum Occurrence in clauses of Minimum Size

Logic and Mechanized Reasoning 15 / 23

DPLL: Slightly Harder Example

Construct a DPLL tree for:

(p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧
(q ∨ r ∨¬s)∧ (¬q ∨¬r ∨ s)∧
(p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)∧
(¬p ∨ q ∨ s)

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS:
Maximum Occurrence in clauses of Minimum Size

Logic and Mechanized Reasoning 15 / 23

DPLL: Pseudocode

DPLL (τ, Γ)
1: τ ′ := Simplify (τ, Γ)

2: if JΓKτ ′ = ⊤ then return satisfiable

3: if JΓKτ ′ = ⊥ then return unsatisfiable

4: ℓdecision := Decide (τ ′, Γ)

5: if (DPLL(τ ′ ∪ ℓdecision := ⊤, Γ) = satisfiable) then

6: return satisfiable

7: return DPLL (τ ′ ∪ ℓdecision := ⊥, Γ)

Logic and Mechanized Reasoning 16 / 23

DPLL: Demo in Lean

LAMR/Examples/using sat solvers/dpll.lean

Logic and Mechanized Reasoning 17 / 23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

▶ Assign a variable to a truth value

▶ Simplify the formula

▶ Measure the reduction

▶ Learn if possible

▶ Backtrack

Logic and Mechanized Reasoning 18 / 23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

▶ Assign a variable to a truth value

▶ Simplify the formula

▶ Measure the reduction

▶ Learn if possible

▶ Backtrack

Logic and Mechanized Reasoning 18 / 23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

▶ Assign a variable to a truth value

▶ Simplify the formula

▶ Measure the reduction

▶ Learn if possible

▶ Backtrack

Logic and Mechanized Reasoning 18 / 23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

▶ Assign a variable to a truth value

▶ Simplify the formula

▶ Measure the reduction

▶ Learn if possible

▶ Backtrack

Logic and Mechanized Reasoning 18 / 23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

▶ Assign a variable to a truth value

▶ Simplify the formula

▶ Measure the reduction

▶ Learn if possible

▶ Backtrack

Logic and Mechanized Reasoning 18 / 23

DPLL: Look-aheads

DPLL with selection of (effective) decision variables
by look-aheads on variables

Look-ahead:

▶ Assign a variable to a truth value

▶ Simplify the formula

▶ Measure the reduction

▶ Learn if possible

▶ Backtrack

Logic and Mechanized Reasoning 18 / 23

DPLL: Look-ahead Reduction Heuristics

▶ Number of satisfied clauses

▶ Number of implied variables

▶ New (reduced, not satisfied) clauses

▶ Smaller clauses more important

▶ Weights based on occurrences

Logic and Mechanized Reasoning 19 / 23

DPLL: Look-ahead Reduction Heuristics

▶ Number of satisfied clauses

▶ Number of implied variables

▶ New (reduced, not satisfied) clauses

▶ Smaller clauses more important

▶ Weights based on occurrences

Logic and Mechanized Reasoning 19 / 23

DPLL: Look-ahead Reduction Heuristics

▶ Number of satisfied clauses

▶ Number of implied variables

▶ New (reduced, not satisfied) clauses

▶ Smaller clauses more important

▶ Weights based on occurrences

Logic and Mechanized Reasoning 19 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥, p6 = ⊥}

Logic and Mechanized Reasoning 20 / 23

DPLL: Learning Necessary Assignments

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊥, p6 = ⊥, p3 = ⊤}

Logic and Mechanized Reasoning 20 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead Autarky Detection

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤}

ΓLEARN satisfiability equivalent to (p5 ∨¬p6)

Could reduce computational cost on UNSAT

Logic and Mechanized Reasoning 21 / 23

DPLL: Look-ahead 1-Autarky Learning

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p2 = ⊥}

(local) 1-autarky resolvents to add to ΓLEARN:
(¬p2 ∨¬p4) and (¬p2 ∨¬p5)

Logic and Mechanized Reasoning 22 / 23

DPLL: Look-ahead 1-Autarky Learning

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p2 = ⊥}

(local) 1-autarky resolvents to add to ΓLEARN:
(¬p2 ∨¬p4) and (¬p2 ∨¬p5)

Logic and Mechanized Reasoning 22 / 23

DPLL: Look-ahead 1-Autarky Learning

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p2 = ⊥, p1 = ⊥}

(local) 1-autarky resolvents to add to ΓLEARN:
(¬p2 ∨¬p4) and (¬p2 ∨¬p5)

Logic and Mechanized Reasoning 22 / 23

DPLL: Look-ahead 1-Autarky Learning

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p2 = ⊥, p1 = ⊥, p6 = ⊥}

(local) 1-autarky resolvents to add to ΓLEARN:
(¬p2 ∨¬p4) and (¬p2 ∨¬p5)

Logic and Mechanized Reasoning 22 / 23

DPLL: Look-ahead 1-Autarky Learning

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p2 = ⊥, p1 = ⊥, p6 = ⊥, p3 = ⊤}

(local) 1-autarky resolvents to add to ΓLEARN:
(¬p2 ∨¬p4) and (¬p2 ∨¬p5)

Logic and Mechanized Reasoning 22 / 23

DPLL: Look-ahead 1-Autarky Learning

ΓLEARN := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3) ∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5) ∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = {p2 = ⊥, p1 = ⊥, p6 = ⊥, p3 = ⊤}

(local) 1-autarky resolvents to add to ΓLEARN:
(¬p2 ∨¬p4) and (¬p2 ∨¬p5)

Logic and Mechanized Reasoning 22 / 23

DPLL: Complexity

Can n+1 pigeons be in n holes (at-most-one pigeon per hole)?

PHPn :=
∧

1≤ p≤ n+1

(x1,p ∨ · · ·∨xn,p)∧
∧

1≤ h≤ n,

∧
1≤ p< q≤ n+1

(xh,p ∨xh,q)

Resolution proofs of PHPn are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHPn [1976]

▶ Requires auxiliary variables

Polynomial-sized conditional autarky proofs of PHPn
▶ Without auxiliary variables

Logic and Mechanized Reasoning 23 / 23

DPLL: Complexity

Can n+1 pigeons be in n holes (at-most-one pigeon per hole)?

PHPn :=
∧

1≤ p≤ n+1

(x1,p ∨ · · ·∨xn,p)∧
∧

1≤ h≤ n,

∧
1≤ p< q≤ n+1

(xh,p ∨xh,q)

Resolution proofs of PHPn are exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHPn [1976]

▶ Requires auxiliary variables

Polynomial-sized conditional autarky proofs of PHPn
▶ Without auxiliary variables

Logic and Mechanized Reasoning 23 / 23

	DP Resolution
	DPLL

