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First Midterm Exam

Tuesday February 18 at 11am

Material covered in the exam:
m All lectures up to (and including) February 6
m All homework through Assignment 4
m Textbook chapters 1-7, excluding Sections 6.3, 6.5, 7.4

Practice exam and solutions on the course website

No new homework assigned this week
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The Satisfiability (SAT) problem

( psV psVP2) AL p2V=p1 V=p3)A(=psV —p3V—p7s) A
(=psV p3V ps) A (TpeVp1Vps) A psVpeV p3) A
( P2V P11V p3)A(Tp1V psV pa) A(mpeV—psV pg) A
( sV P3V P Al pPeVp3V ps) A PsVpeV ps) A
( P2V P3VPs) A pPsV sV P3)A( psV—p3V—pi) A
(psV psVP2)A( P77V poV P2 A( psVpeV p2) A
(p1V=poV pa) A psV p1Vop2) AL p3V—paV—ps) A
(P1V=p7V ps)A(p7V p1V pe) A(Tps Vo paV pe) A
(paV poVops) A P2V poV pi)JA( psV—p7V p1)A
(mp7V=poVpe) A P2V psV pa)A( psV—paV ps) A
( psV poV p3)A(mpsVp7V po) AL p2V—psV pi1) A
(—p7V P11V ps)A( P11V paV p3)A( p1V—opeV—ps) A
( p3V psV pe) A(7peV psvﬁp‘;)/\(ﬁm\/ psV po) A
( p7V=PsVP2I) AL paV p7V p3) AL paV—poV—ps) A
( psVpP1V pIAL psVP1V p7)AL PV p7V—P3) A
(TpsVps V7 )AL PeV P2V p3)A(7psV p2V ps)

Does there exist an assignment satisfying all clauses?
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Search for a satisfying assignment (or proof none exists)

( psV psV=p2)A( p2V—p1V—p;3
(=psV p3V ps)A(TpeV p1VPps
( P2V p1V p3I) APV psV ps
( psV pP3VPpI)A( poV—p3V ps
( p2V=p3Vp3)A( pgV —psV p3
(—psV pPeVP2)A( p7V PpoVp2
(p1V=peV pa)A( psV p1V—p2
(P1Vp7V o ps)A(Tp7V PV op
(paV poVps)A( P2V peV p
(—p7 V= poVpe) A P2V psV
( psV poV p3)A(psV—p7sV p
(=p7V 1V ps)A( P11V paV p
( p3V psV pe) A (psV ps\/ﬁp«;
( p7VPpsVPI)ANA( paV p7V p3
( psVpP1V pIA( psV—P1V p7
(psVpe V7 )A (peV P2V P3
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SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.
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SAT Solver Paradigms Overview
DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).
Strength: Effective on small, hard formulas.
Weakness: Expensive.

Local search: Given a full assignment for a formula T,
flip the truth values of variables until satisfying T.

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.
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SAT Solver Paradigms Overview
DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead). ‘\T
Strength: Effective on small, hard formulas.

i

Weakness: Expensive.

Local search: Given a full assignment for a formula T,

——
flip the truth values of variables until satisfying T.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.
Weakness: Hard to parallelize.
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Conflict-driven Clause Learning Highlights

m Most successful architecture
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Conflict-driven Clause Learning Highlights

m Most successful architecture

m Superior on industrial benchmarks
m Brute-force?

® Addition conflict clauses
® Fast unit propagation
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Conflict-driven Clause Learning Highlights

m Most successful architecture

m Superior on industrial benchmarks
m Brute-force?
e Addition conflict clauses

® Fast unit propagation

m Complete local search (for a refutation)?
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Conflict-driven Clause Learning Highlights

m Most successful architecture

m Superior on industrial benchmarks
m Brute-force?
e Addition conflict clauses

® Fast unit propagation

m Complete local search (for a refutation)?

m State-of-the-art (sequential) CDCL solvers:
CaDiCal, Glucose, CryptoMiniSAT
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Clause Learning

Data-structures

Heuristics

Proofs of Unsatisfiability
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Clause Learning
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3 vV =pa Vps) A @
(=Pp2V =ps V 7pa) A

rextra
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3V =paVps) A
(=p2V —p3 V —ps) A ps— L

rextra @
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3V =paVps) A
(P2 VpsVps) A ps— L

rextra
P2 — T

®
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3V =paVps) A
(P2 VpsVps) A ps— L

rextra

p2|—>T
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Conflict-driven SAT solvers: Search and Analysis

(p1 VvV pa) A
(p3V =paVps) A
(P2 VpsVps) A ps— L

rextra

p2|—>T

pr— L

Q——O—O
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A

(p3V =pa Vps) A

(—p2V—=p3V ps) A ps— L
rextra

p2|—>T

pr— L
p4'—>T

Q——O—O
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3V =pa Vps) A
(7p2V =p3V pa) A

rextra
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Ps'—>J—<OE

p2|—>T

pr— L
p4|—>T
p3'—>—|—
p3>—>J_

Q——O—O
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3 vV =paVps) A
(7p2V =p3V pa) A

rextra
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Conflict-driven SAT solvers: Search and Analysis

(p1 Vpa) A
(p3 vV =paVps) A
(—p2V—p3V —ps) A ps— L

rextra

szT

(D_> p]’—>J_

p4'—>—|—
p3'—>—|—
p3>—>J_

Q——O—O

(—p2V —psV ps)
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Conflict-driven SAT solvers: Search and Analysis

(P1V pa) A
(p3 vV =pa Vps) A
(P2 VpsVps) A ps— L

extra

‘szT

@

(D_> p]*—>J_

p4'—>—|—
p3'—>—|—
p3>—>J_

(—p2V —psa V ps)
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Conflict-driven SAT solvers: Search and Analysis

(p1Vpa) A
(p3V =pa Vps) A
(—p2V—=p3V ps) A ps— L

extra

(D_> p]*—>J_

p4'—>—|—
p3'—>—|—
p3>—>J_

(—p2V —ps V ps)

Logic and Mechanized Reasoning 9/30



Conflict-driven SAT solvers: Search and Analysis

(p1Vpa) A
(p3V =pa Vps) A
(—p2V—=p3V ps) A ps— L

extra

(D_> p]*—>J_

p4'—>—|—
p3'—>—|—
p3>—>J_

(—p2V —ps V ps)
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Reverse Unit Propagation

Let I" be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
F=/mE1Vpd APV PaVps)A(=p2V—psV—-pgd A...
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Reverse Unit Propagation

Let I" be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example

F=/mPiVpd APV —PaVps) A(—p2V—p3V—-pgd A...

clause

units —p1/\p2/\—ps
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Reverse Unit Propagation

Let I" be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example
F=PE1Vpd) ApsVpaVps) A (mp2V—psVpa) AL

clause (P1Vps)

units —p1/Ap2/A\—Pps  Ppa
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Reverse Unit Propagation

Let I" be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example

F=mEIVpd)APsVpaVps) A (Tp2V—psVopa) AL

clause (p1Vp4) (p3V—psVps)
units —p1/Ap2/A\—Pps  Ppa P3
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Reverse Unit Propagation

Let I" be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example

F=mEIVpd)APsVpaVps) A (Tp2V—psVopa) AL

clause (P1VPa) (P3V—PaVps) (Tp2V—P3V—p4)
units —p1/Ap2/A\—Pps  Ppa Ps3 L
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Reverse Unit Propagation

Let I" be a formula. A clause C is implied by I' via unit
propagation (UP) if UP on I' A —C results in a conflict.

Example

F=mEIVpd)APsVpaVps) A (Tp2V—psVopa) AL

clause (P1VPa) (P3V—PaVps) (Tp2V—P3V—p4)
units —p1/Ap2/A\—Pps  Ppa Ps3 L

(p2Vp3V—ps)  (psV—psVps)
(—p2V ps V ps) (p1Vp4)
(p1V—p2Vps)
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CDCL Overview

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.
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CDCL Overview

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:
m CDCL is notoriously hard to parallelize;
m the representation impacts CDCL performance; and
m CDCL has exponential runtime on some “simple” problems.
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Conflict-driven Clause Learning: Pseudo-code

1: while TRUE do
2: Lgecision := Decide ()

3 if N0 lgecision then return satisfiable

4 T := Simplify (TU (lgecision — 1), T)

5: while [I']; contains Ciysifieq dO

6: Ceontlict := Analyze (Crasified, T)

7: if Ceonfiicc = L then return unsatisfiable

N=Tu {Cconﬂict}
T := BackTrack (T, Ceonflict)

10: T := Simplify (t,T)
11: end while
12: end while
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Learning conflict clauses ~ [Marques-Silva,Sakallah’96]

piz—L
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Learning conflict clauses ~ [Marques-Silva,Sakallah’96]

pgl—>T pwHL

Pa—T
Pe—-L GD\P 121
Apig—T
pu—T P2—L pro—L
pr—T Pig—-L
piz—L

(=p1 V3 VsV pizV—pio)

tri-asserting clause
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Learning conflict clauses ~ [Marques-Silva,Sakallah’96]

pgl—>T pwHL

piz—L
V —psg V V=

.(‘PIO . Psl P17 . P19.) Pro—T

first unique implication point
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Learning conflict clauses ~ [Marques-Silva,Sakallah’96]

pgl—>T pwHL

p6'_)J- \puf—)J_

pu—T P21 pro—L

=1
P (P2 V —=psV —psVpi7V —Ppig)

second unique implication point
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Average Learned Clause Length
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Data-structures
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Simple data structure for unit propagation

N

Variables Clauses

3 |1-1]-2

MNYAGRIGS
V4

/|
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

T:={p1— ,P2 ,P3— ,Pa— ,P5 ,Pe— }
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

Ti={p1— ,p2= ,P3r> ,Par> ,Ps TP

-
o
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

T:={p1— ,p2— ,p3—=T,pa— ,ps—= T,pe— }

-
|
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

T:={p1—=T,p2— ,p3—=T,pa— ,ps—=T,ps— }

- R
-
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

T:={p1=T,p2= ,p3—=T,par> L, p5—T,pe— }

- R
-

Logic and Mechanized Reasoning 17 / 30



Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

T:={p1—=T,p2— L, ps—> T,pa—= L, ps— T,pe— }

-
-
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

T={p1=T,p2—L,p3—=T,pa—= L, ps—= T,ps— T}

-
-
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Conflict-driven: Watch pointers (2) [MoskewiczMZZM'01]

Only examine (get in the cache) a clause when both
m a watch pointer gets falsified
m the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses — watch pointers
No detailed information available

Not used for binary clauses
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Average Number Clauses Visited Per Propagation
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Percentage visited clauses with other watched literal true
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Heuristics
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Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space

m plus: could compensate a bad value selection

Logic and Mechanized Reasoning 22 /30



Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space

m plus: could compensate a bad value selection

Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]
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Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space

m plus: could compensate a bad value selection

Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies
m aim: avoid heavy-tail behavior [GomesSelmanCrato'97]

m plus: focus search on recent conflicts when combined with
dynamic heuristics
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

m original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts
[MoskewiczMZZM'01]

m improvement (MiniSAT): for each conflict, increase the
score of involved variables by & and increase & := 1.058
[EenSorensson’03]
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Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=M0jhFywLre8
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Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers
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Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
m negative branching (early MiniSAT) [EenSorensson’03]
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Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
m negative branching (early MiniSAT) [EenSorensson’03]

Based on the last implied value (phase-saving)
m introduced to CDCL [PipatsrisawatDarwiche'07]
m already used in local search [HirschKojevnikov'01]
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Heuristics: Phase-saving  [PipatsrisawatDarwiche'07]

Selecting the last implied value remembers solved components

Variable index
g
Variable index

0 5(1(;00 10.0‘000 150000 200‘000 250‘000 300000 350000 400000 0 50000 100000 150000 200000 250000
Decision number Decision number
negative branching phase-saving
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750,...
m Luby sequence: e.g. 100,100, 200, 100, 100, 200, 400, ...

Logic and Mechanized Reasoning 27 /30



Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750,...
m Luby sequence: e.g. 100,100, 200, 100, 100, 200, 400, ...

Rapid restarts by reusing trail: [vanderTakHeuleRamos'11]

m Partial restart same effect as full restart
m Optimal strategy Luby-1: 1,1,2,1,1,2,4,...
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Proofs of Unsatisfiability
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Motivation for Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.

m Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

m Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

m Implementation errors often imply conceptual errors;
m Proofs now mandatory for the annual SAT Competitions;

m Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be verifiable.
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Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula .

Proof
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Reduce the size of the proof by only storing added clauses

Formula .
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Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula .

Proof

m Clauses whose addition preserves satisfiability are redundant.
m Checking redundancy should be efficient.
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Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula .

Proof

m Clauses whose addition preserves satisfiability are redundant.
m Checking redundancy should be efficient.
m Proof systems for this purpose in upcoming lectures.
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