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Motivation

SAT solvers can efficiently solve many application problems

However, for various small problems the runtime is exponential

Pigeon-hole formulas, Tseitin formulas, mutilated chessboards

... these formulas require exponential resolution proofs

Several solvers go beyond resolution to solve them efficiently

In which proof systems can we express the reasoning?

How effective is “Without Loss of Satisfaction” reasoning?

What are the limitations of this kind of reasoning?

Research motivated by advancing the techniques and verification
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Proofs of Unsatisfiability

Beyond Resolution

Proof-Producing Tools

Beyond NP
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Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

p¬q r

(p∨ q)∧ (¬p∨ ¬q)∧ (¬q∨ ¬r)

(p∨ q)∧ (¬p∨ ¬q)∧ (¬q∨ ¬r)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

➥ Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

➥ Proofs
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What Is a Proof in SAT?

In general, a proof is a string that

certifies the unsatisfiability of a formula.

• Proofs are efficiently (polynomial-time) checkable...

... but can be of exponential size with respect to a formula.
The size of the proof usually linear in the runtime of the solver.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . , Cm of clauses.

• Every clause is either contained in the formula or derived from two
earlier clauses via the resolution rule:

C∨ p ¬p∨D

C∨D

• Cm is the empty clause (containing no literals), denoted by ⊥.

• There exists a resolution proof for every unsatisfiable formula.
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Resolution Proofs

Example

Γ := (¬p∨ ¬q∨ r)∧ (¬r)∧ (p∨ ¬q)∧ (¬s∨ q)∧ (s)

Resolution proof: (¬p∨ ¬q∨ r), (¬r), (¬p∨ ¬q),
(p∨ ¬q), (¬q), (¬s∨ q), (¬s), (s), ⊥

¬s∨ q

¬p∨ ¬q∨ r ¬r

¬p∨ ¬q p∨ ¬q
¬q

¬s s
⊥

Drawbacks of resolution:

For many seemingly simple formulas, there are only
resolution proofs of exponential size.

State-of-the-art techniques are not succinctly expressible.
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Clausal Proofs

Reduce the size of the proof by only storing added clauses

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Clauses whose addition preserves satisfiability are redundant.

Checking redundancy should be efficient.

➥ Idea: Only add clauses that fulfill an efficiently checkable
redundancy criterion.
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Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C∨ p ¬p∨D
(RES)

C∨D
A A → B

(MP)
B

➥ Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

➥ This leads to interference-based proof systems.
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Early work on reasoning beyond resolution

The early SAT decision procedures used the Pure Literal rule
[Davis and Putnam 1960; Davis, Logemann and Loveland 1962]:

¬p /∈ Γ
(pure)

(p)

Extended Resolution (ER) [Tseitin 1966]

Combines resolution with the Extension rule:
p /∈ Γ ¬p /∈ Γ

(ER)
(p∨ ¬a∨ ¬b)∧ (¬p∨ a)∧ (¬p∨ b)

Equivalently, adds the definition p := AND(a, b)

Can be considered the first interference-based proof system

Is very powerful: Only modest lower bounds results are known
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Short Proofs of Pigeon Hole Formulas [Cook 1967]

Can n+1 pigeons be in n holes (at-most-one pigeon per hole)?

PHPn :=
∧

1≤ i≤n+1

(p1,i∨· · ·∨pn,i)∧
∧

1≤h≤n,

∧
1≤ i < j≤n+1

(¬ph,i∨¬ph,j)

Resolution proofs of PHPn must be exponential [Haken 1985]

Cook constructed polynomial-sized ER proofs of PHPn

However, these proofs require introducing new variables:

Hard to find such proofs automatically

Existing ER approaches produce exponentially large proofs

How to get rid of this hurdle? First approach: blocked
clauses...
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Blocked Clauses [Kullmann 1999]

Definition (Blocked Clause)

A clause (C∨ p) is a blocked on p w.r.t. a CNF formula Γ if
for every clause (D∨¬p) ∈ Γ , resolvent C∨D is a tautology.

Example

Consider the formula (p∨ q)∧ (p∨ ¬q∨ ¬r)∧ (¬p∨ r).
Second clause is blocked by both p and ¬r.
Third clause is blocked by p

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.

Proof sketch: Given a formula Γ and a clause C∨ p that is
blocked on p w.r.t. Γ . Let assignment τ satisfy Γ , but falsify
C∨ p. Note that all clauses D∨¬p are doubly satisfied by τ.
Flipping p to true in τ satisfies both Γ and C∨ p.

Logic and Mechanized Reasoning 14 / 31



Blocked Clauses [Kullmann 1999]

Definition (Blocked Clause)

A clause (C∨ p) is a blocked on p w.r.t. a CNF formula Γ if
for every clause (D∨¬p) ∈ Γ , resolvent C∨D is a tautology.

Example

Consider the formula (p∨ q)∧ (p∨ ¬q∨ ¬r)∧ (¬p∨ r).
Second clause is blocked by both p and ¬r.
Third clause is blocked by p

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.

Proof sketch: Given a formula Γ and a clause C∨ p that is
blocked on p w.r.t. Γ . Let assignment τ satisfy Γ , but falsify
C∨ p. Note that all clauses D∨¬p are doubly satisfied by τ.
Flipping p to true in τ satisfies both Γ and C∨ p.

Logic and Mechanized Reasoning 14 / 31



Blocked Clauses [Kullmann 1999]

Definition (Blocked Clause)

A clause (C∨ p) is a blocked on p w.r.t. a CNF formula Γ if
for every clause (D∨¬p) ∈ Γ , resolvent C∨D is a tautology.

Example

Consider the formula (p∨ q)∧ (p∨ ¬q∨ ¬r)∧ (¬p∨ r).
Second clause is blocked by both p and ¬r.
Third clause is blocked by p

Theorem
Adding or removing a blocked clause preserves (un)satisfiability.

Proof sketch: Given a formula Γ and a clause C∨ p that is
blocked on p w.r.t. Γ . Let assignment τ satisfy Γ , but falsify
C∨ p. Note that all clauses D∨¬p are doubly satisfied by τ.
Flipping p to true in τ satisfies both Γ and C∨ p.

Logic and Mechanized Reasoning 14 / 31



Blocked Clause Addition and Blocked Clause Elimination

The Blocked Clause proof system (BC) combines the
resolution rule with the addition of blocked clauses.

BC generalizes ER [Kullmann 1999]

Recall p /∈ Γ ¬p /∈ Γ
(ER)

(p∨ ¬a∨ ¬b)∧ (¬p∨ a)∧ (¬p∨ b)

The ER clauses are blocked on the literals p and ¬p w.r.t. Γ

Blocked clause elimination used in preprocessing and inprocessing

Simulates many circuit optimization techniques

Removes redundant Pythagorean Triples
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Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause C in a CNF Γ , remove C from Γ .

Example

Consider (p∨ q)∧ (p∨ ¬q∨ ¬r)∧ (¬p∨ r).
After removing either (p∨¬q∨¬r) or (¬p∨ r), the clause
(p∨ q) becomes blocked (no clause with either ¬q or ¬p).

An extreme case in which BCE removes all clauses!

Proposition

BCE is confluent, i.e., has a unique fixpoint

Blocked clauses stay blocked w.r.t. removal
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BCE very effective on circuits [JärvisaloBiereHeule’10]

BCE converts the Tseitin encoding to Plaisted Greenbaum
BCE simulates Pure literal elimination, Cone of influence, etc.

Example of circuit simplification by BCE on Tseitin encoding

a b c

r s

t x

y

⊤
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Solution Reconstruction / Repair

Input:

stack S of eliminated blocked clauses

formula Γ (without the blocked clauses)

assignment τ that satisfies Γ

Output: an assignment that satisfies Γ ∧ S

1: while S.size () do

2: ⟨C, l⟩ := S.pop ()

3: if τ falsifies C then τ := τ ∪ {l = ⊤}

4: end while
5: return τ
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Proofs of Unsatisfiability

Beyond Resolution

Proof-Producing Tools

Beyond NP
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Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Implementations

Lingering doubt about whether result can be trusted

If find bug in tool, must rerun all prior verifications

Formally Verified Tools

Hard to develop

Hard to make scalable
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Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

Only need to prove individual executions, not entire program

Can have bugs in tool but still trust result
Can we trust the checker?
• Simple algorithms and implementation
• Ideally formally verified
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Proof-Generating Tools: Arbitrarily Complex Solvers

Proof-generating tools with verified checkers is a powerful idea:

Don’t worry about correctness or completeness of tools;

Facilitates making tools more complex and efficient; while

Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry
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All Propositional Reasoning in One Rule

All SAT techniques can be expressed with a single rule:

If every assignment τ that would satisfy formula Γ and
falsify constraint C can be repaired into τ ′ that would
satisfy Γ ∧ C, then adding C to Γ preserves satisfiability

Restriction: Validity of repair checkable in polynomial time

Example

Let Γ = (p∨ q)∧ (¬p∨ ¬q) and constraint C = (p∨ ¬q)

Only τ := {p = 0, q = 1} satisfies Γ and falsifies C

This assignment can be repaired by making p = 1, q = 0

So Γ and Γ ∧ C are equisatisfiable

A proof is a sequence of constraint-repair pairs ending with ⊥, {}

Check each constraint-repair pair in polynomial time

Extend the formula with the new constraint
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Mutilated Chessboards: “A Tough Nut to Crack” [McCarthy]

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

There are more white squares than black squares; and

A domino covers exactly one white and one black square.
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An Alternative Argument for Mutilated Chessboards

The chessboard pattern argument is challenging to find, but
an alternative short argument can be found automatically...

τ

Γ : the problem constraints

C: no two horizontal dominos
on top of each other

τ: “satisfies” Γ , falsifies C

repair: replace the horizontal
dominos by vertical dominos
covering the same cells

Γ and Γ ∧ C equisatisfiable
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Symbolic AI is Local Reasoning

These constraint-repair patterns can be automatically detected

This reduces the number of explored states exponentially

The proofs are linear in the formula size

Symbolic AI tools produce proofs that can be very different
compared to human-made proofs for the same problem
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Proofs of Unsatisfiability

Beyond Resolution

Proof-Producing Tools

Beyond NP
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Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even

(3n+ 1)/2 if n is odd

Does while(n > 1) n=Col(n); termi-
nate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n)) source: xkcd.com/710

Can we construct a function s.t. fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)

5 4 3 2 1 0
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Collatz Conjecture: Studying a Rewrite System
[Yolcu, Aaronson, & Heule 2021]

1 ×3+2 ×3 ×3+2 ×3 ×3+2 ×1
1 ×2 ×2+1 ×3 ×3+2 ×3 ×3+2 ×1
1 ×2 ×3+1 ×2+1 ×3+2 ×3 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×2+1 ×3 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×2+1 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×2+1 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×2+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×2+1 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×2 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×3+1 ×2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×2 ×1

1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×1

×2 ×1 ×1

×2+1 ×1 ×3+2 ×1

×2 ×3 ×3 ×2

×2 ×3+1 ×3 ×2+1

×2 ×3+2 ×3+1 ×2

×2+1 ×3 ×3+1 ×2+1

×2+1 ×3+1 ×3+2 ×2

×2+1 ×3+2 ×3+2 ×2+1

1 ×3 1 ×2+1

1 ×3+1 1 ×2 ×2

1 ×3+2 1 ×2 ×2+1
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Collatz Conjecture: Successes and Challenges
Success. Rewrite system with 11 rules:

Their termination solves Collatz.

Our tool proves the termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1
3

if n ≡ 1 (mod 3)
n
2

if n ≡ 0 or n ≡ 2 (mod 6)
3n+1
2

if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4

if n ≡ 0 (mod 4)
9n+1
8

if n ≡ 7 (mod 8)

⊥ otherwise

Logic and Mechanized Reasoning 30 / 31



Collatz Conjecture: Successes and Challenges
Success. Rewrite system with 11 rules:

Their termination solves Collatz.

Our tool proves the termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1
3

if n ≡ 1 (mod 3)
n
2

if n ≡ 0 or n ≡ 2 (mod 6)
3n+1
2

if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4

if n ≡ 0 (mod 4)
9n+1
8

if n ≡ 7 (mod 8)

⊥ otherwise

Logic and Mechanized Reasoning 30 / 31



Collatz Conjecture: Successes and Challenges
Success. Rewrite system with 11 rules:

Their termination solves Collatz.

Our tool proves the termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1
3

if n ≡ 1 (mod 3)
n
2

if n ≡ 0 or n ≡ 2 (mod 6)
3n+1
2

if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4

if n ≡ 0 (mod 4)
9n+1
8

if n ≡ 7 (mod 8)

⊥ otherwise

Logic and Mechanized Reasoning 30 / 31



Takeaways

Successes, Advances, and Trust:

A performance boost of symbolic AI technology allows
solving challenges in mathematics

Creative, but possibly gigantic proofs can be validated using
formally-verified checkers

Future: combine symbolic AI and ML

Challenges ready for symbolic AI + ML?

Chromatic number of the plane

Optimal matrix multiplication

Hadamard conjecture

Collatz conjecture

. . .
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