Logic and Mechanized Reasoning Propositional Logic

Marijn J.H. Heule

Carnegie Mellon University

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax: Definition

The set of propositional formulas is generated inductively:

- Each variable p_i is a formula.
- \blacktriangleright \top and \bot are formulas.
- ▶ If A is a formula, so is $\neg A$ ("not A").
- ▶ If A and B are formulas, so are

▶
$$A \land B$$
 ("A and B"),
▶ $A \lor B$ ("A or B"),
▶ $A \rightarrow B$ ("A implies B"), and
▶ $A \leftrightarrow B$ ("A if and only if B").

Syntax: Complexity

Complexity: the number of connectives

Syntax: Depth

Depth of the parse tree

$$\begin{array}{rcl} depth(p_i) &=& 0\\ depth(\top) &=& 0\\ depth(\bot) &=& 0\\ depth(\neg A) &=& depth(A) + 1\\ depth(A \land B) &=& \max(depth(A), depth(B)) + 1\\ depth(A \lor B) &=& \max(depth(A), depth(B)) + 1\\ depth(A \to B) &=& \max(depth(A), depth(B)) + 1\\ depth(A \leftrightarrow B) &=& \max(depth(A), depth(B)) + 1 \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

 $complexity(\neg A) =$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

> $complexity(\neg A) = complexity(A) + 1$ \leq

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

$$\begin{array}{lll} \mbox{complexity}(\neg A) & = & \mbox{complexity}(A) + 1 \\ & \leq & 2^{depth(A)} - 1 + 1 \\ & \leq & 2^{depth(A)} + 2^{depth(A)} - 1 \\ & \leq & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

$$\begin{array}{lll} complexity(\neg A) & = & complexity(A) + 1 \\ & \leq & 2^{depth(A)} - 1 + 1 \\ & \leq & 2^{depth(A)} + 2^{depth(A)} - 1 \\ & \leq & 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1. \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

$$\begin{array}{lll} \mbox{complexity}(\neg A) & = & \mbox{complexity}(A) + 1 \\ & \leq & 2^{depth(A)} - 1 + 1 \\ & \leq & 2^{depth(A)} + 2^{depth(A)} - 1 \\ & \leq & 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1. \end{array}$$

 $complexity(A \land B) =$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

$$complexity(A \land B) = complexity(A) + complexity(B) + 1$$

 \leq

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

Logic and Mechanized Reasoning

1

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

$$\begin{array}{lll} \mbox{complexity}(\neg A) & = & \mbox{complexity}(A) + 1 \\ & \leq & 2^{depth(A)} - 1 + 1 \\ & \leq & 2^{depth(A)} + 2^{depth(A)} - 1 \\ & \leq & 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1. \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \land):

$$\leq 2^{\operatorname{max}(depth(A),depth(B))} - 1$$

$$\leq 2^{\operatorname{max}(depth(A),depth(B))} - 1$$

$$= 2^{\operatorname{max}(depth(A),depth(B))+1} - 1$$

$$= 2^{depth(A \land B)} - 1$$

Logic and Mechanized Reasoning

1

Syntax: Subformulas

$$\begin{aligned} subformulas(A) &= \{A\} & \text{if } A \text{ is atomic} \\ subformulas(\neg A) &= \{\neg A\} \cup subformulas(A) \\ subformulas(A \star B) &= \{A \star B\} \cup subformulas(A) \cup \\ & subformulas(B) \end{aligned}$$

Syntax: Subformulas

$$subformulas(A) = \{A\} \text{ if } A \text{ is atomic}$$

$$subformulas(\neg A) = \{\neg A\} \cup subformulas(A)$$

$$subformulas(A \star B) = \{A \star B\} \cup subformulas(A) \cup$$

$$subformulas(B)$$

Example

Consider the formula $(\neg A \land C) \rightarrow \neg (B \lor C)$. The *subformulas* function returns

Syntax: Subformulas

$$subformulas(A) = \{A\} \text{ if } A \text{ is atomic}$$

$$subformulas(\neg A) = \{\neg A\} \cup subformulas(A)$$

$$subformulas(A \star B) = \{A \star B\} \cup subformulas(A) \cup$$

$$subformulas(B)$$

Example

Consider the formula $(\neg A \land C) \rightarrow \neg (B \lor C)$. The *subformulas* function returns $\{(\neg A \land C) \rightarrow \neg (B \lor C), \neg A \land C, \neg A, A, C, \neg (B \lor C), B \lor C, B)\}$

Proposition

For every pair of formulas A and B, if $B \in subformulas(A)$ and $A \in subformulas(B)$ then A and B are atomic.

True or false?

Proposition

For every pair of formulas A and B, if $B \in subformulas(A)$ and $A \in subformulas(B)$ then A and B are atomic.

True or false? Proof. False. A counterexample is $A = B = \neg p$.

Syntax

Semantics

Calculating with Propositions

Random Formulas

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Consider the formula $p \land (\neg q \lor r)$. Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are false, the truth value of $p \land (\neg q \lor r)$ is completely determined.

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are false, the truth value of $p \land (\neg q \lor r)$ is completely determined.

A truth assignment τ provides this specification by mapping propositional variables to the constants \top and \perp .

Semantics: Evaluation

$$\begin{split} \llbracket p_i \rrbracket_{\tau} &= \tau(p_i) \\ \llbracket \top \rrbracket_{\tau} &= \top \\ \llbracket \bot \rrbracket_{\tau} &= \bot \\ \llbracket \neg A \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \bot \\ \bot & \text{otherwise} \end{cases} \\ \llbracket A \land B \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \top \text{ and } \llbracket B \rrbracket_{\tau} = \top \\ \bot & \text{otherwise} \end{cases} \\ \llbracket A \lor B \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \top \text{ or } \llbracket B \rrbracket_{\tau} = \top \\ \bot & \text{otherwise} \end{cases} \\ \llbracket A \lor B \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \top \text{ or } \llbracket B \rrbracket_{\tau} = \top \\ \bot & \text{otherwise} \end{cases} \\ \llbracket A \to B \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \bot \text{ or } \llbracket B \rrbracket_{\tau} = \top \\ \bot & \text{otherwise} \end{cases} \\ \llbracket A \mapsto B \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \llbracket B \rrbracket_{\tau} \\ \bot & \text{otherwise} \end{cases} \\ \\ \llbracket A \mapsto B \rrbracket_{\tau} &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_{\tau} = \llbracket B \rrbracket_{\tau} \\ \bot & \text{otherwise} \end{cases} \end{split}$$

Semantics: Satisfiable, Unsatisfiable, and Valid

- If [[A]]_τ = ⊤, then A is satisfied by τ. In that case, τ is a satisfying assignment of A.
- A propositional formula A is satisfiable iff there exists an assignment τ that satisfies it and unsatisfiable otherwise.
- A propositional formula A is valid iff every assignment satisfies it.

Semantics: Satisfiable, Unsatisfiable, and Valid

- If [[A]]_τ = ⊤, then A is satisfied by τ. In that case, τ is a satisfying assignment of A.
- A propositional formula A is satisfiable iff there exists an assignment τ that satisfies it and unsatisfiable otherwise.
- A propositional formula A is valid iff every assignment satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

$$(A \leftrightarrow B) \lor (\neg C) (A) \lor (\neg B) \lor (\neg A \land B) (A) \land (\neg B) \land (A \to B)$$

Theorem A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $\llbracket A \rrbracket_{\tau} = \top$ for every assignment τ .

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $\llbracket A \rrbracket_{\tau} = \top$ for every assignment τ . By the def of $\llbracket \neg A \rrbracket_{\tau}$, this happens iff $\llbracket \neg A \rrbracket_{\tau} = \bot$ for every τ .

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[\![A]\!]_{\tau} = \top$ for every assignment τ . By the def of $[\![\neg A]\!]_{\tau}$, this happens iff $[\![\neg A]\!]_{\tau} = \bot$ for every τ . This is the same as saying that $\neg A$ is unsatisfiable. Semantics: Proposition 1

Proposition

For every pair of formulas A and B, $A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?

Semantics: Proposition 1

Proposition

For every pair of formulas A and B, $A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?

Proof.

True. $A \wedge B$ is valid means that for every assignment τ we have $[\![A \wedge B]\!]_{\tau} = \top$. By the definition of $[\![A \wedge B]\!]$, we have that $[\![A]\!]_{\tau} = \top$ and $[\![B]\!]_{\tau} = \top$. This means that A and B are valid.
Proposition

For every pair of formulas A and B, $A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?

Proposition

For every pair of formulas A and B, $A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?

Proof.

```
False. Consider the formula A \wedge B with A = p and B = \neg p.
Clearly both A and B are satisfiable, while A \wedge B is
unsatisfiable.
```

Proposition

For every pair of formulas A and B, $A \lor B$ is valid if and only if A is valid or B is valid.

True or false?

Proposition

For every pair of formulas A and B, $A \lor B$ is valid if and only if A is valid or B is valid.

True or false?

Proof.

False. Consider the formula $A \lor B$ with A = p and $B = \neg p$. The formula $A \lor B$ is valid, while both A is not valid and B is not valid.

Proposition

For every pair of formulas A and B, $A \lor B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?

Proposition

For every pair of formulas A and B, $A \lor B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?

Proof.

True. Consider and assignment τ that satisfies $A \vee B$. By definition it must be the case that $\llbracket A \rrbracket_{\tau} = \top$ or $\llbracket B \rrbracket_{\tau} = \top$. This is the same as stating that A is satisfiable or B is satisfiable.

Semantics: Entailment and Equivalence

- lf every satisfying assignment of a formula A, also satisfies formula B, the A entails B, denoted by $A \models B$.
- ▶ If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Semantics: Entailment and Equivalence

- lf every satisfying assignment of a formula A, also satisfies formula B, the A entails B, denoted by $A \models B$.
- ▶ If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Example

Which formula entails which other formula?

Proposition

For every pair of formulas A and B such that $A \models B$. If A is valid, then B is valid.

True or false?

Proposition

For every pair of formulas A and B such that $A \models B$. If A is valid, then B is valid.

True or false?

Proof.

True. For every assignment τ holds that $\llbracket A \rrbracket_{\tau} = \top$. Since $A \models B$, every assignment that satisfies A also satisfied B. So every assignment satisfies B, which is only true if B is valid. \Box

Proposition

For every pair of formulas A and B such that $A \models B$. If B is satisfiable, then A is satisfiable.

True or false?

Proposition

For every pair of formulas A and B such that $A \models B$. If B is satisfiable, then A is satisfiable.

True or false? Proof. False. A counterexample is $A = p \land \neg p$ and B = p.

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proof.

True. Suppose $A \models B \models C \models A$. Let τ be any truth assignment. We need to show $\llbracket A \rrbracket_{\tau} = \llbracket B \rrbracket_{\tau} = \llbracket C \rrbracket_{\tau}$. Suppose $\llbracket A \rrbracket_{\tau} = \top$. Since $A \models B$, $\llbracket B \rrbracket_{\tau} = \top$, and since $B \models C$, we have $\llbracket C \rrbracket_{\tau} = \top$. So, in that case, $\llbracket A \rrbracket_{\tau} = \llbracket B \rrbracket_{\tau} = \llbracket C \rrbracket_{\tau}$. The other possibility is $\llbracket A \rrbracket_{\tau} = \bot$. Since $C \models A$, we must have $\llbracket C \rrbracket_{\tau} = \bot$, and since $B \models C$, we have $\llbracket B \rrbracket_{\tau} = \bot$. So, in that case also, $\llbracket A \rrbracket_{\tau} = \llbracket B \rrbracket_{\tau} = \llbracket C \rrbracket_{\tau}$.

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite *Peru* or to exclude *Qatar*. The queen asks you to invite either *Qatar* or *Romania* or both. The king, in a spiteful mood, wants to snub either *Romania* or *Peru* or both. Is there a guest list that will satisfy the whims of the entire royal family?"

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite *Peru* or to exclude *Qatar*. The queen asks you to invite either *Qatar* or *Romania* or both. The king, in a spiteful mood, wants to snub either *Romania* or *Peru* or both. Is there a guest list that will satisfy the whims of the entire royal family?"

$$(p \lor \neg q) \land (q \lor r) \land (\neg r \lor \neg p)$$

Semantics: Truth Table

$$\begin{split} \Gamma &= (p \lor \neg q) \land (q \lor r) \land (\neg r \lor \neg p) \\ \hline p & q & r & \text{falsifies} & \llbracket \Gamma \rrbracket_{\tau} \\ \bot & \bot & \bot & (q \lor r) & \bot \\ \bot & \bot & \top & - & \top \\ \bot & \top & \bot & (p \lor \neg q) & \bot \\ \bot & \top & \top & (p \lor \neg q) & \bot \\ \top & \bot & \bot & (q \lor r) & \bot \\ \top & \bot & \top & (\neg r \lor \neg p) & \bot \\ \top & \top & \top & (\neg r \lor \neg p) & \bot \\ \top & \top & \top & (\neg r \lor \neg p) & \bot \\ \hline & \top & \top & (\neg r \lor \neg p) & \bot \\ \hline & & \top & \top & (\neg r \lor \neg p) & \bot \\ \end{split}$$

Logic and Mechanized Reasoning

24 / 33

Syntax

Semantics

Calculating with Propositions

Random Formulas

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$A \lor \top \equiv \top$$

$$A \land \top \equiv A$$

$$A \lor B \equiv B \lor A$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

$$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

$$A \land (A \lor B) \equiv A$$

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$A \lor \top \equiv \top$$

$$A \land \top \equiv A$$

$$A \lor B \equiv B \lor A$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

$$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

$$A \land (A \lor B) \equiv A$$

De Morgan's laws:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

Theorem For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B.$

Proof.

$$(A \land \neg B) \lor B \equiv$$

Theorem For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B.$

Proof.

$$(A \land \neg B) \lor B \equiv (A \lor B) \land (\neg B \lor B)$$
$$\equiv$$

Theorem For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B.$

Proof.

$$(A \land \neg B) \lor B \equiv (A \lor B) \land (\neg B \lor B)$$
$$\equiv (A \lor B) \land \top$$
$$\equiv$$

Theorem For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B.$

Proof.

$$(A \land \neg B) \lor B \equiv (A \lor B) \land (\neg B \lor B) \equiv (A \lor B) \land \top \equiv (A \lor B).$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

 $\begin{array}{l} \mathsf{Proof.} \\ \neg((A \lor B) \land (B \to C)) \end{array} \equiv \end{array}$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg ((A \lor B) \land (B \to C)) \equiv \neg ((A \lor B) \land (\neg B \lor C))$$

=

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$
$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$
$$\equiv$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg ((A \lor B) \land (B \to C)) \equiv \neg ((A \lor B) \land (\neg B \lor C))$$

 $\equiv \neg (A \lor B) \lor \neg (\neg B \lor C)$
 $\equiv (\neg A \land \neg B) \lor (B \land \neg C)$
 \equiv

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land \top \land (\neg B \lor \neg C)$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg (\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$$

Syntax

Semantics

Calculating with Propositions

Random Formulas

Random Formulas: Introduction

- Formulas in conjunctive normal form
- \blacktriangleright All clauses have length k
- Variables have the same probability to occur
- Each literal is negated with probability of 50%
- Density is ratio Clauses to Variables

Random Formulas: Phase Transition

Random Formulas: Exponential Runtime

Logic and Mechanized Reasoning

Random Formulas: SAT Game

SAT Game

by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/

Logic and Mechanized Reasoning

33 / 33