Logic and Mechanized Reasoning Propositional Logic

Marijn J.H. Heule

Carnegie
 Mellon
 University

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax: Definition

The set of propositional formulas is generated inductively:

- Each variable p_{i} is a formula.
- T and \perp are formulas.
- If A is a formula, so is $\neg A$ ("not A ").
- If A and B are formulas, so are
- $A \wedge B$ (" A and B "),
- $A \vee B$ (" A or B "),
- $A \rightarrow B$ (" A implies B "), and
- $A \leftrightarrow B$ (" A if and only if B ").

Syntax: Complexity

Complexity: the number of connectives

$$
\begin{aligned}
\operatorname{complexity}\left(p_{i}\right) & =0 \\
\operatorname{complexity}(T) & =0 \\
\operatorname{complexity}(\perp) & =0 \\
\operatorname{complexity}(\neg A) & =\operatorname{complexity}(A)+1 \\
\operatorname{complexity}(A \wedge B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
\operatorname{complexity}(A \vee B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
\operatorname{complexity}(A \rightarrow B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
\operatorname{complexity}(A \leftrightarrow B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1
\end{aligned}
$$

Syntax: Depth

Depth of the parse tree

$$
\begin{aligned}
\operatorname{depth}\left(p_{i}\right) & =0 \\
\operatorname{depth}(\top) & =0 \\
\operatorname{depth}(\perp) & =0 \\
\operatorname{depth}(\neg A) & =\operatorname{depth}(A)+1 \\
\operatorname{depth}(A \wedge B) & =\max (\operatorname{depth}(A), \operatorname{depth}(B))+1 \\
\operatorname{depth}(A \vee B) & =\max (\operatorname{depth}(A), \operatorname{depth}(B))+1 \\
\operatorname{depth}(A \rightarrow B) & =\max (\operatorname{depth}(A), \operatorname{depth}(B))+1 \\
\operatorname{depth}(A \leftrightarrow B) & =\max (\operatorname{depth}(A), \operatorname{depth}(B))+1
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge): complexity $(\neg A)=$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\operatorname{complexity}(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\operatorname{complexity}(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\operatorname{complexity}(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\text { complexity }(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1 \\
\text { complexity }(A \wedge B) & =
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\text { complexity }(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1 \\
\text { complexity }(A \wedge B) & =\text { complexity }(A)+\operatorname{complexity}(B)+1 \\
& \leq
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1 \\
\text { complexity }(A \wedge B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+2^{\operatorname{depth}(B)}-1+1 \\
& \leq
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1 . \\
\text { complexity }(A \wedge B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+2^{\operatorname{depth}(B)}-1+1 \\
& \leq 2 \cdot 2^{\max (\operatorname{depth}(A), \operatorname{depth}(B))}-1 \\
& =
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\operatorname{depth}(A)}-1$.
Proof.
Base case: complexity $\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\operatorname{complexity}(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1 . \\
\text { complexity }(A \wedge B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+2^{\operatorname{depth}(B)}-1+1 \\
& \leq 2^{\max (\operatorname{depth}(A), \operatorname{depth}(B))}-1 \\
& =2^{\max (\operatorname{depth}(A), \operatorname{depth}(B))+1}-1
\end{aligned}
$$

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity $(A) \leq 2^{\text {depth }(A)}-1$.
Proof.
Base case: $\operatorname{complexity}\left(p_{i}\right)=0=2^{0}-1=2^{\operatorname{depth}\left(p_{i}\right)}-1$, Inductive case (first \neg, afterwards \wedge):

$$
\begin{aligned}
\text { complexity }(\neg A) & =\text { complexity }(A)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+1 \\
& \leq 2^{\operatorname{depth}(A)}+2^{\operatorname{depth}(A)}-1 \\
& \leq 2^{\operatorname{depth}(A)+1}-1=2^{\operatorname{depth}(\neg A)}-1 \\
\text { complexity }(A \wedge B) & =\operatorname{complexity}(A)+\operatorname{complexity}(B)+1 \\
& \leq 2^{\operatorname{depth}(A)}-1+2^{\operatorname{depth}(B)}-1+1 \\
& \leq 2 \cdot 2^{\max (\operatorname{depth}(A), \operatorname{depth}(B))}-1 \\
& =2^{\max (\operatorname{depth}(A), \operatorname{depth}(B))+1}-1 \\
& =2^{\operatorname{depth}(A \wedge B)}-1
\end{aligned}
$$

Syntax: Subformulas

$$
\begin{aligned}
& \text { subformulas }(A)=\{A\} \text { if } A \text { is atomic } \\
& \text { subformulas }(\neg A)=\{\neg A\} \cup \text { subformulas }(A) \\
& \text { subformulas }(A \star B)=\{A \star B\} \cup \operatorname{subformulas~}(A) \cup \\
& \text { subformulas }(B)
\end{aligned}
$$

Syntax: Subformulas

$$
\begin{aligned}
& \text { subformulas }(A)=\{A\} \text { if } A \text { is atomic } \\
& \text { subformulas }(\neg A)=\{\neg A\} \cup \text { subformulas }(A) \\
& \text { subformulas }(A \star B)=\{A \star B\} \cup \text { subformulas }(A) \cup \\
& \text { subformulas }(B)
\end{aligned}
$$

Example
Consider the formula $(\neg A \wedge C) \rightarrow \neg(B \vee C)$.
The subformulas function returns

Syntax: Subformulas

$$
\begin{aligned}
\text { subformulas }(A)= & \{A\} \text { if } A \text { is atomic } \\
\text { subformulas }(\neg A)= & \{\neg A\} \cup \text { subformulas }(A) \\
\text { subformulas }(A \star B)= & \{A \star B\} \cup \operatorname{subformulas~}(A) \cup \\
& \text { subformulas }(B)
\end{aligned}
$$

Example
Consider the formula $(\neg A \wedge C) \rightarrow \neg(B \vee C)$.
The subformulas function returns
$\{(\neg A \wedge C) \rightarrow \neg(B \vee C), \neg A \wedge C, \neg A, A, C, \neg(B \vee C), B \vee C, B)\}$

Syntax: Proposition

Proposition
For every pair of formulas A and B, if $B \in \operatorname{subformulas}(A)$ and $A \in \operatorname{subformulas}(B)$ then A and B are atomic.

True or false?

Syntax: Proposition

Proposition

For every pair of formulas A and B, if $B \in \operatorname{subformulas}(A)$ and $A \in \operatorname{subformulas}(B)$ then A and B are atomic.

True or false?
Proof.
False. A counterexample is $A=B=\neg p$.

Syntax

Semantics

Calculating with Propositions

Random Formulas

Semantics: Introduction

Consider the formula $p \wedge(\neg q \vee r)$. Is it true?

Semantics: Introduction

Consider the formula $p \wedge(\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Semantics: Introduction

Consider the formula $p \wedge(\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are false, the truth value of $p \wedge(\neg q \vee r)$ is completely determined.

Semantics: Introduction

Consider the formula $p \wedge(\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are false, the truth value of $p \wedge(\neg q \vee r)$ is completely determined.

A truth assignment τ provides this specification by mapping propositional variables to the constants \top and \perp.

Semantics: Evaluation

$$
\begin{aligned}
\llbracket p_{i} \rrbracket_{\tau} & =\tau\left(p_{i}\right) \\
\llbracket \top \rrbracket_{\tau} & =T \\
\llbracket \perp \rrbracket_{\tau} & =\perp \\
\llbracket \neg A \rrbracket_{\tau} & = \begin{cases}T & \text { if } \llbracket A \rrbracket_{\tau}=\perp \\
\perp & \text { otherwise }\end{cases} \\
\llbracket A \wedge B \rrbracket_{\tau} & = \begin{cases}\top & \text { if } \llbracket A \rrbracket_{\tau}=T \text { and } \llbracket B \rrbracket_{\tau}=T \\
\perp & \text { otherwise }\end{cases} \\
\llbracket A \vee B \rrbracket_{\tau} & = \begin{cases}\top & \text { if } \llbracket A \rrbracket_{\tau}=\top \text { or } \llbracket B \rrbracket_{\tau}=\top \\
\perp & \text { otherwise }\end{cases} \\
\llbracket A \rightarrow B \rrbracket_{\tau} & = \begin{cases}T & \text { if } \llbracket A \rrbracket_{\tau}=\perp \text { or } \llbracket B \rrbracket_{\tau}=\top \\
\perp & \text { otherwise }\end{cases} \\
\llbracket A \leftrightarrow B \rrbracket_{\tau} & = \begin{cases}\top & \text { if } \llbracket A \rrbracket_{\tau}=\llbracket B \rrbracket_{\tau} \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

Semantics: Satisfiable, Unsatisfiable, and Valid

- If $\llbracket A \rrbracket_{\tau}=\mathrm{T}$, then A is satisfied by τ. In that case, τ is a satisfying assignment of A.
- A propositional formula A is satisfiable iff there exists an assignment τ that satisfies it and unsatisfiable otherwise.
- A propositional formula A is valid iff every assignment satisfies it.

Semantics: Satisfiable, Unsatisfiable, and Valid

- If $\llbracket A \rrbracket_{\tau}=\mathrm{T}$, then A is satisfied by τ. In that case, τ is a satisfying assignment of A.
- A propositional formula A is satisfiable iff there exists an assignment τ that satisfies it and unsatisfiable otherwise.
- A propositional formula A is valid iff every assignment satisfies it.

Example
Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

- $(A \leftrightarrow B) \vee(\neg C)$
- $(A) \vee(\neg B) \vee(\neg A \wedge B)$
- $(A) \wedge(\neg B) \wedge(A \rightarrow B)$

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.
A is valid if and only if $\llbracket A \rrbracket_{\tau}=\top$ for every assignment τ.

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.
A is valid if and only if $\llbracket A \rrbracket_{\tau}=\top$ for every assignment τ.
By the def of $\llbracket \neg A \rrbracket_{\tau}$, this happens iff $\llbracket \neg A \rrbracket_{\tau}=\perp$ for every τ.

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.
A is valid if and only if $\llbracket A \rrbracket_{\tau}=\top$ for every assignment τ.
By the def of $\llbracket \neg A \rrbracket_{\tau}$, this happens iff $\llbracket \neg A \rrbracket_{\tau}=\perp$ for every τ.
This is the same as saying that $\neg A$ is unsatisfiable.

Semantics: Proposition 1

Proposition
For every pair of formulas A and $B, A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?

Semantics: Proposition 1

Proposition

For every pair of formulas A and $B, A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?
Proof.
True. $A \wedge B$ is valid means that for every assignment τ we have $\llbracket A \wedge B \rrbracket_{\tau}=\top$. By the definition of $\llbracket A \wedge B \rrbracket$, we have that $\llbracket A \rrbracket_{\tau}=\top$ and $\llbracket B \rrbracket_{\tau}=\top$. This means that A and B are valid.

Semantics: Proposition 2

Proposition

For every pair of formulas A and $B, A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?

Semantics: Proposition 2

Proposition

For every pair of formulas A and $B, A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?
Proof.
False. Consider the formula $A \wedge B$ with $A=p$ and $B=\neg p$. Clearly both A and B are satisfiable, while $A \wedge B$ is unsatisfiable.

Semantics: Proposition 3

Proposition

For every pair of formulas A and $B, A \vee B$ is valid if and only if A is valid or B is valid.

True or false?

Semantics: Proposition 3

Proposition

For every pair of formulas A and $B, A \vee B$ is valid if and only if A is valid or B is valid.

True or false?
Proof.
False. Consider the formula $A \vee B$ with $A=p$ and $B=\neg p$. The formula $A \vee B$ is valid, while both A is not valid and B is not valid.

Semantics: Proposition 4

Proposition
For every pair of formulas A and $B, A \vee B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?

Semantics: Proposition 4

Proposition

For every pair of formulas A and $B, A \vee B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?
Proof.
True. Consider and assignment τ that satisfies $A \vee B$. By definition it must be the case that $\llbracket A \rrbracket_{\tau}=\top$ or $\llbracket B \rrbracket_{\tau}=\top$. This is the same as stating that A is satisfiable or B is satisfiable.

Semantics: Entailment and Equivalence

- If every satisfying assignment of a formula A, also satisfies formula B, the A entails B, denoted by $A \models B$.
- If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Semantics: Entailment and Equivalence

- If every satisfying assignment of a formula A, also satisfies formula B, the A entails B, denoted by $A \models B$.
- If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Example
Which formula entails which other formula?

- A
- $\neg A \rightarrow B$
- $\neg(\neg A \vee \neg B)$

Semantics: Proposition 5

Proposition

For every pair of formulas A and B such that $A \models B$. If A is valid, then B is valid.

True or false?

Semantics: Proposition 5

Proposition

For every pair of formulas A and B such that $A \models B$.
If A is valid, then B is valid.
True or false?
Proof.
True. For every assignment τ holds that $\llbracket A \rrbracket_{\tau}=T$. Since $A \models B$, every assignment that satisfies A also satisfied B. So every assignment satisfies B, which is only true if B is valid.

Semantics: Proposition 6

Proposition
For every pair of formulas A and B such that $A \models B$. If B is satisfiable, then A is satisfiable.

True or false?

Semantics: Proposition 6

Proposition

For every pair of formulas A and B such that $A \models B$. If B is satisfiable, then A is satisfiable.

True or false?
Proof.
False. A counterexample is $A=p \wedge \neg p$ and $B=p$.

Semantics: Proposition 7

Proposition
For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Semantics: Proposition 7

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proof.

True. Suppose $A \models B \models C \models A$. Let τ be any truth assignment.
We need to show $\llbracket A \rrbracket_{\tau}=\llbracket B \rrbracket_{\tau}=\llbracket C \rrbracket_{\tau}$. Suppose $\llbracket A \rrbracket_{\tau}=\mathrm{T}$.
Since $A \models B, \llbracket B \rrbracket_{\tau}=\mathrm{T}$, and since $B \models C$, we have $\llbracket C \rrbracket_{\tau}=\mathrm{T}$.
So, in that case, $\llbracket A \rrbracket_{\tau}=\llbracket B \rrbracket_{\tau}=\llbracket C \rrbracket_{\tau}$.
The other possibility is $\llbracket A \rrbracket_{\tau}=\perp$. Since $C \models A$, we must have $\llbracket C \rrbracket_{\tau}=\perp$, and since $B \models C$, we have $\llbracket B \rrbracket_{\tau}=\perp$. So, in that case also, $\llbracket A \rrbracket_{\tau}=\llbracket B \rrbracket_{\tau}=\llbracket C \rrbracket_{\tau}$.

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

$$
(p \vee \neg q) \wedge(q \vee r) \wedge(\neg r \vee \neg p)
$$

Semantics: Truth Table

$$
\begin{aligned}
& \Gamma=(p \vee \neg q) \wedge(q \vee r) \wedge(\neg r \vee \neg p) \\
& \begin{array}{ccc|c|c}
p & q & r & \text { falsifies } & \llbracket \Gamma \rrbracket_{\tau} \\
\hline \perp & \perp & \perp & (q \vee r) & \perp \\
\perp & \perp & \top & - & \perp \\
\perp & \top & \perp & (p \vee \neg q) & \perp \\
\perp & \top & \top & (p \vee \neg q) & \perp \\
\top & \perp & \perp & (q \vee r) & \perp \\
\top & \perp & \top & (\neg r \vee \neg p) & \perp \\
\top & \top & \perp & - & \mp \\
\top & \top & \top & (\neg r \vee \neg p) & \perp
\end{array}
\end{aligned}
$$

Syntax

Semantics

Calculating with Propositions

Random Formulas

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$
\begin{aligned}
A \vee \top & \equiv \top \\
A \wedge \top & \equiv A \\
A \vee B & \equiv B \vee A \\
(A \vee B) \vee C & \equiv A \vee(B \vee C) \\
A \wedge(B \vee C) & \equiv(A \wedge B) \vee(A \wedge C) \\
A \vee(B \wedge C) & \equiv(A \vee B) \wedge(A \vee C) \\
A \wedge(A \vee B) & \equiv A
\end{aligned}
$$

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$
\begin{aligned}
A \vee \top & \equiv \top \\
A \wedge \top & \equiv A \\
A \vee B & \equiv B \vee A \\
(A \vee B) \vee C & \equiv A \vee(B \vee C) \\
A \wedge(B \vee C) & \equiv(A \wedge B) \vee(A \wedge C) \\
A \vee(B \wedge C) & \equiv(A \vee B) \wedge(A \vee C) \\
A \wedge(A \vee B) & \equiv A
\end{aligned}
$$

De Morgan's laws:

$$
\begin{aligned}
& \neg(A \wedge B) \equiv \neg A \vee \neg B \\
& \neg(A \vee B) \equiv \neg A \wedge \neg B
\end{aligned}
$$

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
(A \wedge \neg B) \vee B \equiv
$$

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
\begin{aligned}
(A \wedge \neg B) \vee B & \equiv(A \vee B) \wedge(\neg B \vee B) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
\begin{aligned}
(A \wedge \neg B) \vee B & \equiv(A \vee B) \wedge(\neg B \vee B) \\
& \equiv(A \vee B) \wedge \top \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
\begin{aligned}
(A \wedge \neg B) \vee B & \equiv(A \vee B) \wedge(\neg B \vee B) \\
& \equiv(A \vee B) \wedge T \\
& \equiv(A \vee B) .
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.
$\neg((A \vee B) \wedge(B \rightarrow C)) \equiv$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
$\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
$\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv(\neg A \wedge \neg B) \vee(B \wedge \neg C) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv(\neg A \wedge \neg B) \vee(B \wedge \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee(B \wedge \neg C))
\end{aligned}
$$

$$
\equiv
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv(\neg A \wedge \neg B) \vee(B \wedge \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee(B \wedge \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee B) \wedge(\neg B \vee \neg C)) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv(\neg A \wedge \neg B) \vee(B \wedge \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee(B \wedge \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee B) \wedge(\neg B \vee \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge \top \wedge(\neg B \vee \neg C) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv(\neg A \wedge \neg B) \vee(B \wedge \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee(B \wedge \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee B) \wedge(\neg B \vee \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge \top \wedge(\neg B \vee \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee \neg C) \\
& \equiv
\end{aligned}
$$

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have $\neg((A \vee B) \wedge(B \rightarrow C)) \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C)$.

Proof.

$$
\begin{aligned}
\neg((A \vee B) \wedge(B \rightarrow C)) & \equiv \neg((A \vee B) \wedge(\neg B \vee C)) \\
& \equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\
& \equiv(\neg A \wedge \neg B) \vee(B \wedge \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee(B \wedge \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee B) \wedge(\neg B \vee \neg C)) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge \top \wedge(\neg B \vee \neg C) \\
& \equiv(\neg A \vee(B \wedge \neg C)) \wedge(\neg B \vee \neg C) \\
& \equiv(\neg A \vee B) \wedge(\neg A \vee \neg C) \wedge(\neg B \vee \neg C) .
\end{aligned}
$$

Semantics

Calculating with Propositions

Random Formulas

Random Formulas: Introduction

- Formulas in conjunctive normal form
- All clauses have length k
- Variables have the same probability to occur
- Each literal is negated with probability of 50%
- Density is ratio Clauses to Variables

Random Formulas: Phase Transition

Random Formulas: Exponential Runtime

Random Formulas: SAT Game

SAT Game

by Olivier Roussel
http://www.cs.utexas.edu/~marijn/game/

