
Logic and Mechanized Reasoning
Propositional Logic

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 33

Syntax

Semantics

Calculating with Propositions

Random Formulas

Logic and Mechanized Reasoning 2 / 33

Syntax

Semantics

Calculating with Propositions

Random Formulas

Logic and Mechanized Reasoning 3 / 33

Syntax: Definition

The set of propositional formulas is generated inductively:

I Each variable pi is a formula.

I > and ⊥ are formulas.

I If A is a formula, so is ¬A (“not A”).
I If A and B are formulas, so are

I A ∧ B (“A and B”),
I A ∨ B (“A or B”),
I A→ B (“A implies B”), and
I A↔ B (“A if and only if B”).

Logic and Mechanized Reasoning 4 / 33

Syntax: Complexity

Complexity: the number of connectives

complexity(pi) = 0
complexity(>) = 0
complexity(⊥) = 0

complexity(¬A) = complexity(A) + 1
complexity(A ∧ B) = complexity(A) + complexity(B) + 1
complexity(A ∨ B) = complexity(A) + complexity(B) + 1

complexity(A→ B) = complexity(A) + complexity(B) + 1
complexity(A↔ B) = complexity(A) + complexity(B) + 1

Logic and Mechanized Reasoning 5 / 33

Syntax: Depth

Depth of the parse tree

depth(pi) = 0
depth(>) = 0
depth(⊥) = 0

depth(¬A) = depth(A) + 1
depth(A ∧ B) = max(depth(A), depth(B)) + 1
depth(A ∨ B) = max(depth(A), depth(B)) + 1

depth(A→ B) = max(depth(A), depth(B)) + 1
depth(A↔ B) = max(depth(A), depth(B)) + 1

Logic and Mechanized Reasoning 6 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) =

complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤

2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤

2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤

2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) =

complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤

2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤

2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
=

2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
=

2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,

Inductive case (first ¬, afterwards ∧):

complexity(¬A) = complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1

Logic and Mechanized Reasoning 7 / 33

Syntax: Subformulas

subformulas(A) = {A} if A is atomic

subformulas(¬A) = {¬A}∪ subformulas(A)

subformulas(A ? B) = {A ? B}∪ subformulas(A) ∪
subformulas(B)

Example

Consider the formula (¬A ∧ C)→ ¬(B ∨ C).
The subformulas function returns
{(¬A ∧ C)→ ¬(B ∨ C),¬A ∧ C,¬A, A, C,¬(B ∨ C), B ∨ C, B)}

Logic and Mechanized Reasoning 8 / 33

Syntax: Subformulas

subformulas(A) = {A} if A is atomic

subformulas(¬A) = {¬A}∪ subformulas(A)

subformulas(A ? B) = {A ? B}∪ subformulas(A) ∪
subformulas(B)

Example

Consider the formula (¬A ∧ C)→ ¬(B ∨ C).
The subformulas function returns

{(¬A ∧ C)→ ¬(B ∨ C),¬A ∧ C,¬A, A, C,¬(B ∨ C), B ∨ C, B)}

Logic and Mechanized Reasoning 8 / 33

Syntax: Subformulas

subformulas(A) = {A} if A is atomic

subformulas(¬A) = {¬A}∪ subformulas(A)

subformulas(A ? B) = {A ? B}∪ subformulas(A) ∪
subformulas(B)

Example

Consider the formula (¬A ∧ C)→ ¬(B ∨ C).
The subformulas function returns
{(¬A ∧ C)→ ¬(B ∨ C),¬A ∧ C,¬A, A, C,¬(B ∨ C), B ∨ C, B)}

Logic and Mechanized Reasoning 8 / 33

Syntax: Proposition

Proposition

For every pair of formulas A and B, if B ∈ subformulas(A)
and A ∈ subformulas(B) then A and B are atomic.

True or false?

Proof.
False. A counterexample is A = B = ¬p.

Logic and Mechanized Reasoning 9 / 33

Syntax: Proposition

Proposition

For every pair of formulas A and B, if B ∈ subformulas(A)
and A ∈ subformulas(B) then A and B are atomic.

True or false?

Proof.
False. A counterexample is A = B = ¬p.

Logic and Mechanized Reasoning 9 / 33

Syntax

Semantics

Calculating with Propositions

Random Formulas

Logic and Mechanized Reasoning 10 / 33

Semantics: Introduction

Consider the formula p ∧ (¬q ∨ r). Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are
false, the truth value of p∧ (¬q∨ r) is completely determined.

A truth assignment τ provides this specification by mapping
propositional variables to the constants > and ⊥.

Logic and Mechanized Reasoning 11 / 33

Semantics: Introduction

Consider the formula p ∧ (¬q ∨ r). Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are
false, the truth value of p∧ (¬q∨ r) is completely determined.

A truth assignment τ provides this specification by mapping
propositional variables to the constants > and ⊥.

Logic and Mechanized Reasoning 11 / 33

Semantics: Introduction

Consider the formula p ∧ (¬q ∨ r). Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are
false, the truth value of p∧ (¬q∨ r) is completely determined.

A truth assignment τ provides this specification by mapping
propositional variables to the constants > and ⊥.

Logic and Mechanized Reasoning 11 / 33

Semantics: Introduction

Consider the formula p ∧ (¬q ∨ r). Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are
false, the truth value of p∧ (¬q∨ r) is completely determined.

A truth assignment τ provides this specification by mapping
propositional variables to the constants > and ⊥.

Logic and Mechanized Reasoning 11 / 33

Semantics: Evaluation

[[pi]]τ = τ(pi)

[[>]]τ = >
[[⊥]]τ = ⊥

[[¬A]]τ =

{
> if [[A]]τ = ⊥
⊥ otherwise

[[A ∧ B]]τ =

{
> if [[A]]τ = > and [[B]]τ = >
⊥ otherwise

[[A ∨ B]]τ =

{
> if [[A]]τ = > or [[B]]τ = >
⊥ otherwise

[[A→ B]]τ =

{
> if [[A]]τ = ⊥ or [[B]]τ = >
⊥ otherwise

[[A↔ B]]τ =

{
> if [[A]]τ = [[B]]τ
⊥ otherwise

Logic and Mechanized Reasoning 12 / 33

Semantics: Satisfiable, Unsatisfiable, and Valid

I If [[A]]τ = >, then A is satisfied by τ. In that case, τ is a
satisfying assignment of A.

I A propositional formula A is satisfiable iff there exists an
assignment τ that satisfies it and unsatisfiable otherwise.

I A propositional formula A is valid iff every assignment
satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

I (A↔ B)∨ (¬C)
I (A)∨ (¬B)∨ (¬A ∧ B)
I (A)∧ (¬B)∧ (A→ B)

Logic and Mechanized Reasoning 13 / 33

Semantics: Satisfiable, Unsatisfiable, and Valid

I If [[A]]τ = >, then A is satisfied by τ. In that case, τ is a
satisfying assignment of A.

I A propositional formula A is satisfiable iff there exists an
assignment τ that satisfies it and unsatisfiable otherwise.

I A propositional formula A is valid iff every assignment
satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

I (A↔ B)∨ (¬C)
I (A)∨ (¬B)∨ (¬A ∧ B)
I (A)∧ (¬B)∧ (A→ B)

Logic and Mechanized Reasoning 13 / 33

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if ¬A is
unsatisfiable.

Proof.
A is valid if and only if [[A]]τ = > for every assignment τ.

By the def of [[¬A]]τ, this happens iff [[¬A]]τ = ⊥ for every τ.

This is the same as saying that ¬A is unsatisfiable.

Logic and Mechanized Reasoning 14 / 33

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if ¬A is
unsatisfiable.

Proof.
A is valid if and only if [[A]]τ = > for every assignment τ.

By the def of [[¬A]]τ, this happens iff [[¬A]]τ = ⊥ for every τ.

This is the same as saying that ¬A is unsatisfiable.

Logic and Mechanized Reasoning 14 / 33

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if ¬A is
unsatisfiable.

Proof.
A is valid if and only if [[A]]τ = > for every assignment τ.

By the def of [[¬A]]τ, this happens iff [[¬A]]τ = ⊥ for every τ.

This is the same as saying that ¬A is unsatisfiable.

Logic and Mechanized Reasoning 14 / 33

Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if ¬A is
unsatisfiable.

Proof.
A is valid if and only if [[A]]τ = > for every assignment τ.

By the def of [[¬A]]τ, this happens iff [[¬A]]τ = ⊥ for every τ.

This is the same as saying that ¬A is unsatisfiable.

Logic and Mechanized Reasoning 14 / 33

Semantics: Proposition 1

Proposition

For every pair of formulas A and B, A ∧ B is valid if and only
if A is valid and B is valid.

True or false?

Proof.
True. A ∧ B is valid means that for every assignment τ we
have [[A ∧ B]]τ = >. By the definition of [[A ∧ B]], we have
that [[A]]τ = > and [[B]]τ = >. This means that A and B are
valid.

Logic and Mechanized Reasoning 15 / 33

Semantics: Proposition 1

Proposition

For every pair of formulas A and B, A ∧ B is valid if and only
if A is valid and B is valid.

True or false?

Proof.
True. A ∧ B is valid means that for every assignment τ we
have [[A ∧ B]]τ = >. By the definition of [[A ∧ B]], we have
that [[A]]τ = > and [[B]]τ = >. This means that A and B are
valid.

Logic and Mechanized Reasoning 15 / 33

Semantics: Proposition 2

Proposition

For every pair of formulas A and B, A ∧ B is satisfiable if and
only if A is satisfiable and B is satisfiable.

True or false?

Proof.
False. Consider the formula A ∧ B with A = p and B = ¬p.
Clearly both A and B are satisfiable, while A ∧ B is
unsatisfiable.

Logic and Mechanized Reasoning 16 / 33

Semantics: Proposition 2

Proposition

For every pair of formulas A and B, A ∧ B is satisfiable if and
only if A is satisfiable and B is satisfiable.

True or false?

Proof.
False. Consider the formula A ∧ B with A = p and B = ¬p.
Clearly both A and B are satisfiable, while A ∧ B is
unsatisfiable.

Logic and Mechanized Reasoning 16 / 33

Semantics: Proposition 3

Proposition

For every pair of formulas A and B, A ∨ B is valid if and only
if A is valid or B is valid.

True or false?

Proof.
False. Consider the formula A ∨ B with A = p and B = ¬p.
The formula A ∨ B is valid, while both A is not valid and B is
not valid.

Logic and Mechanized Reasoning 17 / 33

Semantics: Proposition 3

Proposition

For every pair of formulas A and B, A ∨ B is valid if and only
if A is valid or B is valid.

True or false?

Proof.
False. Consider the formula A ∨ B with A = p and B = ¬p.
The formula A ∨ B is valid, while both A is not valid and B is
not valid.

Logic and Mechanized Reasoning 17 / 33

Semantics: Proposition 4

Proposition

For every pair of formulas A and B, A ∨ B is satisfiable if and
only if A is satisfiable or B is satisfiable.

True or false?

Proof.
True. Consider and assignment τ that satisfies A ∨ B. By
definition it must be the case that [[A]]τ = > or [[B]]τ = >.
This is the same as stating that A is satisfiable or B is
satisfiable.

Logic and Mechanized Reasoning 18 / 33

Semantics: Proposition 4

Proposition

For every pair of formulas A and B, A ∨ B is satisfiable if and
only if A is satisfiable or B is satisfiable.

True or false?

Proof.
True. Consider and assignment τ that satisfies A ∨ B. By
definition it must be the case that [[A]]τ = > or [[B]]τ = >.
This is the same as stating that A is satisfiable or B is
satisfiable.

Logic and Mechanized Reasoning 18 / 33

Semantics: Entailment and Equivalence

I If every satisfying assignment of a formula A, also satisfies
formula B, the A entails B, denoted by A |= B.

I If A |= B and B |= A, then A and B are logically
equivalent, denoted by A ≡ B.

Example

Which formula entails which other formula?

I A
I ¬A→ B
I ¬(¬A ∨¬B)

Logic and Mechanized Reasoning 19 / 33

Semantics: Entailment and Equivalence

I If every satisfying assignment of a formula A, also satisfies
formula B, the A entails B, denoted by A |= B.

I If A |= B and B |= A, then A and B are logically
equivalent, denoted by A ≡ B.

Example

Which formula entails which other formula?

I A
I ¬A→ B
I ¬(¬A ∨¬B)

Logic and Mechanized Reasoning 19 / 33

Semantics: Proposition 5

Proposition

For every pair of formulas A and B such that A |= B.
If A is valid, then B is valid.

True or false?

Proof.
True. For every assignment τ holds that [[A]]τ = >. Since
A |= B, every assignment that satisfies A also satisfied B. So
every assignment satisfies B, which is only true if B is valid.

Logic and Mechanized Reasoning 20 / 33

Semantics: Proposition 5

Proposition

For every pair of formulas A and B such that A |= B.
If A is valid, then B is valid.

True or false?

Proof.
True. For every assignment τ holds that [[A]]τ = >. Since
A |= B, every assignment that satisfies A also satisfied B. So
every assignment satisfies B, which is only true if B is valid.

Logic and Mechanized Reasoning 20 / 33

Semantics: Proposition 6

Proposition

For every pair of formulas A and B such that A |= B.
If B is satisfiable, then A is satisfiable.

True or false?

Proof.
False. A counterexample is A = p ∧¬p and B = p.

Logic and Mechanized Reasoning 21 / 33

Semantics: Proposition 6

Proposition

For every pair of formulas A and B such that A |= B.
If B is satisfiable, then A is satisfiable.

True or false?

Proof.
False. A counterexample is A = p ∧¬p and B = p.

Logic and Mechanized Reasoning 21 / 33

Semantics: Proposition 7

Proposition

For every triple of formulas A, B, and C, if A |= B |= C |= A
then A ≡ B ≡ C.

True or false?

Proof.
True. Suppose A |= B |= C |= A. Let τ be any truth assignment.
We need to show [[A]]τ = [[B]]τ = [[C]]τ. Suppose [[A]]τ = >.
Since A |= B,[[B]]τ = >, and since B |= C, we have [[C]]τ = >.
So, in that case, [[A]]τ = [[B]]τ = [[C]]τ.
The other possibility is [[A]]τ = ⊥. Since C |= A, we must
have [[C]]τ = ⊥, and since B |= C, we have [[B]]τ = ⊥. So, in
that case also, [[A]]τ = [[B]]τ = [[C]]τ.

Logic and Mechanized Reasoning 22 / 33

Semantics: Proposition 7

Proposition

For every triple of formulas A, B, and C, if A |= B |= C |= A
then A ≡ B ≡ C.

True or false?

Proof.
True. Suppose A |= B |= C |= A. Let τ be any truth assignment.
We need to show [[A]]τ = [[B]]τ = [[C]]τ. Suppose [[A]]τ = >.
Since A |= B,[[B]]τ = >, and since B |= C, we have [[C]]τ = >.
So, in that case, [[A]]τ = [[B]]τ = [[C]]τ.
The other possibility is [[A]]τ = ⊥. Since C |= A, we must
have [[C]]τ = ⊥, and since B |= C, we have [[B]]τ = ⊥. So, in
that case also, [[A]]τ = [[B]]τ = [[C]]τ.

Logic and Mechanized Reasoning 22 / 33

Semantics: Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

Logic and Mechanized Reasoning 23 / 33

Semantics: Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

Logic and Mechanized Reasoning 23 / 33

Semantics: Truth Table

Γ = (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

p q r falsifies [[Γ]]τ
⊥ ⊥ ⊥ (q ∨ r) ⊥
⊥ ⊥ > — >
⊥ > ⊥ (p ∨¬q) ⊥
⊥ > > (p ∨¬q) ⊥
> ⊥ ⊥ (q ∨ r) ⊥
> ⊥ > (¬r ∨¬p) ⊥
> > ⊥ — >
> > > (¬r ∨¬p) ⊥

Logic and Mechanized Reasoning 24 / 33

Syntax

Semantics

Calculating with Propositions

Random Formulas

Logic and Mechanized Reasoning 25 / 33

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

A ∨> ≡ >
A ∧> ≡ A
A ∨ B ≡ B ∨ A

(A ∨ B)∨ C ≡ A ∨ (B ∨ C)
A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨ B)∧ (A ∨ C)
A ∧ (A ∨ B) ≡ A

De Morgan’s laws:

¬(A ∧ B) ≡ ¬A ∨¬B
¬(A ∨ B) ≡ ¬A ∧¬B

Logic and Mechanized Reasoning 26 / 33

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

A ∨> ≡ >
A ∧> ≡ A
A ∨ B ≡ B ∨ A

(A ∨ B)∨ C ≡ A ∨ (B ∨ C)
A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨ B)∧ (A ∨ C)
A ∧ (A ∨ B) ≡ A

De Morgan’s laws:

¬(A ∧ B) ≡ ¬A ∨¬B
¬(A ∨ B) ≡ ¬A ∧¬B

Logic and Mechanized Reasoning 26 / 33

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have
(A ∧¬B)∨ B ≡ A ∨ B.

Proof.

(A ∧¬B)∨ B ≡

(A ∨ B)∧ (¬B ∨ B)
≡ (A ∨ B)∧>
≡ (A ∨ B).

Logic and Mechanized Reasoning 27 / 33

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have
(A ∧¬B)∨ B ≡ A ∨ B.

Proof.

(A ∧¬B)∨ B ≡ (A ∨ B)∧ (¬B ∨ B)
≡

(A ∨ B)∧>
≡ (A ∨ B).

Logic and Mechanized Reasoning 27 / 33

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have
(A ∧¬B)∨ B ≡ A ∨ B.

Proof.

(A ∧¬B)∨ B ≡ (A ∨ B)∧ (¬B ∨ B)
≡ (A ∨ B)∧>
≡

(A ∨ B).

Logic and Mechanized Reasoning 27 / 33

Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have
(A ∧¬B)∨ B ≡ A ∨ B.

Proof.

(A ∧¬B)∨ B ≡ (A ∨ B)∧ (¬B ∨ B)
≡ (A ∨ B)∧>
≡ (A ∨ B).

Logic and Mechanized Reasoning 27 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡

¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡

¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡

(¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡

(¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡

(¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡

(¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡

(¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡

(¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B→ C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B→ C)) ≡ ¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧>∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Logic and Mechanized Reasoning 28 / 33

Syntax

Semantics

Calculating with Propositions

Random Formulas

Logic and Mechanized Reasoning 29 / 33

Random Formulas: Introduction

I Formulas in conjunctive normal form

I All clauses have length k
I Variables have the same probability to occur

I Each literal is negated with probability of 50%

I Density is ratio Clauses to Variables

Logic and Mechanized Reasoning 30 / 33

Random Formulas: Phase Transition

1 2 3 4 5 6 7 8
0

25

50

75

100

50
40
30
20
10

variables

clause-variable density

Logic and Mechanized Reasoning 31 / 33

Random Formulas: Exponential Runtime

1 2 3 4 5 6 7 8
0

1,000

2,000

3,000

4,000

5,000

50
40
30
20
10

variables

clause-variable density

Logic and Mechanized Reasoning 32 / 33

Random Formulas: SAT Game

SAT Game
by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/

Logic and Mechanized Reasoning 33 / 33

http://www.cs.utexas.edu/~marijn/game/

	Syntax
	Semantics
	Calculating with Propositions
	Random Formulas

