
Logic and Mechanized Reasoning
Structural Induction and Invariants

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 25



Structural Induction

Invariants

Logic and Mechanized Reasoning 2 / 25



Structural Induction

Invariants

Logic and Mechanized Reasoning 3 / 25



Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

I 0 is a natural number.

I If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?

Logic and Mechanized Reasoning 4 / 25



Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

I 0 is a natural number.

I If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?

Logic and Mechanized Reasoning 4 / 25



Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

I The element nil is an element of List(α).
I If a is an element of α and ` is an element of List(α), then

the element cons(a, `) is an element of List(α).

Notation:

I nil denotes the empty list, also denote by [].

I cons(a, `) denotes adding a to the beginning of list `, also
written as a :: `

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))

Logic and Mechanized Reasoning 5 / 25



Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

I The element nil is an element of List(α).
I If a is an element of α and ` is an element of List(α), then

the element cons(a, `) is an element of List(α).

Notation:

I nil denotes the empty list, also denote by [].

I cons(a, `) denotes adding a to the beginning of list `, also
written as a :: `

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))

Logic and Mechanized Reasoning 5 / 25



Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

I The element nil is an element of List(α).
I If a is an element of α and ` is an element of List(α), then

the element cons(a, `) is an element of List(α).

Notation:

I nil denotes the empty list, also denote by [].

I cons(a, `) denotes adding a to the beginning of list `, also
written as a :: `

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))

Logic and Mechanized Reasoning 5 / 25



Structural Induction: Append

Definition of append:

append(nil, m) = m
append(cons(a, `), m) = cons(a, append(`, m))

Alternatively written as:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Logic and Mechanized Reasoning 6 / 25



Structural Induction: Append

Definition of append:

append(nil, m) = m
append(cons(a, `), m) = cons(a, append(`, m))

Alternatively written as:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Logic and Mechanized Reasoning 6 / 25



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, we have `++ [] = `.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have `++ [] = `

(a :: `) ++ [] = a :: (`++ [])

= a :: `

Logic and Mechanized Reasoning 7 / 25



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, we have `++ [] = `.

Proof.
Base case:

[] ++ [] = []
Inductive case: Suppose we have `++ [] = `

(a :: `) ++ [] = a :: (`++ [])

= a :: `

Logic and Mechanized Reasoning 7 / 25



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, we have `++ [] = `.

Proof.
Base case: [] ++ [] = []
Inductive case:

Suppose we have `++ [] = `

(a :: `) ++ [] = a :: (`++ [])

= a :: `

Logic and Mechanized Reasoning 7 / 25



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, we have `++ [] = `.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have `++ [] = `

(a :: `) ++ [] =

a :: (`++ [])

= a :: `

Logic and Mechanized Reasoning 7 / 25



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, we have `++ [] = `.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have `++ [] = `

(a :: `) ++ [] = a :: (`++ [])

= a :: `

Logic and Mechanized Reasoning 7 / 25



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, we have `++ [] = `.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have `++ [] = `

(a :: `) ++ [] = a :: (`++ [])

= a :: `

Logic and Mechanized Reasoning 7 / 25



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, m, n: `++ (m ++ n) = (`++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have `++ (m ++ n) = (`++ m) ++ n

(a :: `) ++ (m ++ n) = a :: (`++ (m ++ n))
= a :: ((`++ m) ++ n)
= (a :: (`++ m)) ++ n
= ((a :: `) ++ m) ++ n

Logic and Mechanized Reasoning 8 / 25



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, m, n: `++ (m ++ n) = (`++ m) ++ n

Proof.
Base case:

[] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have `++ (m ++ n) = (`++ m) ++ n

(a :: `) ++ (m ++ n) = a :: (`++ (m ++ n))
= a :: ((`++ m) ++ n)
= (a :: (`++ m)) ++ n
= ((a :: `) ++ m) ++ n

Logic and Mechanized Reasoning 8 / 25



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, m, n: `++ (m ++ n) = (`++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:

Suppose we have `++ (m ++ n) = (`++ m) ++ n

(a :: `) ++ (m ++ n) = a :: (`++ (m ++ n))
= a :: ((`++ m) ++ n)
= (a :: (`++ m)) ++ n
= ((a :: `) ++ m) ++ n

Logic and Mechanized Reasoning 8 / 25



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, m, n: `++ (m ++ n) = (`++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have `++ (m ++ n) = (`++ m) ++ n

(a :: `) ++ (m ++ n) =

a :: (`++ (m ++ n))
= a :: ((`++ m) ++ n)
= (a :: (`++ m)) ++ n
= ((a :: `) ++ m) ++ n

Logic and Mechanized Reasoning 8 / 25



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: `) ++ m = a :: (`++ m)

Lemma
For every List `, m, n: `++ (m ++ n) = (`++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have `++ (m ++ n) = (`++ m) ++ n

(a :: `) ++ (m ++ n) = a :: (`++ (m ++ n))
= a :: ((`++ m) ++ n)
= (a :: (`++ m)) ++ n
= ((a :: `) ++ m) ++ n

Logic and Mechanized Reasoning 8 / 25



Structural Induction: The function append1

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, `), a) = cons(b, append1(`, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: `, a) = b :: append1(`, a)

Observe that append1(`, a) equals `++ [a]

Logic and Mechanized Reasoning 9 / 25



Structural Induction: The function append1

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, `), a) = cons(b, append1(`, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: `, a) = b :: append1(`, a)

Observe that append1(`, a) equals `++ [a]

Logic and Mechanized Reasoning 9 / 25



Structural Induction: The function append1

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, `), a) = cons(b, append1(`, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: `, a) = b :: append1(`, a)

Observe that append1(`, a) equals `++ [a]

Logic and Mechanized Reasoning 9 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case:

r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:

Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) =

reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]

= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]

= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])

= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For all List `, m: reverse(`++ m) = reverse(m) ++ reverse(`)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(`++ m) = reverse(m) ++ reverse(`)

reverse((a :: `) ++ m) = reverse(a :: (`++ m))

= reverse(`++ m) ++ [a]
= (reverse(m) ++ reverse(`)) ++ [a]
= reverse(m) ++ (reverse(`) ++ [a])
= reverse(m) ++ reverse(a :: `)

Logic and Mechanized Reasoning 10 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `

Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) =

reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `

Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])

= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `

Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))

= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `

Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))

= [a] ++ `

= a :: `

Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `

Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `
Logic and Mechanized Reasoning 11 / 25



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Lemma
For every List ` holds that reverse(reverse(`)) = `

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(`)) = `

reverse(reverse(a :: `)) = reverse(reverse(`) ++ [a])
= reverse([a]) ++ reverse(reverse(`))
= [a] ++ reverse(reverse(`))
= [a] ++ `

= a :: `
Logic and Mechanized Reasoning 11 / 25



Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]
= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]

Logic and Mechanized Reasoning 12 / 25



Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]

= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]

Logic and Mechanized Reasoning 12 / 25



Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: `) = reverse(`) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]
= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]

Logic and Mechanized Reasoning 12 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])

Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) =

reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m

= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: `), m) = reverseAux(`, (a :: m))

reverse ′(`) = reverseAux(`, [])
Lemma
For every List `, m: reverseAux(`, m) = reverse(`) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(`, m) = reverse(`) ++ m

reverseAux((a :: `), m) = reverseAux(`, (a :: m))

= reverse(`) ++ (a :: m)

= reverse(`) ++ ([a] ++ m)

= (reverse(`) ++ [a]) ++ m
= reverse(a :: `) ++ m

Logic and Mechanized Reasoning 13 / 25



Structural Induction: Complexity Measurements

We can assign any complexity measure to a data type, and do
induction on complexity, as long as the measure is well founded.

length([]) = 0
length(a :: `) = length(`) + 1

Logic and Mechanized Reasoning 14 / 25



Structural Induction: Properties of Extended Binary Trees

I The element empty is a binary tree.

I If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))

Logic and Mechanized Reasoning 15 / 25



Structural Induction: Properties of Extended Binary Trees

I The element empty is a binary tree.

I If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))

Logic and Mechanized Reasoning 15 / 25



Structural Induction: Properties of Extended Binary Trees

I The element empty is a binary tree.

I If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))

Logic and Mechanized Reasoning 15 / 25



Structural Induction

Invariants

Logic and Mechanized Reasoning 16 / 25



Invariants: Mutilated Chessboard I

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

I There are more white squares than black squares; and

I A domino covers exactly one white and one black square.

Logic and Mechanized Reasoning 17 / 25



Invariants: Mutilated Chessboard I

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

I There are more white squares than black squares; and

I A domino covers exactly one white and one black square.

Logic and Mechanized Reasoning 17 / 25



Invariants: Mutilated Chessboard II

The chessboard pattern invariant is hard to find

Mechanized reasoning can find alternative invariants

Logic and Mechanized Reasoning 18 / 25



Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 19 / 25



Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 19 / 25



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈N

Base case: a = 0

Induction:

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

I This doesn’t change the number of Is

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

I This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

I This doubles the number of Is: increases a by 1

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

I This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

I This doubles the number of Is: increases a by 1
3. Replace xIIIy by xUy: replace three consecutive Is by U.

I It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

I This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

I This doubles the number of Is: increases a by 1
3. Replace xIIIy by xUy: replace three consecutive Is by U.

I It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.

I This doesn’t change the number of Is

Logic and Mechanized Reasoning 20 / 25



Invariants: Golomb’s Tromino Theorem

A tromino is an L-shaped configuration of three squares.

Theorem (Golomb’s Trominoes Theorem)

Any 2n × 2n chessboard with one square removed can be tiled
with trominoes.

Logic and Mechanized Reasoning 21 / 25



Invariants: Trominoes 2× 2 grid

Theorem (Golomb’s Trominoes Theorem)

Any 2n × 2n chessboard with one square removed can be tiled
with trominoes.

Let’s first consider the n = 1 case.

All cases are isomorphic. A tromino covers the remaining grid.

Logic and Mechanized Reasoning 22 / 25



Invariants: Larger Trominoes

Use 4 trominoes of size n to make on of size 2n

Logic and Mechanized Reasoning 23 / 25



Invariants: Trominoes 8× 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 / 25



Invariants: Trominoes 8× 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 / 25



Invariants: Trominoes 8× 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 / 25



Invariants: Trominoes 8× 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 / 25



Invariants: Loop Invariants

Invariants are not restricted to recursive definitions. Imperative
code frequently has invariants and the can be crucial to prove
correctness.

Example (Loop invariant)

int j = 9;

for (int i=0; i<10; i++)

j--;

The code above has the loop invariant i + j == 9

Logic and Mechanized Reasoning 25 / 25


	Structural Induction
	Invariants

