Logic and Mechanized Reasoning
Structural Induction and Invariants

Marijn J.H. Heule

Carnegie
Mellon
University

Logic and Mechanized Reasoning 1/25

Structural Induction

Invariants

Logic and Mechanized Reasoning 2/25

Structural Induction

Logic and Mechanized Reasoning 3/25

Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

» 0 is a natural number.
» If x is a natural number, so is succ(x).

Logic and Mechanized Reasoning 4 /25

Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

» 0 is a natural number.
» If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?

Logic and Mechanized Reasoning 4 /25

Structural Induction: Lists
Let « be a data type.
Let List(a) be the set of all lists of type a:

» The element nil is an element of List(a).

» If ais an element of a and £ is an element of List(«), then
the element cons(a, £) is an element of List(«).

Logic and Mechanized Reasoning 5/ 25

Structural Induction: Lists

Let « be a data type.

Let List(a) be the set of all lists of type a:
» The element nil is an element of List(a).

» If ais an element of a and £ is an element of List(«), then
the element cons(a, £) is an element of List(«).

Notation:
» nil denotes the empty list, also denote by [].

» cons(a,l) denotes adding a to the beginning of list /¢, also
written as a :: ¢

Logic and Mechanized Reasoning 5/ 25

Structural Induction: Lists

Let « be a data type.

Let List(a) be the set of all lists of type a:
» The element nil is an element of List(a).

» If ais an element of a and £ is an element of List(«), then
the element cons(a, £) is an element of List(«).

Notation:
» nil denotes the empty list, also denote by [].

» cons(a,l) denotes adding a to the beginning of list /¢, also
written as a :: ¢

Example

The list of natural numbers [1,2,3] would be written as
cons(1,cons(2,cons(3,nil))) or 1:: (2:: (3::[]))

Logic and Mechanized Reasoning 5/ 25

Structural Induction: Append

Definition of append:

append(nil,m) = m
append(cons(a,¢),m) = cons(a,append (¢, m))

Logic and Mechanized Reasoning 6 /25

Structural Induction: Append

Definition of append:

append(nil,m) = m
append(cons(a, £),m) = cons(a,append(l,m))

Alternatively written as:

+Hm = m
(@azl)Hm = ax(l+H m)

Logic and Mechanized Reasoning

6/ 25

Structural Induction: append Lemma

Recall the definition of append:

4t m = m
(@=l)Hm = a:x(L+H m)

Lemma
For every List ¢, we have { H [] = /.

Logic and Mechanized Reasoning

7/25

Structural Induction: append Lemma

Recall the definition of append:

4t m = m
(@=l)Hm = a:x(L+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.
Base case:

Logic and Mechanized Reasoning 7/25

Structural Induction: append Lemma

Recall the definition of append:
J+m = m
(azl)+Hm = a:z(l+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.

Base case: [| + [] = |]
Inductive case:

Logic and Mechanized Reasoning 7/25

Structural Induction: append Lemma

Recall the definition of append:
J+m = m
(azl)+Hm = a:z(l+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.

Base case: [| + [] = |]

Inductive case: Suppose we have ¢ H [| = /¢
@04 [=

Logic and Mechanized Reasoning 7/25

Structural Induction: append Lemma

Recall the definition of append:
J+m = m
(azl)+Hm = a:z(l+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.

Base case: 1+ [=1

Inductive case: Suppose we have ¢ H [| = /¢
@z O+ = a=(l+1)

Logic and Mechanized Reasoning 7/25

Structural Induction: append Lemma

Recall the definition of append:
J+m = m
(azl)+Hm = a:z(l+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.
Base case: [| + [] = |]
Inductive case: Suppose we have ¢ H [| = /¢

(@) +H [= a=(l+)
= a:/ O

Logic and Mechanized Reasoning 7/25

Structural Induction: Associativity of append
Recall the definition of append:

Jsem = m
(@=:l)Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Logic and Mechanized Reasoning

8/ 25

Structural Induction: Associativity of append
Recall the definition of append:

J4m = m
(@=:l)Hm = a:(L+H m)

Lemma

For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.
Base case:

Logic and Mechanized Reasoning 8 /25

Structural Induction: Associativity of append
Recall the definition of append:
J4m = m
(@=l)+Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.
Base case: [| + (m+ n) =m+n=([] H m) + n
Inductive case:

Logic and Mechanized Reasoning 8 /25

Structural Induction: Associativity of append
Recall the definition of append:
J4m = m
(@=l)+Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.

Base case: [| +H (m+n)=m+ n= (]| Hm)+n
Inductive case:

Suppose we have { H (m+H n) = ({ + m) + n

(@=l)+H (m+H+n) =

Logic and Mechanized Reasoning 8 /25

Structural Induction: Associativity of append
Recall the definition of append:

J4em = m
(@=l)+Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.

Base case: [| +H (m+Hn)=m-+Hn= (]| H+m)Hn
Inductive case:

Suppose we have { H (m+H n) = ({ + m) + n

(@=l)H m+H+n) = az(l+H (m+n))
a: ((0+H m)+H n)
(a::(L+H m)) Hn
((azl)H m)+Hn O

Logic and Mechanized Reasoning 8 /25

Structural Induction: The function appendl

The function appendl adds an element to the end of a list:

appendl(nil,a) = cons(a,nil)
appendl(cons(b,€),a) = cons(b,appendl (¢, a))

Logic and Mechanized Reasoning 9/25

Structural Induction: The function appendl

The function appendl adds an element to the end of a list:

appendl(nil,a) = cons(a,nil)
appendl(cons(b,€),a) = cons(b,appendl (¢, a))

More compactly it can be written as:

append1([],a) = [a]
appendl (b :: £,a) = b :: appendl({,a)

Logic and Mechanized Reasoning

9/ 25

Structural Induction: The function appendl

The function appendl adds an element to the end of a list:

appendl(nil,a) = cons(a,nil)
appendl(cons(b,€),a) = cons(b,appendl (¢, a))

More compactly it can be written as:

append1([],a) = [a]
appendl (b :: £,a) = b :: appendl({,a)

Observe that appendl1(¢,a) equals ¢ + [a]

Logic and Mechanized Reasoning

9/ 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse() H [a]

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]

Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case:

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)

reverse((a :: £) H m) =

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)

reverse((a ::) H m) = reverse(a :: ({ +H m))

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)

reverse((a ::) H m) = reverse(a :: ({ +H m))
= reverse({ H m) H- [a]

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)

reverse((a ::) H m) = reverse(a :: ({ +H m))
= reverse({ H m) H- [a]
= (reverse(m) H reverse(l)) + [a]

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)
reverse((a ::) H m) = reverse(a :: ({ +H m))
= reverse({ H m) H- [a]

= (reverse(m) H reverse(l)) + [a]

= reverse(m) +H (reverse() H [a])

Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of Lists

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)

reverse((a :: £) + m) = reverse(a :: (£ H m))
= reverse({ H m) H- [a]
= (reverse(m) H reverse(l)) + [a]
= reverse(m) +H (reverse() H [a])

. . = reverse(m) H reverse(a:: £) [
Logic and Mechanized Reasoning 10 / 25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]

Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Logic and Mechanized Reasoning

11/25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = [
Induction: Suppose we have reverse(reverse({)) =

reverse(reverse(a :: £)) =

Logic and Mechanized Reasoning 11 /25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = ||
Induction: Suppose we have reverse(reverse({)) = ¢

reverse(reverse(a :: £)) = reverse(reverse({) + [a])

Logic and Mechanized Reasoning 11 /25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = ||
Induction: Suppose we have reverse(reverse({)) = ¢

reverse(reverse(a :: £)) = reverse(reverse({) + [a])
= reverse(|a]) + reverse(reverse(())

Logic and Mechanized Reasoning 11 /25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = ||
Induction: Suppose we have reverse(reverse({)) = ¢

reverse(reverse(a :: £)) = reverse(reverse({) + [a])
= reverse(|a]) + reverse(reverse(())
= [a] H reverse(reverse({))

Logic and Mechanized Reasoning 11 /25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = ||
Induction: Suppose we have reverse(reverse({)) = ¢

reverse(reverse(a :: £)) = reverse(reverse({) + [a])
= reverse(|a]) + reverse(reverse(())
= [a] H reverse(reverse({))
= [a]| H ¢

Logic and Mechanized Reasoning 11 /25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = ||
Induction: Suppose we have reverse(reverse({)) = ¢

reverse(reverse(a :: £)) = reverse(reverse({) + [a])
= reverse(|a]) + reverse(reverse(())
= [a] H reverse(reverse({))
= [a] H ¢
=a:/]

Logic and Mechanized Reasoning 11 /25

Structural Induction: reverse of reverse

reverse([]) =]
reverse(a ::) = reverse({) H [a]
Lemma
For every List ¢ holds that reverse(reverse({)) = /¢

Proof.
Base case: reverse(reverse([])) = reverse([]) = ||
Induction: Suppose we have reverse(reverse({)) = ¢

reverse(reverse(a :: £)) = reverse(reverse({) + [a])
= reverse(|a]) + reverse(reverse(())
= [a] H reverse(reverse({))
= [a] H ¢
=a:/]

Logic and Mechanized Reasoning 11 /25

Structural Induction: What is the complexity of reverse?

reverse([]) =]
reverse(a :: £) = reverse(l) H [a]

Logic and Mechanized Reasoning 12 /25

Structural Induction: What is the complexity of reverse?

reverse([]) =]
reverse(a :: £) = reverse(l) H [a]

Example
reverse([1,2,3])

Logic and Mechanized Reasoning

(reverse([])

(
(
(
(
(3

12/25

Structural Induction: What is the complexity of reverse?

reverse(|])
reverse(a :: /)

Example
reverse([1,2,3])

Logic and Mechanized Reasoning

I

reverse({) + [a]

(reverse([2,3])) + [1]
((reverse([3])) + [2]) + [1]
(((reverse([])) + (3]) + [2]) + [1]
(([J + [B]) + [2]) + [1]

([8]+ [2]) + [1]

(B [])+ [2) + 1]

@ ([+ [21) + 1]

(3::[2]) + [1]

3: (2] + [1])

3u((2=[)+[1])

3:2=(H) =3=:(2:11])=[3,2,1]

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])

Logic and Mechanized Reasoning 13 /25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])

Lemma
For every List {,m: reverseAux({,m) = reverse({) H m

Logic and Mechanized Reasoning 13 /25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])
Lemma
For every List {,m: reverseAux({,m) = reverse({) H m
Proof.

Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m
Induction: Assume reverseAux({, m) = reverse({) +H m

reverseAux((a :: 0),m) =

Logic and Mechanized Reasoning 13 /25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])
Lemma
For every List {,m: reverseAux({,m) = reverse({) H m
Proof.

Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m
Induction: Assume reverseAux({, m) = reverse({) +H m

reverseAux((a :: £),m) = reverseAux(¥,(a :: m))

Logic and Mechanized Reasoning 13 /25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])
Lemma
For every List {,m: reverseAux({,m) = reverse({) H m
Proof.

Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m
Induction: Assume reverseAux({, m) = reverse({) +H m

reverseAux((a :: £),m) = reverseAux(¥,(a :: m))
= reverse({) H (a ::m)

Logic and Mechanized Reasoning 13 /25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])
Lemma
For every List {,m: reverseAux({,m) = reverse({) H m
Proof.
Base case: reverseAux([],m) = m =[] H m = reverse([]) H m
Induction: Assume reverseAux({, m) = reverse({) +H m
reverseAux((a :: £),m) = reverseAux(¥,(a :: m))
= reverse({) H (a ::m)
= reverse({) + ([a] H m)

Logic and Mechanized Reasoning 13 /25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m)
reverseAux((a::), m)

reverse’ (£)
Lemma

m

reverseAux (¢, (a::m))
reverseAux (¢, [])

For every List {,m: reverseAux({,m) = reverse({) H m

Proof.

Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m

Induction: Assume reverseAux({, m)

reverseAux((a ::), m)

Logic and Mechanized Reasoning

reverseAux (¥,
reverse({) +
reverse({) +
(reverse(l) +H

= reverse({) H m

(a::m))

a:m)

(
(

[
[

a] +- m)

al) + m

13/25

Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m)
reverseAux((a::), m)

reverse’ (£)
Lemma

m
reverseAux (¢, (a::m))
reverseAux (¢, [])

For every List {,m: reverseAux({,m) = reverse({) H m

Proof.

Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m

Induction: Assume reverseAux({, m)

reverseAux((a ::), m)

Logic and Mechanized Reasoning

= reverse({) H m

reverseAux (¢, (a :: m))

reverse({) + (a :: m)
reverse({) + ([a] H m)
(reverse(l) H- [a]) H m
reverse(a :: £) H m O

13/25

Structural Induction: Complexity Measurements

We can assign any complexity measure to a data type, and do
induction on complexity, as long as the measure is well founded.

length([]) = 0
length(a::¢) = length(f)+1

Logic and Mechanized Reasoning 14 / 25

Structural Induction: Properties of Extended Binary Trees

» The element empty is a binary tree.
» If s and t are finite binary trees, so is the node(s, t).

Logic and Mechanized Reasoning 15 / 25

Structural Induction: Properties of Extended Binary Trees

» The element empty is a binary tree.
» If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s,t)) = 1+ size(s) + size(t)

Logic and Mechanized Reasoning 15 / 25

Structural Induction: Properties of Extended Binary Trees

» The element empty is a binary tree.
» If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s,t)) = 1+ size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s,t)) = 1+ max(depth(s),depth(t))

Logic and Mechanized Reasoning 15 / 25

Invariants

Logic and Mechanized Reasoning 16 / 25

Invariants: Mutilated Chessboard |

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Logic and Mechanized Reasoning 17 / 25

Invariants: Mutilated Chessboard |

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:
» There are more white squares than black squares; and
» A domino covers exactly one white and one black square.

Logic and Mechanized Reasoning 17 / 25

Invariants: Mutilated Chessboard I

The chessboard pattern invariant is hard to find

Mechanized reasoning can find alternative invariants

Logic and Mechanized Reasoning 18 / 25

Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, |, and U.

1. Replace x| by xIU: append any string ending in | with U.
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MIl. Can we get to MU?

Logic and Mechanized Reasoning 19 / 25

Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, |, and U.

1. Replace x| by xIU: append any string ending in | with U.
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MIl. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 19 / 25

Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2% (mod 3) fora € N
Base case: 4 = 0

Induction:
1. Replace x| by xIU: append any string ending in | with U.
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25

Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2 (mod 3) for a € IN
Base case: 4 =0

Induction:
1. Replace x| by xIU: append any string ending in | with U.

> This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25

Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2% (mod 3) fora € N
Base case: 4 = 0

Induction:
1. Replace x| by xIU: append any string ending in | with U.

» This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

» This doubles the number of Is: increases a by 1
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25

Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2 (mod 3) for a € IN
Base case: a =0

Induction:
1. Replace x| by xIU: append any string ending in | with U.

» This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

» This doubles the number of Is: increases a by 1
3. Replace xllly by xUy: replace three consecutive Is by U.

> It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 20 / 25

Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2 (mod 3) for a € IN
Base case: 1 =0

Induction:
1. Replace x| by xIU: append any string ending in | with U.

» This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

» This doubles the number of Is: increases a by 1
3. Replace xllly by xUy: replace three consecutive Is by U.

> It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.
» This doesn’t change the number of Is

Logic and Mechanized Reasoning 20 / 25

Invariants: Golomb’s Tromino Theorem

A tromino is an L-shaped configuration of three squares.

Theorem (Golomb's Trominoes Theorem)

Any 2" x 2" chessboard with one square removed can be tiled
with trominoes.

Logic and Mechanized Reasoning 21 /25

Invariants: Trominoes 2 X 2 grid

Theorem (Golomb’s Trominoes Theorem)

Any 2" x 2" chessboard with one square removed can be tiled
with trominoes.

Let's first consider the n = 1 case.

All cases are isomorphic. A tromino covers the remaining grid.

Logic and Mechanized Reasoning 22 /25

Invariants: Larger Trominoes

Use 4 trominoes of size 1 to make on of size 2n

Logic and Mechanized Reasoning 23 /25

Invariants: Trominoes 8 x 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning

24 / 25

Invariants: Trominoes 8 x 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 /25

Invariants: Trominoes 8 x 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 /25

Invariants: Trominoes 8 x 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 24 /25

Invariants: Loop Invariants

Invariants are not restricted to recursive definitions. Imperative
code frequently has invariants and the can be crucial to prove
correctness.

Example (Loop invariant)

int j = 9;
for (int i=0; i<10; i++)
j=—s

The code above has the loop invariant i + j ==

Logic and Mechanized Reasoning 25 /25

	Structural Induction
	Invariants

