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Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

» 0 is a natural number.
» If x is a natural number, so is succ(x).
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The natural numbers are an example of an inductively defined
structure:

» 0 is a natural number.
» If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?
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Structural Induction: Lists
Let « be a data type.
Let List(a) be the set of all lists of type a:

» The element nil is an element of List(a).

» If ais an element of a and £ is an element of List(«), then
the element cons(a, £) is an element of List(«).
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Let List(a) be the set of all lists of type a:
» The element nil is an element of List(a).

» If ais an element of a and £ is an element of List(«), then
the element cons(a, £) is an element of List(«).

Notation:
» nil denotes the empty list, also denote by [].

» cons(a,l) denotes adding a to the beginning of list /¢, also
written as a :: ¢

Example

The list of natural numbers [1,2,3] would be written as
cons(1,cons(2,cons(3,nil))) or 1:: (2:: (3::[]))
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Structural Induction: Append

Definition of append:

append(nil,m) = m
append(cons(a,¢),m) = cons(a,append (¢, m))
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Structural Induction: Append

Definition of append:

append(nil,m) = m
append(cons(a, £),m) = cons(a,append(l,m))

Alternatively written as:

+Hm = m
(@azl)Hm = ax(l+H m)
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Structural Induction: append Lemma

Recall the definition of append:

4t m = m
(@=l)Hm = a:x(L+H m)

Lemma
For every List ¢, we have { H [] = /.
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Structural Induction: append Lemma

Recall the definition of append:
J+m = m
(azl)+Hm = a:z(l+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.

Base case: 1+ [ =1

Inductive case: Suppose we have ¢ H [| = /¢
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Structural Induction: append Lemma

Recall the definition of append:
J+m = m
(azl)+Hm = a:z(l+H m)

Lemma
For every List ¢, we have { H [] = /.

Proof.
Base case: [| + [] = |]
Inductive case: Suppose we have ¢ H [| = /¢

(@) +H [ = a=(l+ )
= a:/ O
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Structural Induction: Associativity of append
Recall the definition of append:

Jsem = m
(@=:l)Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n
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Structural Induction: Associativity of append
Recall the definition of append:
J4m = m
(@=l)+Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.
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Inductive case:
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Structural Induction: Associativity of append
Recall the definition of append:
J4m = m
(@=l)+Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.

Base case: [| +H (m+n)=m+ n= (]| Hm)+n
Inductive case:

Suppose we have { H (m+H n) = ({ + m) + n

(@=l)+H (m+H+n) =
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Structural Induction: Associativity of append
Recall the definition of append:

J4em = m
(@=l)+Hm = a:(L+H m)

Lemma
For every List {,m,n: L H (m+ n) = ({H m) H n

Proof.

Base case: [| +H (m+Hn)=m-+Hn= (]| H+m)Hn
Inductive case:

Suppose we have { H (m+H n) = ({ + m) + n

(@=l)H m+H+n) = az(l+H (m+n))
a: ((0+H m)+H n)
(a::(L+H m)) Hn
((azl)H m)+Hn O
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Structural Induction: The function appendl

The function appendl adds an element to the end of a list:

appendl(nil,a) = cons(a,nil)
appendl(cons(b,€),a) = cons(b,appendl (¢, a))
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The function appendl adds an element to the end of a list:

appendl(nil,a) = cons(a,nil)
appendl(cons(b,€),a) = cons(b,appendl (¢, a))

More compactly it can be written as:

append1([],a) = [a]
appendl (b :: £,a) = b :: appendl({,a)
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Structural Induction: The function appendl

The function appendl adds an element to the end of a list:

appendl(nil,a) = cons(a,nil)
appendl(cons(b,€),a) = cons(b,appendl (¢, a))

More compactly it can be written as:

append1([],a) = [a]
appendl (b :: £,a) = b :: appendl({,a)

Observe that appendl1(¢,a) equals ¢ + [a]
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Structural Induction: reverse of Lists

reverse([]) = ]
reverse(a :: ) = reverse() H [a]
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Structural Induction: reverse of Lists

reverse([]) = ]
reverse(a :: ) = reverse({) H [a]
Lemma
For all List £, m: reverse({ H m) = reverse(m) + reverse({)
Proof.
Base case: r([| +H m) = r(m) =r(m) H [] = r(m) H r([])
Induction:

Suppose we have reverse(¢ +H m) = reverse(m) + reverse({)

reverse((a :: £) + m) = reverse(a :: (£ H m))
= reverse({ H m) H- [a]
= (reverse(m) H reverse(l)) + [a]
= reverse(m) +H (reverse() H [a])
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Structural Induction: reverse of reverse

reverse([]) = ]
reverse(a :: ) = reverse({) H [a]

Lemma
For every List ¢ holds that reverse(reverse({)) = /¢
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reverse([]) = ]
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Structural Induction: What is the complexity of reverse?

reverse([]) = ]
reverse(a :: £) = reverse(l) H [a]
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Structural Induction: What is the complexity of reverse?

reverse([]) = ]
reverse(a :: £) = reverse(l) H [a]

Example
reverse([1,2,3])
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Structural Induction: What is the complexity of reverse?

reverse(|])
reverse(a :: /)

Example
reverse([1,2,3])

Logic and Mechanized Reasoning

I

reverse({) + [a]

(reverse([2,3])) + [1]
((reverse([3])) + [2]) + [1]
(((reverse([])) + (3]) + [2]) + [1]
(([J + [B]) + [2]) + [1]

([8]+ [2]) + [1]

(B [])+ [2) + 1]

@ ([ + [21) + 1]

(3::[2]) + [1]

3: (2] + [1])

3u((2=[)+[1])

3:2=(H ) =3=:(2:11])=[3,2,1]



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])

Logic and Mechanized Reasoning 13 /25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([|,m) = m
reverseAux((a:: €),m) = reverseAux(¢,(a::m))
reverse’ ({) = reverseAux(¥,|])

Lemma
For every List {,m: reverseAux({,m) = reverse({) H m

Logic and Mechanized Reasoning 13 /25



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:
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reverseAux((a:: €),m) = reverseAux(¢,(a::m))
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Lemma
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Proof.
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Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m)
reverseAux((a:: ), m)

reverse’ (£)
Lemma

m

reverseAux (¢, (a::m))
reverseAux (¢, [])

For every List {,m: reverseAux({,m) = reverse({) H m
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Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m

Induction: Assume reverseAux({, m)

reverseAux((a :: ), m)
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reverseAux (¥,
reverse({) +
reverse({) +
(reverse(l) +H
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Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m)
reverseAux((a:: ), m)

reverse’ (£)
Lemma

m
reverseAux (¢, (a::m))
reverseAux (¢, [])

For every List {,m: reverseAux({,m) = reverse({) H m

Proof.

Base case: reverseAux([|,m) = m = [| + m = reverse([|) H m

Induction: Assume reverseAux({, m)

reverseAux((a :: ), m)
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= reverse({) H m

reverseAux (¢, (a :: m))

reverse({) + (a :: m)
reverse({) + ([a] H m)
(reverse(l) H- [a]) H m
reverse(a :: £) H m O
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Structural Induction: Complexity Measurements

We can assign any complexity measure to a data type, and do
induction on complexity, as long as the measure is well founded.

length([]) = 0
length(a::¢) = length(f)+1
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Structural Induction: Properties of Extended Binary Trees

» The element empty is a binary tree.
» If s and t are finite binary trees, so is the node(s, t).
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Structural Induction: Properties of Extended Binary Trees

» The element empty is a binary tree.
» If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s,t)) = 1+ size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s,t)) = 1+ max(depth(s),depth(t))
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Invariants
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Invariants: Mutilated Chessboard |

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?
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Invariants: Mutilated Chessboard |

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:
» There are more white squares than black squares; and
» A domino covers exactly one white and one black square.
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Invariants: Mutilated Chessboard I

The chessboard pattern invariant is hard to find

Mechanized reasoning can find alternative invariants
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Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, |, and U.

1. Replace x| by xIU: append any string ending in | with U.
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MIl. Can we get to MU?
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Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, |, and U.

1. Replace x| by xIU: append any string ending in | with U.
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MIl. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 19 / 25



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2% (mod 3) fora € N
Base case: 4 = 0

Induction:
1. Replace x| by xIU: append any string ending in | with U.
2. Replace Mx by Mxx: double the string after the initial M.
3. Replace xllly by xUy: replace three consecutive Is by U.
4. Replace xUUy by xy: delete any consecutive pair of Us.
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» This doubles the number of Is: increases a by 1
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Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2 (mod 3) for a € IN
Base case: 1 =0

Induction:
1. Replace x| by xIU: append any string ending in | with U.

» This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

» This doubles the number of Is: increases a by 1
3. Replace xllly by xUy: replace three consecutive Is by U.

> It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.
» This doesn’t change the number of Is
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Invariants: Golomb’s Tromino Theorem

A tromino is an L-shaped configuration of three squares.

Theorem (Golomb's Trominoes Theorem)

Any 2" x 2" chessboard with one square removed can be tiled
with trominoes.
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Invariants: Trominoes 2 X 2 grid

Theorem (Golomb’s Trominoes Theorem)

Any 2" x 2" chessboard with one square removed can be tiled
with trominoes.

Let's first consider the n = 1 case.

All cases are isomorphic. A tromino covers the remaining grid.
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Invariants: Larger Trominoes

Use 4 trominoes of size 1 to make on of size 2n
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Invariants: Trominoes 8 x 8 grid

Cover the three quadrants that are not blocked by the square
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Invariants: Loop Invariants

Invariants are not restricted to recursive definitions. Imperative
code frequently has invariants and the can be crucial to prove
correctness.

Example (Loop invariant)

int j = 9;
for (int i=0; i<10; i++)
j=—s

The code above has the loop invariant i + j ==
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