Logic and Mechanized Reasoning Introduction with a focus on mathematics

Marijn J.H. Heule

Carnegie
Mellon
University

Mechanized Reasoning Has Many Applications

Mechanized Reasoning Has Many Applications

formal verification

train safety

security

automated theorem proving

bioinformatics

exploit
generation

planning and scheduling

term rewriting termination

40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem
1998 Kepler Conjecture
2010 "God's Number = 20": Optimal Rubik's cube strategy
2012 At least 17 clues for a solvable Sudoku puzzle
2014 Boolean Erdős discrepancy problem
2016 Boolean Pythagorean triples problem
2018 Schur Number Five
2019 Keller's Conjecture

40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem
1998 Kepler Conjecture
2010 "God's Number = 20": Optimal Rubik's cube strategy
2012 At least 17 clues for a solvable Sudoku puzzle
2014 Boolean Erdős discrepancy problem (using a SAT solver)
2016 Boolean Pythagorean triples problem (using a SAT solver)
2018 Schur Number Five (using a SAT solver)
2019 Keller's Conjecture (using a SAT solver)

Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied? mid '90s: formulas solvable with thousands of variables and clauses now: formulas solvable with millions of variables and clauses

Edmund Clarke: "a key technology of the 21st century" [Biere, Heule, vanMaaren, and Walsh '09] Logic and Mechanized Reasoning

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK
The Art of
Computer Programming

VOLUME 4
Satisfiability

> DONALD E. KNUTH

Donald Knuth: "evidently a killer app, because it is key to the solution of so many other problems" [Knuth '15]

Truth Table

$$
\begin{aligned}
& F:=(p \vee \bar{q}) \wedge(q \vee r) \wedge(\bar{r} \vee \bar{p}) \\
& \begin{array}{ccc|c|c}
p & q & r & \text { falsifies } & \text { eval }(F) \\
\hline 0 & 0 & 0 & (q \vee r) & 0 \\
0 & 0 & 1 & - & 1 \\
0 & 1 & 0 & (p \vee \bar{q}) & 0 \\
0 & 1 & 1 & (p \vee \bar{q}) & 0 \\
1 & 0 & 0 & (q \vee r) & 0 \\
1 & 0 & 1 & (\bar{r} \vee \bar{p}) & 0 \\
1 & 1 & 0 & - & 1 \\
1 & 1 & 1 & (\bar{r} \vee \bar{p}) & 0
\end{array}
\end{aligned}
$$

Progress of SAT Solvers

SAT Competition Winners on the SC2020 Benchmark Suite

Logic and Mechanized Reasoning

Satisfiability and Complexity

Complexity classes of decision problems:
P : efficiently computable answers.
NP : efficiently checkable yes-answers. co-NP : efficiently checkable no-answers.

Cook-Levin Theorem [1971]: SAT is NP-complete.
Solving the $\mathrm{P} \stackrel{?}{=}$ NP question is worth $\$ 1,000,000$ [Clay MI '00].

Satisfiability and Complexity

Complexity classes of decision problems:
P : efficiently computable answers.
NP : efficiently checkable yes-answers.
co-NP : efficiently checkable no-answers.

Cook-Levin Theorem [1971]: SAT is NP-complete.
Solving the $\mathrm{P} \stackrel{?}{=}$ NP question is worth $\$ 1,000,000$ [Clay MI '00].
The effectiveness of SAT solving: fast solutions in practice.
The beauty of NP: guaranteed short solutions.
"NP is the new P!"

Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

$$
\begin{array}{rrrrr}
3^{2}+4^{2}=5^{2} & 6^{2}+8^{2}=10^{2} & 5^{2}+12^{2}=13^{2} & 9^{2}+12^{2}=15^{2} \\
8^{2}+15^{2}=17^{2} & 12^{2}+16^{2}=20^{2} & 15^{2}+20^{2}=25^{2} & 7^{2}+24^{2}=25^{2} \\
10^{2}+24^{2}=26^{2} & 20^{2}+21^{2}=29^{2} & 18^{2}+24^{2}=30^{2} & 16^{2}+30^{2}=34^{2} \\
21^{2}+28^{2}=35^{2} & 12^{2}+35^{2}=37^{2} & 15^{2}+36^{2}=39^{2} & 24^{2}+32^{2}=40^{2}
\end{array}
$$

Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

$$
\begin{array}{rrrr}
3^{2}+4^{2}=5^{2} & 6^{2}+8^{2}=10^{2} & 5^{2}+12^{2}=13^{2} & 9^{2}+12^{2}=15^{2} \\
8^{2}+15^{2}=17^{2} & 12^{2}+16^{2}=20^{2} & 15^{2}+20^{2}=25^{2} & 7^{2}+24^{2}=25^{2} \\
10^{2}+24^{2}=26^{2} & 20^{2}+21^{2}=29^{2} & 18^{2}+24^{2}=30^{2} & 16^{2}+30^{2}=34^{2} \\
21^{2}+28^{2}=35^{2} & 12^{2}+35^{2}=37^{2} & 15^{2}+36^{2}=39^{2} & 24^{2}+32^{2}=40^{2}
\end{array}
$$

Best lower bound: a bi-coloring of $[1,7664]$ s.t. there is no monochromatic Pythagorean Triple [Cooper \& Overstreet 2015].
Myers conjectures that the answer is No [PhD thesis, 2015].

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and ($\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}$).

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and ($\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}$).

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824$]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and ($\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}$).

Theorem ([Heule, Kullmann, and Marek (2016)])
$[1,7824]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

4 CPU years computation, but 2 days on cluster (800 cores)

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: $\left(x_{a} \vee x_{b} \vee x_{c}\right)$ and ($\bar{x}_{a} \vee \bar{x}_{b} \vee \bar{x}_{c}$).

Theorem ([Heule, Kullmann, and Marek (2016)])
$[1,7824]$ can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

4 CPU years computation, but 2 days on cluster (800 cores) 200 terabytes proof, but validated with verified checker

Media: "The Largest Math Proof Ever"

engadger
THE NEW REDDIT

tom'sHATỉDWARE
 THE AUTHORITY ON TECH

comments other discussions (5)	
Two-hundred-terabyte 19 days ago by CryptoBeer 265 comments share NATURE \mid NEWS	Home \mid News \& Comment \mid Research \mid Careers \& Jobs \mid Current Issue \mid Archive \mid Audio \& Video

Slashdot stores Two-hundred-terabyte maths proof is largest ever Topics: Devices Build Entertainment Technology Open Source Science YRO

6f Become a fan of Slashdot on Facebook

Logic and Mechanized Reasoning

Keller's Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is it the case that any gap-free tiling results in at least two fully connected tiles, i.e., tiles that have an entire edge in common?

Keller's Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is it the case that any gap-free tiling results in at least two fully connected tiles, i.e., tiles that have an entire edge in common?

Keller's Conjecture: Resolved

In 1930, Ott-Heinrich Keller conjectured that this phenomenon holds in every dimension.

Keller's Conjecture.
For all $n \geq 1$, every tiling of the n-dimensional space with unit cubes has two which fully share a face.

[Wikipedia, CC BY-SA]

Computer Search Settles 90-Year-Old Math Problem

- 10 By translating Keller's conjecture into a computer-friendly search for a type of graph, researchers have finally resolved a problem about covering spaces with tiles.

Satisfiability Modulo Theories (SMT)

SMT at Microsoft: Test Input Generation

[^0]SMT at Amazon Web Services: Provable Security

Automated reasoning versus machine learning: How AWS provides secure access control without data

VIDEO EXCLUSIVE BY BETSY AMY-VOGT

First-Order and Higher-Order Logic
THREE LOGICIANS WALK INTO A BAR...

http://spikedmath.com/445.html

Automating Gödel's Ontological Proof of God's Existence

abcNEWS video live shows coronavirus ::: ○

Computer Scientists 'Prove' God Exists

Can proof of God be proven in mathematical equations?

By David Knight, SPIEGEL
October 27, 2013, 3:30 AM - 5 min read f f

O Getty Images
Two scientists believe they have formalized a theorem confirming the existence of God.

Lean Embraced by Mathematicians

nature

Explore content \checkmark Journal information \checkmark Publish with us \checkmark Subscribe
nature > news > article

NEWS | 18 June 2021

Mathematicians welcome computer-assisted proof in 'grand unification' theory

Proof-assistant software handles an abstract concept at the cutting edge of research, revealing a bigger role for software in mathematics.

Future of Computer-Aided Mathematics

Fields Medalist Timothy Gowers stated that mathematicians would like to use three kinds of technology [Big Proof 2017]:

- Proof Assistant Technology
- Prove any lemma that a graduate student can work out
- Proof Search Technology
- Automatically determine whether a conjecture holds
- Recent improvement: Linear speedups on thousands of cores
- Proof Checking Technology
- Mechanized validation of all details
- Recent improvement: Formally verified checking of huge proofs

Future of Computer-Aided Mathematics

Fields Medalist Timothy Gowers stated that mathematicians would like to use three kinds of technology [Big Proof 2017]:

- Proof Assistant Technology
- Prove any lemma that a graduate student can work out
- Proof Search Technology
- Automatically determine whether a conjecture holds
- Recent improvement: Linear speedups on thousands of cores
- Proof Checking Technology
- Mechanized validation of all details
- Recent improvement: Formally verified checking of huge proofs

Classic problems ready for mechanization:

- Chromatic number of the plane
- Ramsey number five
- Collatz Conjecture (maybe?)

[^0]: \{奴 I Programmer
 Microsoft Z3 Theorem Prover Wins Award
 Microsoft Research's Z3 theorem prover has been awarded the 2015 ACM SIGPLAN Programming Languages Software Award. Z3banner.
 Jun 24, 2015

