
Name:

Logic and Mechanized Reasoning

Second Midterm Exam

November 2, 2021

Write your answers in the space provided, using the back of the page if necessary.
You may use additional scratch paper. Justify your answers, and provide clear,
readable explanations.

Problem Points Score

1 10

2 12

3 12

4 10

5 10

6 12

7 12

Total 78

Good luck!



Problem 1. (10 points) Use the Tseitin transformation (rather than distributing)
to find a CNF formula that is equisatisfiable with this one:

p ∧ (q ∨ (r ∧ ¬s) ∨ ¬(q → t)).

(You don’t have to worry about making it the smallest such formula.)

Solution

p ∧ (q ∨ d1 ∨ d2) ∧ (¬d1 ∨ r) ∧ (¬d1 ∨ ¬s) ∧ (¬d2 ∨ q) ∧ (¬d2 ∨ ¬t).



Problem 2.

Recall the Sudoku problem discussed in class. A n-Sudoku is an n2 × n2 grid with
the numbers 1 to n2 occurring uniquely in every row and column, and also uniquely
in n × n subgrids. Solving a Sudoku can be done by encoding it as a satisfiability
problem. In our encoding, variable pi,j,k with i, j, k ∈ {1, 2, 3, 4} is true if and only
if that the square on row i and column j has number k. The top left square is on
row 1 and column 1. For this question, consider the 2-Sudoku below.

2

3

1

1

Part a) (8 points) The encoding includes the following clauses. Apply unit prop-
agation to these clauses, repeating until the unit propagation rule can no longer be
applied.

Make a list of the clauses that unit propagation uses to extend the assignment,
listing them in the order that they become unit under the extended assignments.
Rearrange the literals in each clause so that the unit literal comes first.

• p1,1,1 ∨ p1,1,2 ∨ p1,1,3 ∨ p1,1,4

• p1,1,3 ∨ p1,2,3 ∨ p2,1,3 ∨ p2,2,3

• ¬p1,1,1 ∨ ¬p1,1,2

• ¬p1,1,2 ∨ ¬p1,1,3

• ¬p1,1,2 ∨ ¬p1,1,4

• ¬p2,1,3 ∨ ¬p2,3,3

• ¬p2,2,3 ∨ ¬p2,3,3

• p1,1,2

• p2,3,3



Solution

1. p1,1,2

2. p2,3,3

3. ¬p1,1,1 ∨ ¬p1,1,2

4. ¬p1,1,3 ∨ ¬p1,1,2

5. ¬p1,1,4 ∨ ¬p1,1,2

6. ¬p2,1,3 ∨ ¬p2,3,3

7. ¬p2,2,3 ∨ ¬p2,3,3

8. p1,2,3 ∨ p1,1,3 ∨ p2,1,3 ∨ p2,2,3

Note that p1,1,1 ∨ p1,1,2 ∨ p1,1,3 ∨ p1,1,4 does not become unit, but is satisfied on a
single literal.

Part b) (4 points) Notice that for the shown 2-Sudoku, applying unit propagation
on the entire encoding results in a solution to the puzzle. In this case, the puzzle
has only one solution.

Suppose we start with the encoding of an n-Sudoku, and unit propagation results
in a solution. Is this enough to guarantee that the puzzle has a only one solution?
Explain your answer.

Solution

Yes, unit propagation preserves the set of satisfying assignments. If unit propagation
assigns all variables, then there is only one solution.



Problem 3. Let Γ be a CNF formula, which you can think of as a set of clauses,
and let τ be a partial assignment to the variables of Γ.

Remember that we use JΓKτ to denote the result of deleting all the clauses that
contain a literal that τ makes true, and removing all literals that τ sets to false from
the remaining clauses.

Recall also that τ is an autarky for Γ if the following holds: for every clause C in Γ,
if τ touches C (i.e. assigns to one of the literals in C), then τ satisfies C.

Part a) (6 points) Prove that if τ is an autarky for Γ, then JΓKτ ⊆ Γ.

Solution

Suppose C is in JΓKτ . Then C is the result of deleting literals from some clause C ′

in Γ that is not satisfied by τ . Since τ is an autarky, we have that τ doesn’t touch
C ′. So C = C ′.

Part b) (6 points) Prove that if τ is an autarky for Γ, then JΓKτ is equisatisfiable
with Γ.

Solution

By part a), if Γ is satisfiable, then so is JΓKτ . In the other direction, suppose σ
satisfies JΓKτ . Let ρ be σ together with τ . Then, in Γ, all the clauses that are
satisfied by τ are satisfied by ρ. All the clauses that are not satisfied by τ are in
JΓKτ , and so they are satisfied by σ, and hence by ρ.



Problem 4.

Consider the CNF formula Γ = (p ∨ q) ∧ (¬p ∨ r) ∧ (¬q ∨ ¬r)

Part a) (6 points) Compute all possible non-tautological resolvents of Γ until
fixpoint. In other words, keep resolving clauses until no new resolvents are found.

Solution

The set of non-tautological resolvents is: (¬p ∨ ¬q), (p ∨ ¬r), (q ∨ r).

Part b) (4 points) Explain how the procedure above can be used to determine
whether or not a CNF formula is satisfiable.

Solution

The formula is unsatisfiable if and only if the set of all possible non-tautological
resolvents contains the empty clause.



Problem 5.

Remember that the DPLL search tries to find a satisfying assignment for a set of
clauses Γ by doing a backtracking search on partial assignments τ . At a node τ in
the search, DPLL tries to find a satisfying assignment to JΓKτ .

Part a) (3 points) What does it mean to say that a literal ` is a pure literal in
JΓKτ?

Solution

It means the negation of ` does not occur in JΓKτ .

Part b) (7 points) Suppose ` is pure in JΓKτ and let τ ′ be the assignment τ [` 7→ >].
Show that JΓKτ ′ is satisfiable if and only if JΓKτ is satisfiable.

Solution

Since ¬` does not occur in JΓKτ , JΓKτ ′ is the result of deleting all clauses of JΓKτ
that contain `. Since JΓKτ ′ is a subset of JΓKτ , if JΓKτ is satisfiable, then JΓKτ ′ is
satisfiable.

Conversely, suppose σ satisfies JΓKτ ′ , then σ[` 7→ >] satisfies JΓKτ .



Problem 6. Remember that in Lean we define the type Clause to be List Lit.

Part a) (6 points) Define a function findComplement? : Clause → Clause
→ Option Lit that finds a literal ` such that ` occurs in the first clause and ¬`
occurs in the second. If there isn’t one, the function should return none. You can
assume that you have a function List.contains : α → List α → Bool that
determines whether an element is in a list.

Solution
def findComplement? : Clause → Clause → Option Lit
| [], C2 => none
| (l :: C1), C2 => if C2.contains l.negate then some l else

findComplement? C1 C2

Part b) (6 points) Define a function resolve : Clause → Clause → Option
Clause that applies the resolution rule to two clauses, assuming there is a comple-
mentary pair, and returns none otherwise. You can assume that you have a function
List.erase : α → List α → List α that deletes an element from a list, if it
is present.

Solution
def resolve (C1 C2 : Clause) : Option Clause :=
match findComplement? C1 C2 with

| some l => some $ (C1.erase l).union (C2.erase l.negate)
| none => none



Problem 7. Given the declaration variable (p q r : Prop), as best you can,
try to write Lean proofs of the two theorems shown. Also tell us what the goal looks
like after each line in your proof, i.e. the hypotheses and conclusion. Don’t worry
too much about the syntax or writing the goal exactly like Lean does; we are more
interested in seeing that you know what steps are allowed.

Part a) (6 points)
example : p ∧ q → q ∨ r := by

Solution
example : p ∧ q → q ∨ r := by

intro 〈h1, h2〉
exact Or.inl h2

Part b) (6 points)
example : (p → q) → (q → r) → (p → r) := by

Solution
example : (p → q) → (q → r) → (p → r) := by

intro h1 h2 h3
apply h2
apply h1
exact h3


