

Logic and Mechanized Reasoning

Propositional Logic

Marijn J.H. Heule

Carnegie
Mellon
University

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax: Definition

The set of propositional formulas is generated inductively:

- ▶ Each variable p_i is a formula.
- ▶ \top and \perp are formulas.
- ▶ If A is a formula, so is $\neg A$ ("not A ").
- ▶ If A and B are formulas, so are
 - ▶ $A \wedge B$ (" A and B "),
 - ▶ $A \vee B$ (" A or B "),
 - ▶ $A \rightarrow B$ (" A implies B "), and
 - ▶ $A \leftrightarrow B$ (" A if and only if B ").

Syntax: Complexity

Complexity: the number of connectives

$$\text{complexity}(p_i) = 0$$

$$\text{complexity}(\top) = 0$$

$$\text{complexity}(\perp) = 0$$

$$\text{complexity}(\neg A) = \text{complexity}(A) + 1$$

$$\text{complexity}(A \wedge B) = \text{complexity}(A) + \text{complexity}(B) + 1$$

$$\text{complexity}(A \vee B) = \text{complexity}(A) + \text{complexity}(B) + 1$$

$$\text{complexity}(A \rightarrow B) = \text{complexity}(A) + \text{complexity}(B) + 1$$

$$\text{complexity}(A \leftrightarrow B) = \text{complexity}(A) + \text{complexity}(B) + 1$$

Syntax: Depth

Depth of the parse tree

$$\begin{aligned} \text{depth}(p_i) &= 0 \\ \text{depth}(\top) &= 0 \\ \text{depth}(\perp) &= 0 \\ \text{depth}(\neg A) &= \text{depth}(A) + 1 \\ \text{depth}(A \wedge B) &= \max(\text{depth}(A), \text{depth}(B)) + 1 \\ \text{depth}(A \vee B) &= \max(\text{depth}(A), \text{depth}(B)) + 1 \\ \text{depth}(A \rightarrow B) &= \max(\text{depth}(A), \text{depth}(B)) + 1 \\ \text{depth}(A \leftrightarrow B) &= \max(\text{depth}(A), \text{depth}(B)) + 1 \end{aligned}$$

Syntax: Complexity and Depth

Theorem

For every formula A , we have $\text{complexity}(A) \leq 2^{\text{depth}(A)} - 1$.

Proof.

Base case: $\text{complexity}(p_i) = 0 = 2^0 - 1 = 2^{\text{depth}(p_i)} - 1$,

Inductive case (first \neg , afterwards \wedge):

$$\begin{aligned}\text{complexity}(\neg A) &= \text{complexity}(A) + 1 \\ &\leq 2^{\text{depth}(A)} - 1 + 1 \\ &\leq 2^{\text{depth}(A)} + 2^{\text{depth}(A)} - 1 \\ &\leq 2^{\text{depth}(A)+1} - 1 = 2^{\text{depth}(\neg A)} - 1.\end{aligned}$$

$$\begin{aligned}\text{complexity}(A \wedge B) &= \text{complexity}(A) + \text{complexity}(B) + 1 \\ &\leq 2^{\text{depth}(A)} - 1 + 2^{\text{depth}(B)} - 1 + 1 \\ &\leq 2 \cdot 2^{\max(\text{depth}(A), \text{depth}(B))} - 1 \\ &= 2^{\max(\text{depth}(A), \text{depth}(B)) + 1} - 1 \\ &= 2^{\text{depth}(A \wedge B)} - 1\end{aligned}$$

Syntax: Subformulas

$$\begin{aligned} \text{subformulas}(A) &= \{A\} \quad \text{if } A \text{ is atomic} \\ \text{subformulas}(\neg A) &= \{\neg A\} \cup \text{subformulas}(A) \\ \text{subformulas}(A \star B) &= \{A \star B\} \cup \text{subformulas}(A) \cup \\ &\quad \text{subformulas}(B) \end{aligned}$$

Example

Consider the formula $(\neg A \wedge C) \rightarrow \neg(B \vee C)$.

The *subformulas* function returns

$\{(\neg A \wedge C) \rightarrow \neg(B \vee C), \neg A \wedge C, \neg A, A, C, \neg(B \vee C), B \vee C, B\}$

Syntax: Proposition

Proposition

For every pair of formulas A and B , if $B \in \text{subformulas}(A)$ and $A \in \text{subformulas}(B)$ then A and B are atomic.

True or false?

Proof.

False. A counterexample is $A = B = \neg p$.

Syntax

Semantics

Calculating with Propositions

Random Formulas

Semantics: Introduction

Consider the formula $p \wedge (\neg q \vee r)$. Is it **true**?

It depends on the **truth** of p , q , and r .

Once we **specify** which of p , q , and r are true and which are false, the truth value of $p \wedge (\neg q \vee r)$ is **completely determined**.

A **truth assignment** τ provides this specification by mapping propositional variables to the constants \top and \perp .

Semantics: Evaluation

$$\begin{aligned}\llbracket p_i \rrbracket_\tau &= \tau(p_i) \\ \llbracket \top \rrbracket_\tau &= \top \\ \llbracket \perp \rrbracket_\tau &= \perp \\ \llbracket \neg A \rrbracket_\tau &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_\tau = \perp \\ \perp & \text{otherwise} \end{cases} \\ \llbracket A \wedge B \rrbracket_\tau &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_\tau = \top \text{ and } \llbracket B \rrbracket_\tau = \top \\ \perp & \text{otherwise} \end{cases} \\ \llbracket A \vee B \rrbracket_\tau &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_\tau = \top \text{ or } \llbracket B \rrbracket_\tau = \top \\ \perp & \text{otherwise} \end{cases} \\ \llbracket A \rightarrow B \rrbracket_\tau &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_\tau = \perp \text{ or } \llbracket B \rrbracket_\tau = \top \\ \perp & \text{otherwise} \end{cases} \\ \llbracket A \leftrightarrow B \rrbracket_\tau &= \begin{cases} \top & \text{if } \llbracket A \rrbracket_\tau = \llbracket B \rrbracket_\tau \\ \perp & \text{otherwise} \end{cases}\end{aligned}$$

Semantics: Satisfiable, Unsatisfiable, and Valid

- ▶ If $\llbracket A \rrbracket_{\tau} = \top$, then A is **satisfied** by τ . In that case, τ is a **satisfying assignment** of A .
- ▶ A propositional formula A is **satisfiable** iff there exists an assignment τ that satisfies it and **unsatisfiable** otherwise.
- ▶ A propositional formula A is **valid** iff every assignment satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

- ▶ $(A \leftrightarrow B) \vee (\neg C)$
- ▶ $(A) \vee (\neg B) \vee (\neg A \wedge B)$
- ▶ $(A) \wedge (\neg B) \wedge (A \rightarrow B)$

Semantics: Relation Valid and Unsatisfiable

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $\llbracket A \rrbracket_\tau = \top$ for every assignment τ .

By the def of $\llbracket \neg A \rrbracket_\tau$, this happens iff $\llbracket \neg A \rrbracket_\tau = \perp$ for every τ .

This is the same as saying that $\neg A$ is unsatisfiable. □

Semantics: Proposition 1

Proposition

For every pair of formulas A and B , $A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?

Proof.

True. $A \wedge B$ is valid means that for every assignment τ we have $\llbracket A \wedge B \rrbracket_\tau = \top$. By the definition of $\llbracket A \wedge B \rrbracket$, we have that $\llbracket A \rrbracket_\tau = \top$ and $\llbracket B \rrbracket_\tau = \top$. This means that A and B are valid. □

Semantics: Proposition 2

Proposition

For every pair of formulas A and B , $A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?

Proof.

False. Consider the formula $A \wedge B$ with $A = p$ and $B = \neg p$. Clearly both A and B are satisfiable, while $A \wedge B$ is unsatisfiable.

Semantics: Proposition 3

Proposition

For every pair of formulas A and B , $A \vee B$ is valid if and only if A is valid or B is valid.

True or false?

Proof.

False. Consider the formula $A \vee B$ with $A = p$ and $B = \neg p$. The formula $A \vee B$ is valid, while both A is not valid and B is not valid. □

Semantics: Proposition 4

Proposition

For every pair of formulas A and B , $A \vee B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?

Proof.

True. Consider an assignment τ that satisfies $A \vee B$. By definition it must be the case that $\llbracket A \rrbracket_\tau = \top$ or $\llbracket B \rrbracket_\tau = \top$. This is the same as stating that A is satisfiable or B is satisfiable. □

Semantics: Entailment and Equivalence

- ▶ If every satisfying assignment of a formula A , also satisfies formula B , the A **entails** B , denoted by $A \models B$.
- ▶ If $A \models B$ and $B \models A$, then A and B are **logically equivalent**, denoted by $A \equiv B$.

Example

Which formula entails which other formula?

- ▶ A
- ▶ $\neg A \rightarrow B$
- ▶ $\neg(\neg A \vee \neg B)$

Semantics: Proposition 5

Proposition

For every pair of formulas A and B such that $A \models B$.

If A is valid, then B is valid.

True or false?

Proof.

True. For every assignment τ holds that $\llbracket A \rrbracket_\tau = \top$. Since $A \models B$, every assignment that satisfies A also satisfied B . So every assignment satisfies B , which is only true if B is valid. \square

Semantics: Proposition 6

Proposition

*For every pair of formulas A and B such that $A \models B$.
If B is satisfiable, then A is satisfiable.*

True or false?

Proof.

False. A counterexample is $A = p \wedge \neg p$ and $B = p$. □

Semantics: Proposition 7

Proposition

For every triple of formulas A , B , and C , if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proof.

True. Suppose $A \models B \models C \models A$. Let τ be any truth assignment. We need to show $\llbracket A \rrbracket_\tau = \llbracket B \rrbracket_\tau = \llbracket C \rrbracket_\tau$. Suppose $\llbracket A \rrbracket_\tau = \top$. Since $A \models B$, $\llbracket B \rrbracket_\tau = \top$, and since $B \models C$, we have $\llbracket C \rrbracket_\tau = \top$. So, in that case, $\llbracket A \rrbracket_\tau = \llbracket B \rrbracket_\tau = \llbracket C \rrbracket_\tau$. The other possibility is $\llbracket A \rrbracket_\tau = \perp$. Since $C \models A$, we must have $\llbracket C \rrbracket_\tau = \perp$, and since $B \models C$, we have $\llbracket B \rrbracket_\tau = \perp$. So, in that case also, $\llbracket A \rrbracket_\tau = \llbracket B \rrbracket_\tau = \llbracket C \rrbracket_\tau$. □

Semantics: Diplomacy Problem

“You are chief of protocol for the embassy ball. The crown prince instructs you either to invite *Peru* or to exclude *Qatar*. The queen asks you to invite either *Qatar* or *Romania* or both. The king, in a spiteful mood, wants to snub either *Romania* or *Peru* or both. Is there a guest list that will satisfy the whims of the entire royal family?”

$$(p \vee \neg q) \wedge (q \vee r) \wedge (\neg r \vee \neg p)$$

Semantics: Truth Table

$$\Gamma = (p \vee \neg q) \wedge (q \vee r) \wedge (\neg r \vee \neg p)$$

p	q	r	falsifies	$\llbracket \Gamma \rrbracket_\tau$
\perp	\perp	\perp	$(q \vee r)$	\perp
\perp	\perp	\top	—	\top
\perp	\top	\perp	$(p \vee \neg q)$	\perp
\perp	\top	\top	$(p \vee \neg q)$	\perp
\top	\perp	\perp	$(q \vee r)$	\perp
\top	\perp	\top	$(\neg r \vee \neg p)$	\perp
\top	\top	\perp	—	\top
\top	\top	\top	$(\neg r \vee \neg p)$	\perp

Syntax

Semantics

Calculating with Propositions

Random Formulas

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$A \vee \top \equiv \top$$

$$A \wedge \top \equiv A$$

$$A \vee B \equiv B \vee A$$

$$(A \vee B) \vee C \equiv A \vee (B \vee C)$$

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

$$A \wedge (A \vee B) \equiv A$$

De Morgan's laws:

$$\neg(A \wedge B) \equiv \neg A \vee \neg B$$

$$\neg(A \vee B) \equiv \neg A \wedge \neg B$$

Calculating with Propositions: Example

Theorem

For any propositional formulas A and B , we have
$$(A \wedge \neg B) \vee B \equiv A \vee B.$$

Proof.

$$\begin{aligned}(A \wedge \neg B) \vee B &\equiv (A \vee B) \wedge (\neg B \vee B) \\ &\equiv (A \vee B) \wedge \top \\ &\equiv (A \vee B).\end{aligned}$$

Calculating with Propositions: A Harder Example

Theorem

For any propositional formulas A , B , and C , we have

$$\neg((A \vee B) \wedge (B \rightarrow C)) \equiv (\neg A \vee B) \wedge (\neg A \vee \neg C) \wedge (\neg B \vee \neg C).$$

Proof.

$$\begin{aligned}\neg((A \vee B) \wedge (B \rightarrow C)) &\equiv \neg((A \vee B) \wedge (\neg B \vee C)) \\ &\equiv \neg(A \vee B) \vee \neg(\neg B \vee C) \\ &\equiv (\neg A \wedge \neg B) \vee (B \wedge \neg C) \\ &\equiv (\neg A \vee (B \wedge \neg C)) \wedge (\neg B \vee (B \wedge \neg C)) \\ &\equiv (\neg A \vee (B \wedge \neg C)) \wedge (\neg B \vee B) \wedge (\neg B \vee \neg C) \\ &\equiv (\neg A \vee (B \wedge \neg C)) \wedge \top \wedge (\neg B \vee \neg C) \\ &\equiv (\neg A \vee (B \wedge \neg C)) \wedge (\neg B \vee \neg C) \\ &\equiv (\neg A \vee B) \wedge (\neg A \vee \neg C) \wedge (\neg B \vee \neg C).\end{aligned}$$

Syntax

Semantics

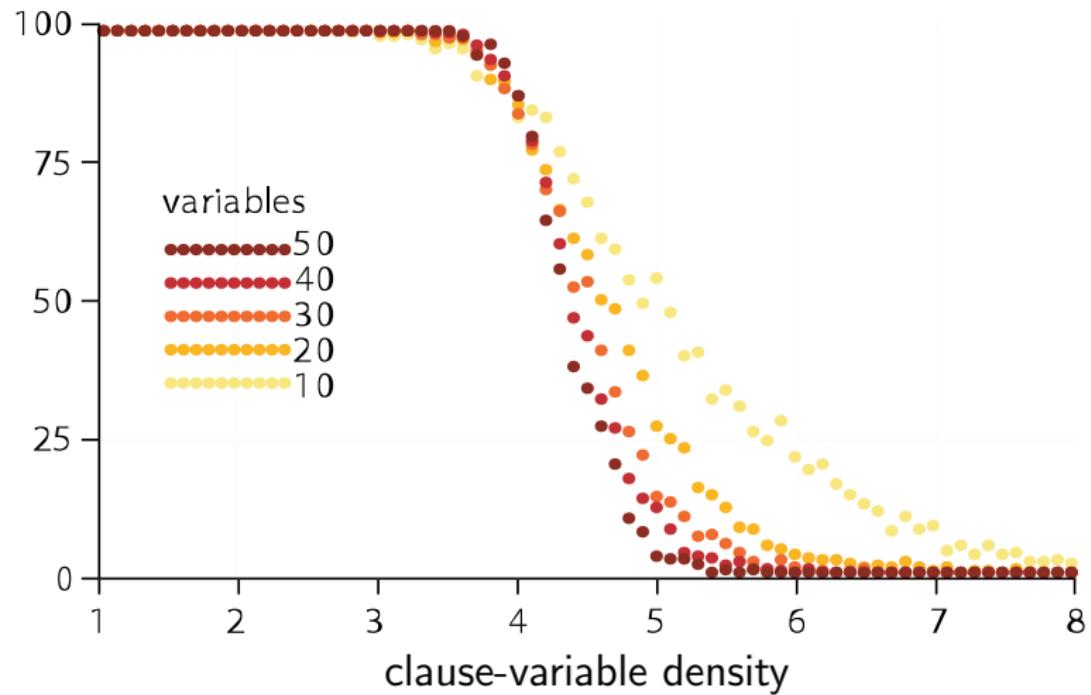
Calculating with Propositions

Random Formulas

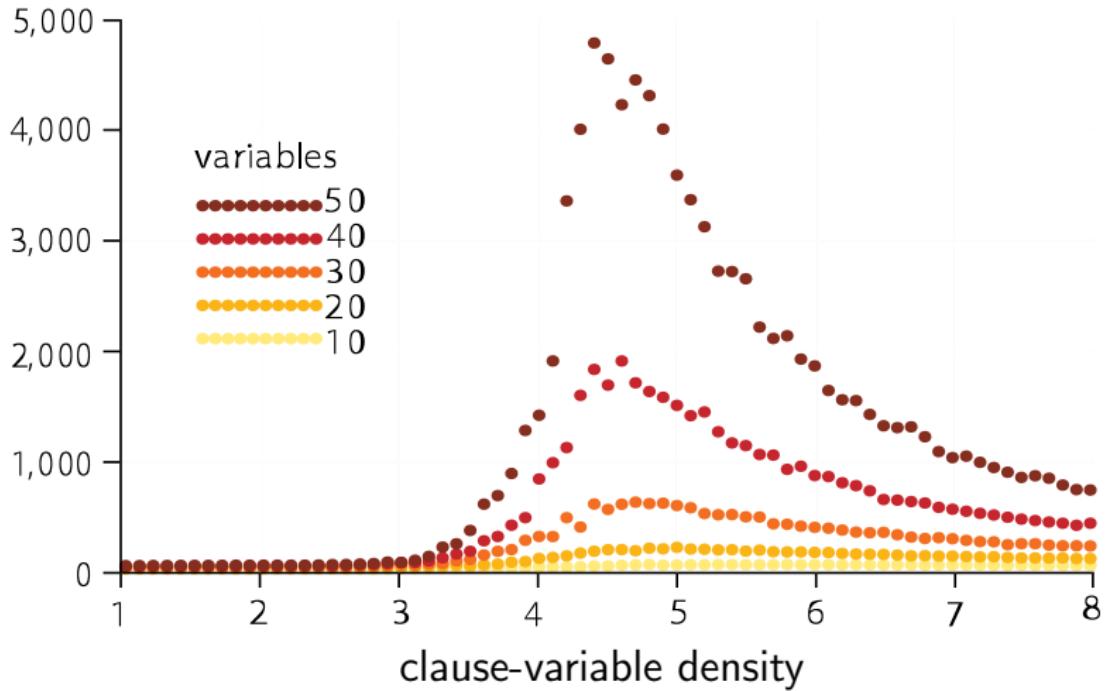
Random Formulas: Introduction

- ▶ Formulas in conjunctive normal form
- ▶ All clauses have length k
- ▶ Variables have the same probability to occur
- ▶ Each literal is negated with probability of 50%
- ▶ Density is ratio Clauses to Variables

Random Formulas: Phase Transition



Random Formulas: Exponential Runtime



SAT Game

by Olivier Roussel

<http://www.cs.utexas.edu/~marijn/game/>

Syntax

Semantics

Calculating with Propositions

Random Formulas