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Complete Sets: OR and NOT

The chosen set of connectives has redundancies. The
connectives can be replaced by other connectives:

A ↔ B ≡ (A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∧ B ≡ ¬(¬A ∨¬B)
⊥ ≡ ¬>
> ≡ p ∨¬p

A set of connectives is complete if it can express all Boolean
functions
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Complete Sets: AND and NOT

Now let’s do the same for AND and NOT:

A ↔ B ≡

(A → B)∧ (B → A)

A → B ≡ ¬A ∨ B
A ∨ B ≡ ¬(¬A ∧¬B)
> ≡ ¬⊥
⊥ ≡ p ∧¬p
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Negation Normal Form: Introduction

The set of propositional formulas in negation normal form
(NNF) is generated inductively as follows:

I Each variable pi is in negation normal form.

I The negation ¬pi of a propositional variable is in negation
normal form.

I > and ⊥ are in negation normal form.

I If A and B are in negation normal form, then so are A ∧ B
and A ∨ B.

Example (Which formulas are in NNF?)

I p ∨ (q ∧¬p)
I p → q
I ¬A ∧ (B ∨ A)
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Negation Normal Form: Recall Harder Example

Recall: For any propositional variables p, q, and r, we have
¬((p ∨ q)∧ (q → r)) ≡ (¬p ∨ q)∧ (¬p ∨¬r)∧ (¬q ∨¬r).

Proof.

¬((p ∨ q)∧ (q → r)) ≡ ¬((p ∨ q)∧ (¬q ∨ r))
≡ ¬(p ∨ q)∨¬(¬q ∨ r)
≡ (¬p ∧¬q)∨ (q ∧¬r)
≡ (¬p ∨ (q ∧¬r))∧ (¬q ∨ (q ∧¬r))
≡ (¬p ∨ (q ∧¬r))∧ (¬q ∨ q)∧ (¬q ∨¬r))
≡ (¬p ∨ (q ∧¬r))∧>∧ (¬q ∨¬r)
≡ (¬p ∨ (q ∧¬r))∧ (¬q ∨¬r)
≡ (¬p ∨ q)∧ (¬p ∨¬r)∧ (¬q ∨¬r).

Which formulas are in NNF?

Logic and Mechanized Reasoning 8 / 29



Negation Normal Form: Lemma

Lemma
Every propositional formula is equivalent to one in negation
normal form.

Proof.
First use the identities A ↔ B ≡ (A → B)∧ (B → A) and
A → B ≡ ¬A ∨ B to get rid of ↔ and →. Then use De
Morgan’s laws together with ¬¬A ≡ A, ¬> ≡ ⊥, and
¬> ≡ ⊥ to push negations down to the atomic formulas.
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Disjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Disjunctive Normal Form (DNF)
if it is written as a disjunction of conjunctions of literals.

∨
i<n

 ∧
j<mi

(¬)pi,j



A conjunction of literals is called a cube. > is the empty cube.

Example (Which formulas are in DNF?)

I p ∨ q
I p ∧ q
I (p ∧ q)∨¬(p ∧ q)
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Disjunctive Normal Form: Lemma

Lemma
The conjunction of two DNF formulas is equivalent to a DNF
formula.

Proof.
True. Recall that A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C).

By induction on n, we have that for every sequence of
formulas B0, . . . , Bn−1 we have A ∧

∨
i<n Bi ≡

∨
i<n(A ∧ Bi).

Then by induction on n ′ we have∨
i ′<n ′ Ai ′ ∧

∨
i<n Bi ≡

∨
i ′<n ′

∨
i<n(Ai ′ ∧ Bi).

Since each Ai ′ and each Bi is a conjunction of literals, this
yields the result.
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Disjunctive Normal Form: Proposition 1

Proposition

Every propositional formula is equivalent to one in disjunctive
normal form.

True or false?

Proof.
True. Since we already know that every formula is equivalent
to one in negation normal form, we can use induction on that
set of formulas. The claim is clearly true of >, ⊥, pi, and ¬pi.
By the previous lemma, whenever it is true of A and B, it is
also true of A ∨ B.
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Disjunctive Normal Form: Proposition 2

Proposition

For every DNF formula A one can determine satisfiability and
unsatisfiability in linear time.

True or false?

Proof.
True. A cube with a pair of complementary literals pi and ¬pi
is equal to ⊥. Computing whether a cube is equal to ⊥ can
be done in linear time. A formula is satisfiable if A contains at
least one cube that is not equal to ⊥ and unsatisfiable
otherwise.
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Disjunctive Normal Form: Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

How to convert this into DNF?
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Disjunctive Normal Form: Truth Table to DNF

Γ = (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

τ(p) τ(q) τ(r) falsifies [[Γ]]τ
⊥ ⊥ ⊥ (q ∨ r) ⊥
⊥ ⊥ > — >
⊥ > ⊥ (p ∨¬q) ⊥
⊥ > > (p ∨¬q) ⊥
> ⊥ ⊥ (q ∨ r) ⊥
> ⊥ > (¬r ∨¬p) ⊥
> > ⊥ — >
> > > (¬r ∨¬p) ⊥

The DNF consists of all assignments that satisfy the formula:

(¬p ∧¬q ∧ r)∨ (p ∧ q ∧¬r)
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Disjunctive Normal Form: Applying Distributive Laws

An alternative approach is applying the distributive laws

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p) ≡

(p ∧ (q ∨ r))∨ (¬q ∧ (q ∨ r))∧ (¬r ∨¬p) ≡
(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ q)∨ (¬q ∧ r)∧ (¬r ∨¬p) ≡

(p ∧ q)∨ (p ∧ r)∨⊥∨ (¬q ∧ r)∧ (¬r ∨¬p) ≡
(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)∧ (¬r ∨¬p) ≡

(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).
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(p ∧ q)∨ (p ∧ r)∨ (¬q ∧ r)∧ (¬r ∨¬p) ≡
(¬r ∧ p ∧ q)∨ (¬r ∧ p ∧ r)∨ (¬r ∧¬q ∧ r)∨
(¬p ∧ p ∧ q)∨ (¬p ∧ p ∧ r)∨ (¬p ∧¬q ∧ r) ≡

(¬r ∧ p ∧ q)∨⊥∨⊥∨⊥∨⊥∨ (¬p ∧¬q ∧ r) ≡
(¬r ∧ p ∧ q)∨ (¬p ∧¬q ∧ r).
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Disjunctive Normal Form: Complexity

What is the worst case cost of applying the distributive laws?

In some cases, converting a formula to DNF can have an
exponential explosion on the size of the formula.

If we convert (p1 ∨ q1)∧ (p2 ∨ q2)∧ . . . ∧ (pn ∨ qn)
using the distributive laws to DNF:

(p1 ∧ p2 ∧ . . . ∧ pn) ∨ (q1 ∧ p2 ∧ . . . ∧ pn) ∨ . . .∨
(q1 ∧ q2 ∧ . . . ∧ qn)
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Conjunctive Normal Form: Introduction

A literal is a propositional variable p or its negation ¬p.

A propositional formula is in Conjunctive Normal Form (CNF)
if it is written as a conjunction of disjunctions of literals.

∧
i<n

 ∨
j<mi

(¬)pi,j



A clause is a disjunction of literals. ⊥ denotes the empty clause.

Example (Which formulas are in CNF?)

I p ∨ q
I p ∧ q
I (p ∨ q)∧¬(p ∨ q)
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Conjunctive Normal Form: Proposition

Proposition

For every CNF formula A one can determine whether it is valid
in linear time.

True or false?

Proof.
True. A clause with a pair of complementary literals pi and
¬pi is equal to >. Computing whether a clause is equal to >
can be done in linear time. A formula is valid if and only if all
clauses are equal to >.

Logic and Mechanized Reasoning 21 / 29



Conjunctive Normal Form: Proposition

Proposition

For every CNF formula A one can determine whether it is valid
in linear time.

True or false?

Proof.
True. A clause with a pair of complementary literals pi and
¬pi is equal to >. Computing whether a clause is equal to >
can be done in linear time. A formula is valid if and only if all
clauses are equal to >.

Logic and Mechanized Reasoning 21 / 29



Conjunctive Normal Form: Input Form of Reasoning Tools

Most reasoning tools for propositional logic require CNF input

I Transforming a formula to CNF can also be exponential...

I But, it can be avoided by focusing on equisatisfiability.

I The performance of solvers depend on the transformation.

I Typically the smaller the CNF, the easier to solve it.

Let’s look at transforming common constraints into CNF
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Conjunctive Normal Form: AtLeastOne

Given a set of propositions p1, . . . , pn, how to express

AtLeastOne (p1, . . . , pn)

in CNF?

Hint: This is easy...

(p1 ∨ p2 ∨ · · ·∨ pn)
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Conjunctive Normal Form: Exclusive OR Introduction

Given a set of Boolean variables p1, . . . , pn, how to express

XOR(p1, . . . , pn)

in CNF?

XOR(p1, . . . , pn) is true when an odd number of pi is assigned
to true. Consider the case with two literals:

τ(p1) τ(p2) [[XOR(p1, p2)]]τ
⊥ ⊥ ⊥
⊥ > >
> ⊥ >
> > ⊥

(p1 ∨ p2)∧ (¬p1 ∨¬p2)
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Conjunctive Normal Form: Exclusive OR Exponential

Given a set of propositions p1, . . . , pn, how to express

XOR(p1, . . . , pn)

in CNF?

The direct encoding requires 2n−1 clauses of length n:

∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)
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The direct encoding requires 2n−1 clauses of length n:

∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

XOR(p1, p2, p3) = (p1 ∨ p2 ∨ p3)∧ (¬p1 ∨¬p2 ∨ p3)∧
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(¬p1 ∨ p2 ∨¬p3)∧ (p1 ∨¬p2 ∨¬p3)

Question: How many assignments satisfy this formula? 4
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Conjunctive Normal Form: Exclusive OR Exponential

Given a set of propositions p1, . . . , pn, how to express

XOR(p1, . . . , pn)

in CNF?

The direct encoding requires 2n−1 clauses of length n:

∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

Can we encode large XORs with less clauses?
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Given a set of propositions p1, . . . , pn, how to express

XOR(p1, . . . , pn)

in CNF?

The direct encoding requires 2n−1 clauses of length n:

∧
even #¬

((¬)p1 ∨ (¬)p2 ∨ · · ·∨ (¬)pn)

Can we encode large XORs with less clauses?

Make it compact: XOR (p1, p2, p3, q) ∧ XOR (¬q, p4, . . . , pn)

Tradeoff: increase the number of variables but decreases the
number of clauses!
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Conjunctive Normal Form: AtMostOne Pairwise Encoding

Given a set of propositions p1, . . . , pn, how to express

AtMostOne (p1, . . . , pn)

in CNF?

The direct encoding requires n(n − 1)/2 binary clauses:

∧
1≤i<j≤n

(¬pi ∨¬pj)

Is it possible to use fewer clauses?
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Conjunctive Normal Form: AtMostOne Linear Encoding

Given a set of propositions p1, . . . , pn, how to express

AtMostOne (p1, . . . , pn)

in CNF using a linear number of binary clauses?

By splitting the constraint using additional variables. Apply
the direct encoding if n ≤ 4 otherwise replace AtMostOne
(p1, . . . , pn) by

AtMostOne (p1, p2, p3, q) ∧ AtMostOne (¬q, p4, . . . , pn)

resulting in 3n − 6 clauses and (n − 3)/2 new variables.
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Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of AtMostOne(p1, p2) equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2
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Are these two formulas of AtMostOne(p1, p2) equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

Question: Is A equivalent to B?

Note: A ↔ B is valid if ¬A∧B and A∧¬B are unsatisfiable.
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Conjunctive Normal Form: AtMostOne Equivalence

Are these two formulas of AtMostOne(p1, p2) equivalent?

A (direct encoding) B (split encoding)
¬p1 ∨¬p2 ¬p1 ∨ q

¬q ∨¬p2

A and B are equisatisfiable:

I A is satisfiable iff B is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if
all we want we want to do is determine satisfiability.
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